
COVERING SPACES OF PARACOMPACT SPACES

A. ZABRODSKY

Introduction* Let X and X be two Hausdorff spaces and / a
continuous1 mapping of X into X. We say that / is a covering mapping
if / maps X onto X and there exist an open covering1 ψ~ of X having
the following property:

(1) For every Ve 3^, f~\V] is a union of a family ^(V) con-
sisting of pairwise-disjoint open sets each of which is mapped homeo-
morphically onto V by /.
The pair (X,/) is called a covering space of X.

If X is a metric space, nothing can be said, in general, about the
diameters of the elements of the covering y of X, the diameters of
the elements of ^~(V), Fe 5^, or any isometric properties of /, as
can be seen from the following example:

EXAMPLE 1. Let X be the real line with the usual metric, X the
unit circle | z \ — 1 in the complex ίΓ-plane with length of minor arc
as the distance between two points and finally / the function:
f{x) = β«|ϊ|5._

Then (X,/) is a covering space of X, if 5^ is the set of arcs of
length one. Now, let V be the unit spherical region (i.e. the arc of
length one) with z = 1 as centre. One can easily see that / - 1[ V]
consists of intervals of the form 2/cπ — 1 < x2 < 2fcπ + 1 and the
infinum of their diameters is zero. Thus if V e J?r{ V),f\V has in general
no isometric properties. But it is easily seen that the metric in X
can be changed (without changing the topology of X) in such a way
that f\ V will be an isometry for every Ve^(V) and every Ve^\
This leads to the following problem:

Problem. Let (X, /) be a covering space of a metrisable space X.
Does there exist a metric p in X and a metric p in X, inducing the
topologies of X and X respectively and such that the family &" of
unit spherical regions in (X, p) has the following property:

(A) For every Se^f-^S] is a union of a family ^~(S), con-
sisting of pairwise-disjoint unit spherical regions in (X, p) each of

Received September 12, 1963. This paper represents part of a thesis submitted to
the Senate of the Technion-Israel Institute of Technology in partial fulfillment of the
requirements for the degree of Master of Science. The author wishes to thank Professor
H. Hanani for his guidance in the preparation of this paper. Acknowledgement is also
due to Dr. M. Reichaw (Reichbach) for his help.

1 In this paper all mappings and functions are assumed to be continuous, and all
coverings to be open. The qualifying adjectives are omitted accordingly.

1489



1490 A. ZABRODSKY

which is mapped isometrically onto S by /?
In this paper we give a positive answer to this question for locally-

connected spaces (Part 1). If X is not locally-connected, it may happen
that no metrics p and p can be found, so that (A) will be satisfied
(Example 2). But similar results are also valid in general spaces (not
necessarily locally connected). (Theorem 3, Part 2)

Part I* Covering spaces of locally-connected paracompact
spaces* In this part we deal with paracompact uniform spaces. It
contains Theorem 1, providing a solution to a problem analogous to
the original one stated in the introduction for paracompact locally-
connected uniform spaces. From this theorem a solution to the original
problem concerning locally-connected metric spaces is derived (Theorem 2).

LEMMA 1. Let (X,f) be a covering spaces of a locally-connected
paracompact space X. There exists a covering y of X having
property (1) and satisfying the following condition:

(2) For every V and W of y , each element of j^{ V) intersects at
most one element of

Proof. Let ^ be a covering of X by connected open sets having
property (1). Let 5̂ ~ be a ^-refinement2 of ^ consisting of connected
open sets. It is clear that 5̂ ~ has property (1). It has to be shown
that (2) holds. In fact, suppose there exist elements V and W of y ,
an element W of &~( W) and two distinct elements Vx and V2 of ^{ V)
such that V1 Π W Φ Φ and V2 Π W Φ Φ. Thus V Π W Φ Φ and since y
is a ^/-refinements of ^ , it follows that V U W is contained in some
element U of <gΛ The sets Vl9 V2 and W, being homeomorphic with
connected sets, are connected, and since VtPiW and V2 Π W are not
empty we have that the set Vx U V2 U W is connected. By V U W c U
we have that the set ^ U ^ U ^ c f~x[U], and since f~\U] is a union
of disjoint open sets, this set, being connected, is contained in one
and only one element 0 of &~(Ό). Then, however, f{V1)^f{V2)
contradicts the fact that /1 ϋ is a homeomorphism.

THEOREM 1. Let (X, J%f) be a locally-connected paracompact
uniform space with s*f as the maximal uniformity*, and X a Hausdorff
space and f a mapping of X onto X.

2 We recall that a ^-refinement ^ of a covering ^ of space X is a covering of X
having the property that the union of the elements of ^ which contain a fixed element
x of X is contained in some element of f̂. For the proof of the existence of such
refinement in paracompact spaces see [3].

3 I.e., the uniformity consisting of all neighbourhoods of the diagonal in X X X.
The equivalence of paracompactness and the existence of such uniformity is proved in
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Then {X, f) is a covering space of X if and only if and only if
(3) There exist a symmetric open neighbourhood C of the diagonal

ί n l x l and an open element C of Sxf such that:
(3a) For every xeX, f(C[x]) = C[f(x)].
(3b) If & is the family consisting of all subsets of X x X of

the form C Π F~λ[A] for all i e j / , where i*7: X x X-> X xX is
defined by .F(£, y) = (/(#), /0/)), then ^ is a basis for a uniformity

in X inducing the given topology of X.

Proof of necessity. Suppose that (X, /) is a covering space of X.
By Lemma 1, we can choose a covering of X satisfying (1) and (2)
and which by the paracompactness of X is an even covering. (See
[2] p. 156). Then clearly we can find a symmetric open neighbourhood
C of the diagonal in X x X such that the covering ^ = {C[x] \ x e X}
satisfies (1) and (2).

Define C to be the set of all pairs (x, y) in X x X such that
F(x, y)eC and such that x and y are contained in the same element
W of J^(C[/(x)]). Hence, for each xeX C[x] is the element of
^(C[f(x)]) containing x.

We shall now show that C is the required neighbourhood of the
diagonal in X x X. For this purpose we prove the following propositions:

(a) C = C " 1 = : ( C o C ) n F - 1 [ C ]
(b) C is an open neighbourhood of the diagonal ί n l x l satisfying

(3a).
(c) The family # , consisting of sets of the form C Π F~X[A] for

all A G S>f and AaC, is a basis for a uniformity Stf of X.

(d) The uniformity sk of X defined in (c) induces the topology
of X

Proof of (a). Let (2c, y) be an element of C. Thus, y and x are
contained in the same element W of ^(C[f(x)\). Let Vτ and V2 be
the two elements of ^~(C[f(y)]) containing x and y respectively.
Hence V1f]W and V2 Π W are not empty. By property (2) we must
have VΊ = V2. Thus, x and y are contained in the same element of
^(C[f(y)]) which means that (y, x)eC. Hence C = C"1. For proof
of the second equality note that by CczF^lC], we have
Cc(CoC)nF~ 1 [C]. On the other hand, {x, y)e (CoC) n F ^ C ]
implies that /(i/)e C[/(#)] and that there exists z9zeX such that
(3?f 2) and (z, ^) are in C. Thus, 2c, ̂  and z are contained in the same
element W of ^(C[f(z)]). Now, if Fx and V2 are the elements of
^~(C[f(x)]) containing x and ^ respectively, it follows by (2) that
Vx = V2. Hence (x, y) e C. It follows that (Co C) Π F-^C] c C which
completes the proof of (a).
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Proof of (b). Let (x, y) be any element of C. There exist then
open subsets V and W of X, such that f(x) e F, f(y) e W and such
that VxWaC. Let U be the element of J^(C [/(£)]) containing
x and y. We put f - 0 Π /"TΓ] and ^ - & n /"'[ PΓ]. It suffices
to show that V x W c C. But by (a) this last inclusion follows from
the fact that

V x W = (U x 0) Π [/-χ(F) x /~W)]

= ff x ff n F-\VX w)c(CoC) n F-τ[C] = c

Thus, C is an open neighbourhood of the diagonal in I x I , and
by the definition of C (3a) holds.

Proof of (c). Let A be any element of C; then A = Cn .F-^A]
for some A of j y , A c C Since Jϊsf is a uniformity there exists an
element B oί J*f,BcC such that BoBczA. Let J3 = C n J F 7 " 1 ^ ] . We
have β o J g c ( C o C ) n ί 7 - 1 [ β o β ] c ( C o C ) n F - 1 [ A ] . Since A c C , we
have by (a) that

Thus, for every A e # there exists i?6 φ such that BoBc A, Simple
calculations show that ^ has all other properties of uniformity and
(c) holds.

Proof of (d). Let S be any open neighbourhood of an arbitrary
point x of X, and T = S f) C[x]. Being an open subset of X,f{T)
contains a set A[f(x)] for some Ae J^, A c C . Putting A = C Π -F-^A]
we now show that Ά[x] c f c S . In fact, let g = f\C[x]. We have
g(Ά[x]) - /(A[3Γ|) c F(A)[/(^)] c A[/(2f>] c / ( Γ ) = (/(?). Since g is a
homeomorphism, it follows that Ά[x] c T.

Finally, it is clear that for every A e ^ and every α e X, A[x] is
a neighbourhood of x, thus the uniformity Szf with basis ^ induces
the topology of X and (d) is proved.

To complete the proof of necessity of condition (3) we only have
to note that the uniformity Szf defined in (c) satisfies condition (3b).

Proof of sufficiency of condition (3). Let Jzf be the given
uniformity of X, C the given neighbourhood of the diagonal of X x X
and C the element of S/ given in (3).

We have to show the existence of a covering 7" of I having
property (1). For this purpose we prove the following two properties:

(e) If (x, y) e C, then f(x) = f(y) implies x = y.
and

(f) For every A e j ^ , A c C, let A = C Π ^ " '
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T h e n , f o r e v e r y xeX f(Ά[x]) = A[f(x)].

Proof of (e). Suppose f(x) — f(y). Hence F(x, y) is in the diagonal
of X x X and therefore, (x, y) e F~λ[A] for every A e Stf. If (x, y)eC
then (x, y) is contained in every element of a basis for a uniformity
of X, and since X is a Hausdorff space we have x = y.

Proof of (f). By (3a) we have F(C) = C. Hence, F(Ά)aF(C) n A=
C ί Ί i = i . It follows that /(![«])c^ίAJI/ίίcJlcAI/ίaί)]. On the
other hand, if yeA[f(x)] then ΐ/eC[/(ϊ)]. Now by (3a) we have
t h a t f(C[x]) = C[f(x)]; hence there exists y,y e C[x] Hf'ty]. Thus

(x, y)eC Π ί 7 " 1 ^ ] = A and y e A[x], Hence y e f(A[x]) and

/(A[#]) 3 A[/(20], which completes the proof of (f).

Now, let B be a symmetric element of & (defined in 3b) satisfying
BoBczC. Thus, β = Cfl F-^J?] for some BaC, Bes$? and we can
assume that B and B are open. By (e) f\B[x] is one-to-one for each
xe X. By (f) / is an open mapping. From (e) it also follows that
{ ΰ [ ϊ ] | ϊ e l } are disjoint. Thus, f\B[x] is a homeomorphism. To
complete the proof we still have to show that

(f) For every symmetric neighbourhood A of Szf and for every
x e X, Άlf-^x]] = f-\A[x]) where A = C n F"\A].

Proof of (f). By (f) A[2B] c / - 1 ^ ^ ] ) for every xef-\x). Hence,

On the other hand, since A and A are symmetric, we have t h a t

y e f~\A[x]) implies x e A[f(y)]. Therefore by (f), there exists x,xe X

such that f(x) — x and (x, y) e A. Hence, ye A[x] c Ά[f~\x)] and we
thus have f-\A[x\) a A[f-\x)\, and (/') is proved. Since B is sym-
metric we have by (/') that f~\B[x\) = \Jχef~HχiB[%]- It follows now
that f-\B[x]) is a union of a family jr(B[x\) = {B[x] \xef-\x)}
consisting of pairwise-disjoint open sets, each of which is mapped
homeomorphically onto B[x] by /. Thus, 5^ = {B[x] | xe X) has
property (1) and Theorem 1 is proved.

REMARK 1. Note that the fact of the uniformity szf of X in
Theorem 1 being maximal has been used, in the proof of Theorem 1,
only for stating that s?f contains the neighbourhood C of the diagonal
in X x X defined in (3). Thus, if the maximality of Jzf is replaced
by the statement that the uniformity J^ contains an open element C
such that y — {C[x] \xeX} has properties (1) and (2) the proof of
Theorem 1 is still valid.

REMARK 2. Note that the only reason for X being locally connected
is to ensure the existence of a covering of X having both properties
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(1) and (2); hence the restriction that X is locally connected may be
replaced by the assumption that there exists a covering of X having
properties (1) and (2).

We shall now use Theorem 1 to give a solution to the original
problem concerning locally-connected metric spaces. For this purpose
we require some additional lemmas.

LEMMA 2. Let X be a paracompact space and C a neighbourhood
of X x X. There exists a uniformity C of X which contains C,
has a countable basis and whose members are neighbourhoods of the
diagonal in X x X.

Proof. It is known that in a paracompact space X, for every
neighbourhood A of the diagonal in X x X, there exists a symmetric
neighbourhood of the diagonal B such that BoBaA (see [2] p. 157).
Now let Bo — C and, by induction, Bn the symmetric neighbourhood
of the diagonal of X x X such that BnoBna Bn-λ holds. The family
{Bn} n = 1, 2, 3 is a basis for a uniformity C consisting of neigh-
bourhoods of the diagonal, containing C — Bo which has a countable
basis and Lemma 2 is proved.

Further, one can easily prove the following

LEMMA 3. Let j^f and <5$ be two uniformities in a set X. Then
the family

^ Aί)B; Ae jf,

is again a uniformity in X.

LEMMA 4. Let X be a metrisable space, and C any neighbourhood
of the diagonal in X x X. There exists a uniformity & of X,
containing C, having a countable basis and inducing the topology of X.

Proof. Let Ssf be a uniformity of X containing C, having a
countable basis and consisting of neighbourhoods of the diagonal in
X x X (see lemma 2). Let & be a uniformity of X having a countable
basis and inducing the topology of X (any metric uniformity has such
properties). By Lemma 3 Sf = {D\D = An B; Ae jsf, Be^} is again
a uniformity of X. Evidently &ί has a countable basis and contains
C. Finally, since the elements of <2f are neighbourhoods of the diagonal
in X x X, and since each element of & is one of ^ , Z& induces the
given topology of X.

COROLLARY 1. Let X be a metrisable space and C a neighbourhood
of the diagonal in X x X. There exists a metric p of X inducing
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the topology of X and such that

Proof. By Lemma 4 there exists a uniformity Sf of X, having
a countable basis, containing C and inducing the topology of X. By
a well known theorem (see [2] p. 186) there exists a metric p of X
for which 3f is the metric uniformity. Thus, there exists ε > 0 such
that C D {(x, y) \ p(x, y) < e}. The metric p = ρ/ε is the required metric.

By Corollary 1, and since in a paracompact space each covering is
even, we obtain:

COROLLARY 2. Let ^ be a covering of a metrisable space X.
There exists a metric p of X inducing the topology of X and such
that the set of unit spherical regions in (X, p) refines <%/.

THEOREM 2. Let (X, f) be a covering space of a metrisable locally
connected space X. There then exist metrics p in X and p in X,
inducing the topologies of X and X respectively and such that the
family £f of unit sperical regions in (X, p) has the following property:

(A) for every SeS^, f~ι[S] is a union of a family ^(S) con-
sisting of pair wise-disjoint unit spherical regions in (X, p) each of
which is mapped isometrically onto S by f.

Proof. By Lemma 1, the proof of Theorem 1 and Corollary 2
there exists a metric p of X inducing the topology of X and such
that the covering r of X defined by 3^ = {C[x]\xeX} where C =
{fa V) I P&f V) < 1}> has properties (1) and (2). We may assume that
p(χ, y) <£ 1 for all x and y in X..

Now, let Szf be the metric uniformity of p. By Theorem 1 and
Remark 1, there exists a uniformity J / of 1 containing a symmetric
open set C such that j*f, C, J^ and C satisfy (3). Exactly as in the
proof of properties (a) and (e), in Theorem 1 it can be shown that C
has the same properties:

(a) C = C-1 - (Co C) Π F~\C]
and

(e) if (x, y) e C, then f(x) = f(y) implies x = y.
Now let p be defined on X x X as follows:

p{x,y) = \
( 1 otherwise.

It is clear that p is symmetric and that p(x, x) = 0. Moreover,
if P@, S) = 0 then (x, y)eC and f(x) = f(y); hence by (e), x = y.
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Thus, to prove that p is a metric it remains to show that
fe) P@,v) + P(V,z)^P(x,z).

In the case of (35, z) e C, or if (5c, y) or (y, z) are not in C, (g) obviously
holds. If (35, y) and (#, z) are both in C while (35, z) is not, by (a) it
follows that (f(35), f(z)) = F(35, z)$C and therefore

P(χ, v) + p(v, z) = plf(χ),fffl\ + p[f(v),f(z)] ^ plf(%),/(%)]
— 1 = p(3o, z), and (g) holds.

Hence, p is a metric, and one can see that J^? is its metric
uniformity. In fact, let & be the family of all sets of the form
{(x, y) I ρ(x, y) < 3} for some 0 < δ ^ 1. Since & is a basis for J^ ,
it follows by (3b) that

<g> = {g\B = en F-\B\, Be^}

is a basis for j y . Now, for every S G ^ there exists δ, 0 < δ ^ 1
such that

(h) ΰ = Cn F-Mfo y) I /t>(», »)<«} = {(2, y) I /o(ϊ, y) < δ}
Hence, J ^ is the metric uniformity of p.
Putting in (h) δ = 1 it follows that {C[x] \xeX} is the set of

unit spherical regions in X and by the definition of C (see Theorem 1)

To complete the proof of Theorem 2, it remains to show that for
every 35 e X, f \ C[x] is an isometry. In fact, if y and z e C[3c] then
(y, z)eCoC. Now, if (y, z)eC it follows by the definition of p that
P(y, *) = Plf(v),/(*)]- If (y,z)*C we have by (a) [f(y),f(z)]e&
Hence, p(y, z) = 1 = p[f(y),f(z)] and f\C[x] is an isometry.

REMARK 3. Note that the essential property of the metric p of
X used in the proof of Theorem 2 is that the family of unit spherical
regions in (X, p) satisfies (1) and (2). Thus, if (X,f) is a covering
space of a metric space (X, p) such that the family £f of unit spherical
regions of (X, p) has properties (1) and (2) it follows that there exists
a metric p of X such that £f satisfies (A).

Note also that if (X9f) is a cevering space of a compact locally-
connected metric space (X, p*) then, by Lebesque's covering lemma
(see [2] p. 154), the metric p of X can be obtained by multiplying p*
by a constant.

Part 2* Covering spaces of metrisable spaces which are not
locally connected* In this part, the original problem for not neces-
sarily locally connected spaces is considered and the following result
is obtained:
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THEOREM 3. Let (X, /) be a covering space of a metrisable space
X. There then exist metrics p of X and p of X inducing the
topologies of X and X respectively, such that the family Sf of unit
spherical regions in (X, p) has the following property:

(Aj) for every S e £f, /^[S] is a union of a family ^{S) con-
sisting of pair wise-disjoint open sets in (X, p) each of which is
mapped isometrically onto S.

The proof of Theorem 3 will be given later, after some remarks
and Example 2 which, as we hope, explains the need for this theorem.

Comparing Theorem 3 with Theorem 2, we see that in this case
it is not claimed that the elements of J^(S)9 are spherical regions.
Indeed, in Example 2 a covering space (X, /) of a metrisable non-locally
connected space X is constructed in such a way that there do not
exist metrics p of X and p of X for which the family of unit spherical
regions £f has property (A). For this purpose note that property (2)
is not only a sufficient but a necessary condition for the validity of
Theorem 2 (see Remark 2). In fact, if there exist metrics p of X
and p of X for which the family of unit spheres in (X, p) has property
(A) then the family of spherical regions of radius 1/2 in (X, p) has
property (2).

Thus, it suffices to construct a covering space (X, /) of a metrisable
space X suόh that no covering of X has property (2). Such a covering
space is constructed in the following

EXAMPLE 2. Let {gn} be the sequence defined by

g0 = 1; gx = 2; gn = 2 Π (2* - 2) for n ^ 2 .

For each nonnegative integer rt and for m = 0,1, gn — 1 let I(m, n)
be the segment in E2 defined by

I(m, n) — {{x, y) 12m ^ x g 2m + 1, y == n) .

Now let C denote the Cantor set in [0,1]. We put

X = {(x, V)\xeC90^y^l}U /(0, 0) U

To define X note that for each integer n, C is contained in a union of
2n disjoint segments of length (1/3)*. We denote these segments by
D(n, fc), k = 0,1 2n - 1 and it is clear that C{n, k) = C Π D(n, k)
is homeomorphic with C and that

C(n, k) = C(n + 1, 2k) U C(n + 1, 2k + 1) .

Now for each ξ e C and each two pairs (mlf nx) and (m2, n2), where
nx Φn%f O g mi < gHy let S(mίf nx; m2, n2; ξ) be the segment in E2
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having α4 = (2m^ + ξ, n^ i — 1, 2 as end points. Finally, we put

P(mu nλ\ m 2 , n2; n,k) = \J {S(mu nx\ m 2 , n2; ξ)\ξe C(n, k)}

and call such a set a path of width (1/3)*1 connecting /(mi, %) and
I(m2,n2). We shall call the points {2mi + £, nt)f ξe C(n, k), i = 1, 2,
the end points of the path. Now let

Xo = /(o, o)
χx = 1(0, 0) U 1(0,1) U /(1,1) U P(0, 0; 0,1; 1, 0) U P(0, 0; 1,1; 1,1)

Suppose we have defined Xq, q ^ 1, having the following properties
(obviously holding for q = 1):

( i ) Xq^Xq^
(ii) Xg 3 U {ί(w, w) I 0 ^ m < #%, 0 ^ Λ ζ #}
(iii) for each n,0<n^q, 0 ^ m < gnf Xq contains one and only

one path of width (l/3)w having end points in /(m, n). This path
connects I(m, n) and a segment /(m^ w — 1) for some 0 ^ mλ < ̂ _ ! .

(vi) for each 0 ^ w < q, every point α = (2m + f, ^) , 0 ^ m < flr%,
ξeC, is an end point of one and only one path in Xq. This path is
either the path of width (l/3)w indicated in (iii) connecting I(m, n)
with I(mu n — 1) for some 0 ^ mx < ^_ i or of width (l/3)%+1 con-
necting I(m2, n) and I(m2, n + 1) for some 0 ^ m2 < flrn+1. Different
paths connect I(m, n) with different segments.

(v) All the paths contained in Xq are disjoint.
Thus, it follows that for each m, 0 ^ m < gq, I(m, q) contains end

points of one and only one path in Xq, this path is of width (l/3)g.
Hence, for each m, 0 ^ m < gq, there exist 2g + 1 — 2 integers 0 ^
fc(0, m) < jfc(l, m ) < Λ(2g+1 - 3, m ) < 2g + 1 such that if | e C(q +
1, fc(r, m)), 0 ^ r < 2α+1 - 2, then (2m + £, ̂ ) is not an end point of a
path contained in Xq. We put

X:+i = U {P(w, Ϊ ; (2 ί + 1 - 2)m + r, 9 + 1; q + 1, fc(r, m)) | 0

^ r < 2^+! - 2, 0 ^ m < gg}

and let

Xg+1 = Xg U X'+ 1 U [U {J(m, g + 1) 10 ^ m < ^g+1}] .

It can be seen that conditions (i) to (v) hold. Finally, let X = (JΓ=o -?«•
Then X satisfies

( i ) ' I D U { / ( m , Λ) I 0 ^ m < firw, n = 0,1, 2 .}
(ii)' For each 0 < n and 0 ^m < gn, X contains one and only

one path of width (l/3)w which has end points in /(m, n). This path
connects /(m, n) with a segment I(mu n — 1) for some 0 ^ ^ < gn-.τ.

(iii)' Every point α = (2m + ξ, n), 0 ^ m < gnj ξ e C, is an end
point of one and only one path [in X. This path is either the path
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of width (l/3)n mentioned in (ii)' connecting I(m, n) with a segment
I(ml9 n — 1) for some 0 ^ m < gn-λ or a segment of width (l/3)%+1

which connects I(m, n) with some segment I(m2, n + 1) for some 0 ^
^2 < ffn+i Different paths connects I(m, w) with different segments.

(v)' All the paths in X are disjoint.
Figure 1 illustrates the set X2.

In order to define /, / : X —• X, we first define it on U {/(m, n) | 0 ^
m < ^ , n = 0,1, 2, •}. We put /(2m + £, n) = (ξ, (1 + (- l) )/2) for
0 ^ ξ ^ 1. Now we extend / linearly onto all of X, i.e: if a and β
are end points of a segment in a path contained in X, we put f(ta +
(1 - t)β) = t/(α) + (1 - *)/(£), 0 S t ^ 1. This mapping is continuous
and maps X onto X. Moreover, if we put

then 3 ^ = {Fo, FJ satisfies (1). Indeed,

») |2fc - 1 < y < 2k + A

and each component of f~\ Vo) contains one segment I(m, 2k) and the
intersections of all paths in X which have end points in I(m, 2k) with
the set {(x, y)\2k — (3/4) < y < 2k + (3/4)}, and this set is homeomor-
phic under / with Vo. Similar arguments hold for Vx. Moreover, it
can be shown that a covering ^ of J satisfies (1) if and only if no
element of ^ intersects both J(0, 0) and 1(0,1).

We shall show" now that no covering 5̂ * of X for which (1) holds
satisfies (2). Indeed, let ^ be a covering of X for which (1) holds.
Without loss of generality we may assume that y consists of inter-
sections of open disks in E2 with X. Let n0 be such that (1/3)*° is
less than the Lebesque number of 5^". Consider any segment /(m0, n0),
0 ^ m0 < gnQ, and let ξλ and ξ3 be the two end points of D(n0, k(m0, 0)),
then the paths in X of which άt — (2m0 + ξl9 n0) and a2 = (2m0 + ξ29 n0)
are end points connect I(m0, n0) with two different segments-/^, n0 + 1)
and I(m2, n0 + 1). For each 0 ^ η ^ 1 the points (ξlf ΎJ) and (ξ2, η),
are both contained in some element of 3^. Let Vo be an element of
3^ containing ax = (f l9 0) and α2 = (ξi9 0) and F x e 3^ containing ft =
(fx, 1) and /92 = (f2,1). Assuming that n0 is even we have that άt —
(2m0 + ξl9 n0) and α2 = (2m0 + ξi9 n0) as points of X lie in the same
element Vo of ^(Vo). Indeed, since Vo is connected the elements of
^~( Vo) are connected, and since Vo contains no points of 1(0,1), the
element Vo of J^~(V0) which contains ax does not contain points of
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segments I(m, n) other than I(m0, n0). Thus, the point of / \a2)
which Vo contains must be a2. By the same arguments βx = (2m1 +
ξ19 n0 + 1) and β2 = (2ra2 + ξ%, n0 + 1) lie in different elements Vix) and
Vi(2) of c^(vi) Therefore, there must exist two elements V and
U of 5^, containing the points (ξl9 rj) and (?2, ^) for some 0 < η S 1,
and two elements of ^{U) intersect some element of ^~(V), (see
Figure 2) and (2) does not hold.

Before proving Theorem 3 let us introduee the following notions:
Let X be a topological space and *W %, convering of X. We say that
a finite subset F of X, F= {x0, x19 x2 xn} is a chain in W" if, for
every i, ΐ = 0,1, 2 n — 1, #; and α?ί+1 are both contained in some

1(0, 2)

P(0, l O, 2 ; 2, 2)

1(0,1)

/(0, 0)

1(3, 2> .

2,1)

1,1; 1,1)

Fig. 1

I(mι,n0+l)

Fig. 2
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element W of 5^*. The ^^-component of x in X is the set of all
points y of X contained, together with x, in some chain in W". It is
clear that the "^"-components are disjoint open subsets of X.

Proof of theorem 3. Let ^ ^ * be a covering of X having property
(1), and W a locally finite covering of X consisting of open sets
whose closures refine "W*. Furthermore, let W be any,element of

and W* an elements of 5T~* such that TΓcTF*. We put

; w*ejr(W)}.

It follows that *W~ also satisfies (1), and since W is locally-finite

and for every W e W", ^{ W) is discrete—the covering W~ =

Uweφ*^"{W) is locally finite.
Given any metric p in X, we shall show that p ca,n be "lifted"

into X, i.e: there exists a metric p oί X such that for every W e ^
and every We^(W), f\W is an isometry between W and TF

We now define p as follows:
If x and # are elements of X belonging to different ^"-components,

we put p(x, y) = 1. If ίc and # are in the same component, we put

where the infinum is taken over all chains {x = x0, x19 , xn = ^} in
^ " connecting ^ and ^. It is clear that p is pseudometric and that

P(x, y) ^ p[f(%), f(y)]- We shall now show that p has the following
properties:

(kx) For every xeX there exists an open neighbourhood T(x)

such that x e T(x) c W for every W of 5^" which contains x.
(k2) There exists a positive real number δ(x) such that

= {y I ̂ , gf) < δ(x)} c

Proof of (ki). Since ^ * is locally finite, each 3? in X is contained
in an open set M(x) intersecting only a finite number of elements of

Let T(x) be the intersection over the family ^{x) which consists
of iβΓ(3O, of the elements of CW" which contain x and of the comple-
ments of the closures of elements of <W which do not contain x in
their closure. Then f (x) is an open neighbourhood of x satisfying

By the definition of f(x) it follows that

(1) if W e # ~ then W Π f(x) Φ φ implies xe W<

Proof of k2. Let δ(x), δ(x) < 1 be a positive number such that
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S[f(x), δ(x)] = {y\yeX; p[f(x), y] < δ(x)}af(T(x)). We shall show
that (k2) holds.

In fact, let y be any point such that yί f(x). If y does not
belong to the ^'-component of x then ft{x, y) = 1 > δ(x) and thus,
y £ S(x, δ(x)). Therefore we may assume that y belongs to the
^"-component of x. Then for every ε > 0 there exists a chain

{x = x0, xx xn = y} in ^ such that

P(x, y) + e^ Σ ? ]

Let iQ be the first subscript such that xio+1& f(x). We shall show
that f(xi(j+1)$f(T(x)). Suppose to the contrary that f(%io+1)ef(T(x)).
There then exists an element z of f(x) (and therefore z Φ xio+1) and
such that f(z) = f(xio+1). By definition of a chain it follows that there
exists a W, We Φ", such that xiQ and ^ 0 + 1 e J F . Since xiQe T{x),
W Π f(x) is not empty and therefore by (1) xeW. On the other hand,
if W-L is the element of ^[f(W)] containing z, we have by ze f(x)
and by (1) that x e Wu Hence, Wx Π W Φ Φ which contradicts the
fact that J^ifiW)) is discrete. Thus, f(xio+1)(£f(f(x)) and therefore
P(f(%),f($i0+ι)) ^ §(x). Thus we have:

P(x,y) + e^

Hence, for every ε > 0 we have p(x, y) ^ δ(x) — ε, and thus p{x, y) ^
δ(x). It follows that S[x, δ(x)] c T(x) and (k2) is proved.

Suppose now that p(3S, y) = 0. Then by ρ(x, y) ^ p(f(x),f(y)),
we have ρ[f(x),f(y)] = 0, hence f{x)=f{y) and by (k2) yef(x).
Since by (kx) / | f(x) is a homeomorphism, it follows that x — y and
therefore p is a metric. Moreover, by the definition of p we have
that for each We W",f\ W is an an isometry. Therefore by (k2) we
have that for each η < δ(x)9xe We

which implies that p induces the topology of X.
Now if we take the metric p of X to be a metric having the

property that the set £f of unit spherical region in (X, p) refines W
(see corollary 2) (A^ holds and the proof of Theorem 3 is completed.
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