IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE
RIGHT CONGRUENCE LATTICES

R. A. DEAN AND ROBERT H. OEHMKE

A great deal of effort in.the study of semigroups has been spent
in an attempt to adopt group theoretic methods to semigroups and to
find suitable analogues for group concepts that will be significant in
the general structure theory of semigroups. Of particular importance
in the study of groups are the various relationships between a group
and its subgroups. As is well-known each subgroup in a group induces
a decomposition of the group into right cosets. In turn, this decom-
position corresponds to an equivalence relation that is invariant under
right multiplication. We call such an equivalence relation a right
congruence. Since there is a one-to-one correspondence between the
set of right congruences of a group and the set of subgroups of the
group it is clear that any subgroup-group relationship can be translated
into one involving these right congruences.

In semigroup theory the importance of the subsemigroup structure
to the nature of the semigroup is not quite so clear. This is due
primarily to the fact that there is very little relationship between the
homomorphisms of a semigroup and the subsemigroups of the semi-
group. Thus in studying lattices associated with semigroups we have
chosen to study the right congruences of a semigroup rather than the
more obvious analogue of subgroup, the subsemigroup, studied by Ego,
et al, [3, 7, 8].

In §1 we show that these right congruences form a complete
lattice which is compactly generated in the sense of Crawley and
Dilworth [2, p.2]. It is natural to ask what are the implications for
the semigroup of restraints which may be placed on this related lattice.

As a first problem in this area we seek a characterization of those
semigroups whose lattice of right congruences is distributive. For
groups this answer was determined by Ore [6, Theorem 4] to be the
locally cyclic groups. It is shown in § 2 that the lattice of right con-
gruences of a locally cyclic semigroup is distributive. (It should be
noted here that Severin [7] has shown that the lattice of semigroups
of a locally cyclic semigroup is not necessarily distributive.) However,
as is seen, not all semigroups with distributive right congruence lattices
need be locally ecyeclic. Thus the characterization problem remains.
While we have no solution to this problem in general, we do give in
§8§ 3 and 4 necessary and sufficient conditions for an idempotent semi-
group to have a distributive lattice of right congruences. §3 treats
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commutative idempotent semigroups (semi-lattices) and § 4 treats arbi-
trary idempotent semigroups. In §5 a necessary and sufficient condi-
tion for an idempotent semigroup to have both its lattice of right
congruences and its lattice of left congruences distributive is given.
Finally in § 6 idempotent semigroups with a distributive lattice of right
congruences are characterized in terms of simpler structures.

1. Let 7 be an equivalence relation on a semigroup S. We shall
write either azb or @ = b (mod 7) if the ordered pair (@, b) belongs to
the relation <.

An equivalence relation 7 on a semigroup S is a right (left) con-
gruence if a,b,ce S and atdb implies actbe (cazch).

In this section we denote by £,(S) the set of all right congruences
on the semigroup S. We shall use Latin letters to denote elements
of S and Greek letters to denote elements of £.(S). %.(S) is never
empty since the relation ¢ defined by acb if and only if @ = b is trivially
a right congruence as is the universal relation v in which avb holds
for all elements of S. We impose the natural ordering on £.(S);
namely, that a« < B if and only if aab implies aBb for all a,b in S.
It is easy to see that if I is any set of right congruences then NI
defined by @ = b (mod NI") if and only if avb for all vyeI" is a right
congruence on S, and is the greatest lower bound of /" in £.(S) under the
partial ordering =. This, together with the fact that v is a maximal
element in £.(S) guarantees that £.(S) is a complete lattice under =.

It is important to obtain a better characterization of the least
upper bound UI" of a set I" of right congruences. As is customary
in such matters we have the following result whose proof we omit.

LEMMA 1. Let a,be S, and let I" be a set of right congruences
on S, a=>b(mod UI') if and only if there is a finite sequence a =
Xy, %oy ++0, X, = b of elements in S and a sequence Vi, +c+, Yoy tn I
such that x; Y%, for t =1, <, m — 1.

As a consequence of this lemma and of the definition of UI" it
follows eagily that £.(S) is a sublattice of the lattice P(s) of all par-
titions on S considered as an abstract set.

To prove that 2.(S) is compactly generated we need to identify
the minimal congruence 7,,, identifying ¢ with b. We have of course
that z,,, = N{r|avb}. Of interest is the alternate description afforded
by the next lemma.

LEMMA 2. Let p be any partition of S. Define 0 by ao'd if
and only if either apb or there are elements r, s, t in S such that
a=rt, b=st and ros. If o is the transitive closure of (', then o
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18 the smallest equivalent relation in P(s) which is a right congruence
ccontaining o, hence in £(S), 0 = N{ae L(S)|apb= aabd}.

Proof. A straightforward calculation shows that o is a right
congruence containing 0. Thus it remains to show that if 7 is a right
congruence containing p it must also contain o. Certainly if a0’d then
ath since 7 is a right congruence and so rrs implies (rt)z(st). From
this it follows easily that if acb then arb and thus ¢ =< 7.

This lemma gives the characterization of z,, by taking o to be
the partition which identifies @, b and no other distinct pair of elements
of S. The ¢ of the lemma is then 7.

THEOREM 1. 2.(S) is a complete, compactly generated lattice.

Proof. We have already proved completeness. It is clear that if
aeg,(S) then a = U{v,,,|aadb} and so it remains only to show that
for each pair of elements z,, is a compact element of £.(S). Suppose
that 7,, < U’ where I' is any set of right congruences on S. In
particular we have that ¢« = b (mod UI') and by Lemma 1 there are
sequences @ = %, *++, %, = b and vy, + -, V,— such that z;v.x;,,. Thus
a=bmod(7,UY,U-++U",) and by Lemma 2 therefore 7, , <v,U - U7,.

Another type of right congruence construction which we frequently
employ is the following. Suppose that I is a right ideal of S. Let
7 = 7(I) be defined by azd if and only if a = b or @ and b are both
members of I. 7 is easily seen to be a right congruence which, following
Clifford and Preston [1, p.17], we call the Rees right congruence de-
fined by I.

THEOREM 2. If S is a semigroup having three mutually disjoint
right tdeals I, L, I, then L.(S) is mot distributive.

Proof. Clearly the set union of I, and I, denoted by LU L, is
a right ideal. We let 7, = =(I,)) U (L, U ,) and define 7, and 7, as cyclic
variants. Because I;NI; = @ it follows that ;N 7; = o(L) Ut(L) U (L)
while 7, Uz, =t(LULUIL) and so 7, N (7, U Ty) # (7, N 7o) U (7, N 7).

2. LEMMA 3. Let S be an arbitrary semigroup, T and o be right
congruences on S and v S. Then

(1) Az, ) = {n: 2'cx’ and n =1 — j} is an ideal in the ring of
integers. If A(z, x) = (d) we write a(z, x) = d;

(2) f (0) # A(z, x) = d, then there is a unmique positive integer
KU, ) = r such that x'ta™* and if xcx® with 1 < a < r then a = s;

(3) for all ze8S, A(onrc,x)=lem. (a(o,2),a(r,x) and
(o N 7, ©) = max (o, x), ((z, @)
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(4) f S is the cyclic semiqroup <x> then a(c U7, z) = g.c.d.
(a(o, x), a(z, x)) and p(o U 7, x) = min (¢(o, x), K7, x)).

Proof. To prove (1), suppose that n and me A(7, x), say wirai™
and xizait™, Hence uxitirai+tit® and aitiTaitit™ go that wxititrrgititm,
Thus n — me A(c, ) and so A(z, «) is an ideal.

To prove (2), choose t(z, x) to be the least positive integer 7 such
that 2'z2"*%. Now suppose z°zx* with 1 < a < r and a #* s. Without
loss of generality we may assume a < s. Then we may conclude
2zt where t =s+(r—a)—1land r— 1<t Now d|(r—1)—1¢
sothat t=(r—1)+kd=r+kd—1=7r+(d—1) + (kK — 1)d with
k=1. From x"ta2""¢ we conclude "z *~14, Therefore g™+ @y t@-+(k-1d
and x"*rgt, But a'zx" and so "'tV *4, contrary to the choice of 7.

In the proof of (3) and (4) we may suppose A(7, x) # (0) = A(o, x)
since if A(z,x) = (0) then clearly A(c N7,x) = A(o U, x) = A(o, x).
We let A(z, ) = (p), u(t, x) = r, Ao, ) = (9), and p(0, ) = s. Assume
r=Ss.

To prove (3) let m = l.e.m. (p, ¢) with m = pp, = qq,. We have
xrTamtPretPP gnd so a’ratt™. Similarly x*ox*t™ so that me A(oNr<, x).
Let A(lonNc,2)=m;, and plonc,a)=1=%t.. Thus 2z(c N7)r**™ and
in particular x’cxt™ go that p|m, and similarly ¢|m,. Hence m|m,
and since m € (m,), we have m = m;. From (o N 7)x**™ it follows
that p(o N7, %) =s. On the other hand from x'(c N 7)2**™ it follows
that x'cx’™™. Now (2) implies that either m = 0 or s < ¢.

To prove (4) let d = g.c.d. (p, ). There is a solution w for the
congruence wp = d (mod ¢) with w arbitrarily large. Indeed, if we
choose v so that » +d + vp > s then we may find a solution w so
that for v = w + v we have r» + up > s. With these choices we have
(w — v)p = d(mod g) and a"a"t*? and 2" "“Pox T? gince q|d + vp—up
and r + up >s. But xt¢rrertd gand so «7(o U T)x"t¢. This shows
that de A(o U 7, x).

Now let t = (o U7t,2) and (¢) = A(c U7,2). Thus e|d. From
xi(o U 7)2't* we know there are integers ¢t =ay, @y, <+, @, =% + € 80
that x%dx%+ where ¢ = ¢ or 7 and where a; # a;,,. For each 7 we
have either that p|a;,., — @; or ¢|a;,; — a; and so for all © we have
d|a;, —a;. Hence d|%;(a;;; —a;) or dla, —a,=e. Hence d=c¢
and since (o U 7)e™** it follows that U7z, )=t =r =<s. Now
congider x‘0x™. Since t = a, it follows from (2) that t=r if 6 =7
and t =s=r if 0 = g. In either event, ¢t = r. Hence ¢ = » and the
lemma is proved.

From this lemma the following theorem is easily established.

THEOREM 3. If S is a locally cyclic semigroup then its lattice
of right congruences is distributive. (The word “right” is superfluous
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since a locally cyclic semigroup is abelian.)

Proof. Let o, o, T be congruences on S. We are to show pN(cU7)=
(ene)U(enrc). To simplify notation let ¢ =pN(cU7) and 6 =
(ono)U(eNnr). As in any lattice ¢ 2 0 so we need only show ¢ < 4.
Let a¢b. Then apb, a(c U 7)b and there is a sequence ¢ = a,, +++, a,=b
with a;0a;,, and § = o or 7. .Since S is locally cyclic there is a ¢ with
a=c% b=c¢" and a;€ <c>. Hence we can assume S=<c¢>. By
Lemma 3

a4, ¢) = lL.e.m. (a(p, ¢), g.c.d. (a(a, ¢), a(z, ¢)))
= g.e.d. (l.e.m. (a(p, ¢), a(g, ¢))), l.c.m. (a(p, ¢), a(z, ¢)))
=a(f,c),

(%, ¢) = max (¢(0, ¢), min (¢(o, ¢), (z, c)))
= min (max (&9, ¢), t(o, ¢)), max (¢(p, c), Kz, c)))
= (¢, 0) .

Let a(¢, ¢c) = a(d,c) =d and p(¢,c) = u@,c)=1r and ¢e=f. Then
eithere=forr=<e<fandd|f—e. Hence from c*éc” we easily get c®6¢”.

COROLLARY. If S is an infinite cyclic semigroup then its con-
gruence lattice is the direct product of a countably infinite chain
and the lattice of integers partially ordered by division. If S is a
finite cyclic semigroup, {a, a’ <+, a", @™, «+«, a™t™ = '} then its con-
gruence lattice is the direct product of a chain of length r and the
divisor lattice of m.

Proof. It is easily verified that if S is a cyclic semigroup with
generator @, the mapping ¢ — ((9, @), (4, a)) is a one-to-one mapping
of the congruence lattice onto the direct product of the lattices men-
tioned in the corollary. It is also easy to see that ¢ < @ in the con-
gruence if and only if (¢, @) = (6, a) and a(f, a)| (4, @), so that the
correspondence is a lattice isomorphism. Note that the ordering of the
chain reverses the “natural” ordering.

3. A semilattice is a commutative idempotent semigroup S. If
we define

(1) e = b if and only if ba = «a

then S is partially ordered by this relation and ab = a N b = greatest
lower bound of @ and b.

Let S be a semilattice. Whenever ¢ = b we let a/b = {x|a = = = b}
which we call the quotient a over b. We say that a/b projects down
toe/dif a=c=d=be. We write a/b— c/d.
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LEMMA 4. In the semilattice S, the following properties hold:
(i) a/b—c/d implies a/b — cx/dx for all x€ S;

(ii) a/b—c/d and c=e=f=d tmply a/b— e/f;

(iii) a/b—c/d and a/b — dje imply a/b— cle;

@(iv) a/b—c/d and c/d— e/f imply a/b— e/f.

Proof.

(i) We have a=¢=d = bc. From ¢ = d = bc we conclude ¢ =
cx = dx = (be)x = b(cx).

(ii) Wehave a =¢c=e=f=d = bc. From ¢c=e¢ we conclude
be = be while from e = bc we conclude be = b(bc) = bc. Hence bc = be
and @ = e = f = be.

(i) Wehavea=c=d=bcand a=d=e=bd. From d = be
we have bd = b(be) = bc and thusa = ¢ = ¢ = bd = bc. Thus a/b — c/e.

(iv)] We have a =c¢=d=bc and c=e= f=de. From d = bc
we have de = (bc)e = b(ce). Now ¢ = e implies ¢ = ce, hence de = be.
Thus ¢ = ¢ = f = be, that is a/b— e/f.

THEOREM 4. Let S be a semilattice. Let a = b in S. The mini-
mal congruence identifying a and b, 7,, = T, is characterized by

2ty if and only if x =y or a/b— x/xy and a/b — y/xy .

Proof. For brevity let us write x ~y if x =y or if a/b— x/xy
and a/b — y/xy. The relation (~) is clearly reflexive and symmetriec.

First we establish that x ~ ¥ implies 27y. We suppose that a/b —
x/xy and a/b— y/xy. We shall show that zrxy and, by symmetry,
yrxy; whence a7y follows. Now a/b— x/xy means a = x = ay = bx.
a = « implies ax = 2 and so axy = xy and 2 = 2y = bx implies bx =
bxy = bx, hence bx = bxry. On the other hand azb implies axzbx and
axytbey; in other words xrbx and xyrbx. Thus xray.

We next show that (~) is a congruence relation on S and a ~ b.
This completes the proof, since the above paragraph then shows that
(~) = 7 while 7 = (~) by the minimal nature of z.

(i) a ~ b holds by the definition of a projection since ab = b.

(ii) 2 ~ y implies xz ~ yz since if a/b — x/xy, then a/b— wxz/xyz
by property (i) of Lemma 3.

(iii) To show that (~) is transitive suppose that * ~ y and y ~ z.
If x =9y or y =z then clearly z ~ 2. Thus we suppose that a/b—
x/xy, a/b— y/xy, a/b— ylyz, and a/b— z/yz. By property (i) we have
a/b— xy/ryz and thus by property (iii) a/b — x/xyz. Finally, since
x = xz = (x2)y = xyz it follows from property (ii) that a/b — x/xz. By
symmetry a/b— z/xz and thus 2 ~ z.

COROLLARY. With the motation of the theorem, atx tf and only
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iWfa=x=b.

Proof. If a =x =0b then ax =2, bx = b and axtbr implies x7b
and hence arx. Conversely, actx implies a/b— a/ra and a/b— x/ra;
hence a =2a=wva=ba=b,a=x=2a=bxr and a =2 = .

THEOREMS. In a semilattice S, for any two elements a, b it s
true that T,, = Ta,ao U Th,a0.

Proof. a(Tew U Th.)b since at,,.,abt,,,b. Hence 7., < 74,05 U Ts,00.
On the other hand for any congruence 7, atb implies azab and abzb.
Thus in particular 7., = T, and T,, = T,,, Which implies 7,,, =
Ta,a,b U Thrabe

For semilattices we need the concepts of an ideal and a dual ideal.
A subset I of a semi-lattice is called an ¢deal, if when ael and < a
then z e I, It is clear, that this is but a reformulation of an ideal in
a semigroup in the special case when the semigroup is a semilattice.
A dual ideal is a subset J such that if (i) aeJ and @ <« thenxeJ
and (ii) if ae€J and beJ then abe J.

THEOREM 6. Let S be a semilattice containing three distinct ele-
ments a, b, ¢ such that b and c are noncomparable dbut such that
a>band a>c. Then the lattice of congruences on S s nowmodular.

Proof. Let p=1y,4,0=7,, and 7=7,, Clearly p=<7 as
aj/c — b/bc and so brbe. We shall prove that while o <7 it is false
that tN(eU o) =pU(c N7).

First note that since ¢ > b and a > ¢ while b and ¢ are non-
comparable, the corollary to Theorem 4 implies that a = ¢ (mod o).

Second note that a/b — c¢/bc and so cobe. Thus we have cobe, bepb,
and boa; that is, ¢c(0Uo)a. Thus t<pUo and tN(EU0G) =7. It
now suffices to show that a = ¢mod o U (6 N 7).

To simplify matters we replace 0 by a possibly larger congruence
®. @ is the Rees congruence generated by the ideal I = {x:x < b}.
Since bpbe it follows that o =®. We claim in fact that
a % c¢mod (@ U (6 N 7)).

Note that 2@y and £ > b imply * = ¥ and in particular that apx
implies @ = «. Also, from the corollary if aox and artx thena=x=b
and ¢ = « = ¢. Suppose, then, that there is a sequence

=Xy, Xgy *+*, L, = C (n > 2)

so that x,px;., or z, (¢ N 7)x;y,. Without loss of generality we suppose
that we have selected a sequence of minimal length. Now if a = x,px,,
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then %, = @ and x, could have been deleted from the sequence. Thus
a=a(0N7)x, and a =%, =b. In fact, since @ = b(modz) we have
2, >b. Now if n = 3, and if x,(o N 7)x,, then ,(6 N 7)x, and x, could
have been deleted. Thus if » = 3, it must be that x,px,. But x, > b
and hence 2z, = x, so that x, could have been deleted from the sequence.
Thus it must be that n = 2 and that a(o N 7)e; the latter is a contra-
diction since a # ¢ (mod o).

THEOREM 7. Let S be a semilattice. A congruence T s uniquely
determined by the set of quotients a/b such that atb. That s if
Q(z) = {a/b| atb} then Q(7r) = Q(0) 1mplies 0 = . Moreover 0 = T &f
and only if Q(o) S Q(7).

Proof. It clearly suffices to prove the last conclusion of the
theorem. If ¢ <7 then @Q(¢) & Q(7) holds trivially. Suppose then
that Q(c) S Q(z) and that xoy. Thus xoxy and xyoy. Thus x/xy and
y/xy € Q(0) S Q(7). Thus zray and xyry, whence 27y, and consequently
=7,

THEOREM 8. Let S be a semilattice wm which elements with a
common upper bound are comparable i.e., for all a,b,ce S, if a=b
and a = ¢ then either b = ¢ or ¢ = b. The lattice of congruence rela-
tions on S form a distributive lattice.

Proof. Let p, 0,7 be three elements of £,(S). We are to show
that oN(@UT)=(@Na)U(EN7T). Since pN(cUT)=(eNo)U(oU7)
in any lattice we need only establish the reverse relation and in view
of Theorem 7 we need only show that Q[0 N (s U7)] S Q[(eNo)U(eN7)].

We shall first prove that under the conditions of the theorem if

a/be Qo UT) then there is a sequence ¢ =2, =2, = ++- = o, = b S0
that for each ¢, x;/%;..€Q(0) U Q(r). Now if a/beQ(o U7) we have
a(o U )b so that there is a sequence @ = ¥, ¥, *+ -, ¥, = b wWith ¥, 1,

where a; = ¢ or 7. From this sequence we construct the desired
sequence by setting 2, =yy,---y;. Clearly «;,=2;,, and z; =
Yp* o Yty + -+ YYira 80 that 2,/x;,,€Q(0) UQ(r). Since a = x; and
a=zb=1v, =, from the hypothesis it must be the case that x; and
b are comparable, for all <. If we choose n as the least integer such
that b = x,, then we may conclude that a =2, = --- = 2,, > b and
thus #,, +-+, £,—;, b is the desired chain.

Now suppose that ¢/de Q[o N (o U7)]. Then cod and ¢/d € Q(o U7).
By the preceeding paragraph there is a chainc =2, =2 ¢, =2--- =2, =d
with x;/2;., € Q(0) U (7). Since cod it follows from the Corollary to
Theorem 4 that x;0x;,, and thus (0 N 0)x;s, or x;(0 N T)x;y,; In any
event ¢ =dmod (0N o) U (N7
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We may now combine Theorems 6 and 8 to obtain an answer to
our question in the case of semilattices.

COROLLARY. A semilattice has a distributive lattice of congruences

if and only if every pair of elements with a common wupper bound
are comparable.

4. We define a relation R on the idempotent semigroup S by aRb
if and only if

ab=1> and ba =a
and a relation L by aLb if and only if
ab=a and ba =b.

It has been shown by McLean [5, Lemma 4] that both R and L
are equivalence relations. In fact R is a left congruence and L is a
right congruence [5, Lemma 5]. We shall denote the equivalence
class of @ under R and L respectively by R, and L,.

Further, if W is the relation defined by a Wb if and only if

abo = a and bab = b

then W is a two-sided congruence (homomorphism) on S, the homo-
morphic image of S under W is a semilattice 8 [5, Theorem 1] and
W,, the equivalence class of a under W, is the direct product of L,
and R, [4, Lemma 1] and W, = L,R,.

We shall use the notations W,o W, for the multiplication in B
and W,W, for ordinary complex multiplication. Also, we shall use
the notation W,< W, for the ordering defined in (1) on the semilattice 8.

We prove the following elementary consequences of these results:

(2) WeoW,=WeoW, =W, =W,.

(83) Wyy=W,and W,, = W,.

(4) W,< W, implies W,oW, =W, and W,W,UW, W, S W,.

(5) R,&W,and L, & W,.

(6) If W,=R, and W, =< W, then ay = y.

(7) If W,=L, and W, = W, then ya = y.

The first three of these were obtained by McLean [5]. From W, =
L,R,, aR, = R, and L,a = L, it follows that (5) holds. If W,=R,
and W, < W, then W,, = W, and aye W, = R,. Therefore y(ay)y = .
But y(ay) = ay and we have (6). We prove (7) in a similar manner.

THEOREM 9. If S is an idempotent semigroup such that the lattice
,(8S) is modular then for all ye S either L, = {y} or R, = {y}.

Proof. Assume z€ L, and z # y. We shall consider three basic
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right congruences, 7, 7, and L. L was defined above. 7, shall be the
right congruence whose only possible nontrivial equivalence classes are
R, and the ideal I = {x|W, < W,}. 7, shall have only R, and I as its
possible nontrivial equivalence classes.

First we prove that 7, and (by symmetry) 7, are right congruences.
Set ar,b. We are to show actbec for all ce S. We have W,, < W,
and W,, < W,. Thus if a,beI then ac,bce I and thus act,be. If
a,be R, then a,be W, and W,,= W,,. If W,, < W, then ac and
hence bce I so that act,be. If W,, = W, = W,, then ac, bce R, since
W is an equivalence relation. Hence act,be.

Now, to complete the proof of the theorem, let x€ R,. We will
show ¢ = y. We use the fact that modularity implies

(z,Ut) N, UL) =7, Ul(z;UT) N L] .

By the definition of 7, we have 27,y and hence (7, U 7,)y. Next
we show x(z, U L)y. First we note yLz and hence yxLzx. Since z€ R,,
yx = 2, so that xLzx. Now zx € R, since 2(zx) = zx and (2x)z = 2z by
the definition of W,. Therefore z7,2¢. - We now have

xLzx;, zxt,z; 2Ly
and
(L U Tz)y .

In summary z=ymod(z;U7,)N(z;UL) and by modularity « =
ymod 7, U [(z; U7T,) N L]. However both =z and y are in trivial equiva-
lence classes of 7,. If ¥ = amod ((z, U 7,) N L) then yLa and y(z,U7,)a.
Thus we have ae L,. But R,N R, =@ for if be R, N R, then zb = b,
by =y and (zb)y = by = y. However, 2(by) = zy = 2. It follows that
the only possible nontrivial equivalence classes of 7, U7, are R, R,
and I. Hence a€ R,., We now have ac R,N L, = {y}. Thus y lies
in a trivial equivalence class under both 7, and (z; U 7,) N L and hence
under 7, U [(z; U7,) N L]. Therefore y =« and R, = {y}.

THEOREM 10. Let S be an idempotent semigroup. L,.(S) is dis-
tributive if and only if

(i) L(W) 4s distributive.

(ii) For all a€ S, W, contains at most two elements.

(iii) If W, = L, + {a} then W, is the smallest element of TB.

(iv) If W,< W, then either W, W, ={xy} or W, = L,.

Proof. We first assume £,(S) is distributive. If o is a right
congruence of T define ¢’ by

ad’b if and only if W.oW,.
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A straightforward proof shows that the correspondence ¢ — ¢’ is a
lattice isomorphism of (W) into ¥,(S). Hence Y(W) is distributive.
By Theorem 9, W, = L, or R,.
In order to prove that (iii) is necessary for £.(S) to be distribu-
tive we assume ¥ is an element of S such that L, = W, = {y}. Now
let T be a subset of L, and I the right ideal defined by :

I={x|W,<W,}.
If aeS and ze L, then by 3), W,,.=W,=1L,. If W,,=W, then

W,< W, and by (7) we have za = 2. This says that if 7" is any
subset of L, then either

(8) TasI or Ta=T.

Now let ¥ be any decomposition of L, into disjoint subsets and
let 0 be the equivalence relation defined by

apb if and only if ¢« =b or a,bel or a,be T for some TeX .

It follows from (8) that o is a right congruence. Now let 7, ¥ and
define an equivalence relation 0’ by

ao’b if and only if a =b or a,beT,U I or
a,beT for some TeX.

Again it follows from (8) that o’ is a right congruence.
Now let y =2e L, and 7, 7, and 7, be the right congruences
whose only possible nontrivial equivalence classes are

i {ypurl
T {ZtU T
73:{z,y},1.

The only possible nontrivial equivalence class of either z,N7, or 7,N 7,
is I. Therefore if a € I then

yZa(mod(r;N7)U(t:N7Ty).

However 7, < 7,U 7, and at,y. Therefore

a =y (modz,N(z: U 7y))
and
TN NT) = (@ NT) U NT).

Hence if 8,(S) is distributive then we must assume I is empty and
thus (iii) holds.
In the same way, if w is an element of L, distinct from ¥ and 2
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we can show that the right congruences 7,, 7,, 7, whose nontrivial
equivalence classes are

7 :{Y, 2}
71 {Y, w}
7yt {w, 2}

fail to satisfy the distributive law. Therefore (ii) holds for all W, = L,.
To prove (ii) in the case W, = R, we shall proceed as in the case
W, = L,. However, to establish the necessary right congruence pro-
perties we need a weak form of (iv); namely, if R, < W, then R,a =
{ya}. Assume R, < W, and there is a pair «,«’ in R, such that

xe + x2'a .

We let za =y and «#’a = y’. Then ya =y and ¥'a = y'. Let o, and
o, be the right congruences defined by

co,b if and only if yc = yb
co,b if and only if ¢ = ¥'b.
We have
aoy and ao,y .
Therefore
¥y =1y (modo,Uo,).

Thus if 7,,,, is the minimal right congruence relating ¥ and %’ we
must have

Ty = o, U 0y
and
y =¥ (mod 7, N(o,U0,)).

Now let ze R, and z = 2’ (mod 7,,, N 0,). Since 20,2 we have yz’' =
yz=zand R,=R,, = W,,, =< W,.. But we also have

(9) 2Tyy2 .
Let = be the right congruence corresponding to the right ideal
J={z|W,=<R}.

Since yry' we have 7,,, < 7. Therefore from z€ R, and (9) we have
ZeJand W, =< R,. Thus W, =R, and ?/ = y2 = yz = 2. We can
now conclude that if z€ R, then z is in a trivial equivalence class of
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(Tﬂ’ﬂ' n 011') U (T’.'lﬂl' n 0-11) .

To avoid a contradiction to the assumption that £.(S) is distributive
we must assume that if W, = R, then y'a = ya for all ¥’ € R, or

R, = {ya} .

We now have sufficient multiplicative properties for R, to show,
just as in the case W, = L,, that if ¥ is any decomposition of R,
then the collection LU {I}, I ={x: W, < R}, can be extended in a
trivial way to a decomposition of S and the corresponding relation is
a right congruence. This follows chiefly from the fact proved above
that if T & R, then either T, is a single element of R, or Ta & L.
If z, y, 2z are distinct elements of R, then the three right congruences
Ty, Ty T, corresponding to the decompositions of E,:

7 {x, y},
7 :{y, 2},
7yt {x, 2},

do not satisfy the distributive law since

x =y mod7z,N (7, U 7y))
and
TEY (mOd (7-'1 n 7:2) U (71 n 73)) .

Therefore R, contains at most two elements.

We can now prove a slightly stronger result on the multiplicative
properties of the R,’s and thus prove (iv). Assume R, = {y, 2} and
W, > R,. If W, = {a} then from the above results we have R, W, =
R,0 = {ya}. We shall show that the same result holds if W, = {a, b}.
Since W, > R, we cannot have W, = L,. Hence we must have W, = R,.
Let o and 6 be the right congruences defined by

cod if and only if W,= W, < R,
c¢od if and only if W, =W, < R, .

If £.(S) is distributive then since 6 =< p we have
(10) pn(,Ud=(@No,)U3d

where o, was defined above. Assume R, = {y}. Then ya = %* and
Y = a (mod g,). Multiplying by b we have yb=ab(modos,) and
yb = b (mod 0,). Therefore

ao,y; Yyoyb; ybo,b
and
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a = b (mod g, U 0)
a = b(mod pN(o,Ud)).

On the other hand, by (10), there is a minimal sequence @ =, -+,2, = b
such that x,;x;,, where «; is either pNo, or 4. Since a is in a
trivial equivalence class of ¢ and the sequence z,, ---, «, is minimal
we have @ # «, and @ = 2,(mod o N 0,). Therefore apx,., But z,€ R,;
thus ¢, = b,a = b(mod p N 0o,) and @ = b (mod ,). Therefore ya = yb
and R,R, = {ya}.

We now prove the sufficiency of the four conditions of the theorem.

Since each W, contains at most two elements we must have either
W,=R, or W, = L,.

LemMA 5. If R, = {a, b} and o is a right congruence such that
acx for x = a then aob.

Proof. Since ab = b and aox we have
ao(xa)
and
bo(xb) .

Also, W, = W,,. If W, is a singleton then xb = xa¢ and acb. If
W, =R, =W, then zac W,, and (iv) implies (xa)a = (za)b and
xa = ab. Thus acb.

If W,, =L, then (xb)a =xb by (7). But (xb)a = x(ba) = za.
Then xb = xa and again acb.

LEMMA 6. If a=0b (modo U W) then either

(1) aob,

(2) aWb, or

(3) there exist distinct elements y and z such that az =y, by =z,
L, = {y, z} and aoy Wzab.

Proof. Assume there is a minimal sequence x,, ---, «, such that
a=wx, b==2, and x,a,x;, where ; = ¢ or W. If all a; are equal
then, by transitivity either acb or a Wb. Also since the sequence of
#’s is minimal we can assume «; # «;,,.. Therefore for some ¢ we
have either «,_,ox, W, or x,_, Wx,0x,,,; say the first of these holds.
By Lemma 5, if W, = R,, then »; ,02;,,. But then the minimality of
the sequence is contradicted. Therefore we can assume that each
®; + a,b must be in W, = L, = {y,2}. If ¢ >4 then either y or z is
duplicated in the sequence, and hence it could be shortened. There-
fore we must have either



IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE 1201

a Wx,ox, Wb
or
agx, Wx,ab .

If the first of these alternatives hold we have a, b€ L,, since «,, 2,€ L,,
and W, = W,. So assume the second alternative holds. Then

AT00%;, = T, and X, = X,2,002, .

If either ax, = «, or bx, = x, then x,02x, and aox,Wx,0b implies acb
and the lemma is proved.

LeMMA 7. If az=1y, by=2, L,=1{y,2}, y #2 and acb then
a, b,y and z are congruent under o.

Proof. Let ce S such that W, =R,. If cz=y then cy = ¢z =
cz=1y. If de R, then d = c¢d and dz = c¢dz = ¢(dz) = y since dze L,.
Therefore R,L, = {y}. In the same way if cy = z we have R,L, = {z}.
Now bab, aba € W,,. Thus, if W,, = R,, then babz = abaz. But by a
direct calculation b(abz) =2z and a(baz) =y. Hence W,, = R,, and
indeed bab and aba are distinct. Since babz # abaz we must have
W., = L, i.e., ab,bac L,. From abz =y and bay = z and the defini-
tion of L, we have ab =y and ba = 2. We can now conclude that
aob implies a’cba, abob® and consequently acz and yob.

For any right congruence 0 we define ¢’ as &’ = U W. It is
clear that ¢ is a right congruence on T and 6;Ud; = (0,Ud,). In
addition we have

LEMMA 8. (8. N a3 = (8,N 8y .

Proof. It follows readily from the definition of 4} and lattice-
theoretical properties that
0iNo; = (6:N0dy) ;
therefore we assume
a = bmod 9] N 0
and show

(11) @ = bmod (6, N J,) .

Since @ = b mod 0] we can conclude that for each ¢; (1), (2) or (8) of
Lemma 6 holds. If the same case holds for both d; then clearly (11)
is satisfied, Again (11) is satisfied if for either d; (2) holds, Thisg
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leaves a mixed case, say ad,b and ad,y Wz0,b where az = ¥, and by = z.
Applying Lemma 7 we have ad,y, 20,b and ad,y Wzd,b. Therefore
a(0, N 8,)y Wz(0, N 0,)b and the proof is complete.

To prove the distributivity of £,(S) we consider three right con-
gruences 7,, 7, and 7,. By lattice-theoretical properties we have

TN UT) = (4, N TY U (T, N Ty)
So assume
12) a=b(modz,N(z,UTy)) .

If W,=W, and a # b then from (12) we have a(z,U 7,)b and there-
fore there is an « # a such that either az,x or azw. If W,=W,=R,
then by Lemma 5 we have either az,b or arb. In either case
a=bmod(r;N7)U (T, N7Ty). If W,=W,=L,=1{y,2} then y =
z(mod 7, U 7,) and there is a sequence ¥y = x,, ---, %, = 2z such that

L2544

forall ¢=1,.--,n and «; =7, or 7,., Multiplying by ¥, we have
rYyax;..y. Since 2,y = Y, ¢, = 2 and «,;y is either ¥y or z there must
be an ¢ such that ya;z. Hence either az,b or ar;b and

(13) a=bmod(z;NT)U (TN Ty) .
It remains to show (13) holds when W, # W,. From (12) we have
a=bmod7iN(t,UTY .
By the distributivity of () we then have
¢=bmod (@NT)UEENT.
But, by Lemma 8,
@NmUEINT) =@ Nn) U@ NT) =[nnNt) U@ Nl =d

and either (13) holds or (3) of Lemma 6 holds. However if (3) holds
then from (12) and Lemma 7 a, b, y, z are related by 7, N (7, U 7).
Since W, = W, = L, then by the argument above ¥ = zmod o. Also,
from Lemma 6, we have

aoy Wzob .
Therefore aoy; Yoz, zcb and acb. Hence (13) holds in all cases and
LNEUT) =@NT)UEINT) .
Thus 8,(S) is distributive.
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5. We now let £,(S) be the lattice of right congruences of S
and £,(S) be the lattice of left congruences of S we have

THEOREM 11. Let S be an tdempotent semigroup. Then L.(S)
and £,(S) are distributive if and only if S is a distributive semi-
lattice or S ts the union of two monmempty distributive semilattices
Z, and Z, with zeros x and y respectively such that if acZ, and
beZ, then

(1) ab=x and ba =y
or

(2) ab =y and ba = .

Proof. We first assume £,(S) and £,(S) are distributive. While
the results of the preceding theorem and proof were obtained for £,(S)
it can be seen that the dual results hold for £,(S). Thus for example
since any nontrivial L, must satisfy L, < W, for all ¢ we have, by
duality, that any nontrivial K, must satisfy R, < W, for all a. Hence
if there is any nontrivial W, we must have W, < W, for all a.

We now prove one further result for a nontrivial R, = {y, x}
using the distributivity of £,(S). We let

Z, = {a]|ya =y} = {a|xa = y}
Z,={a|za =} = {a|ya = x} .

Since R0 = {ya}e R, we have Z,NZ, =¢. If W,>R,, ya=1y and
be W, then yb=1y since R, W, = {ya}, ie., if acZ, be W, and
W, > R, then be Z,. Similarly if acZ,, be W, and W, > R, then
beZ, Let acZ, be X, then

y(ab) = (ya)b = a2b = x .

Therefore abe Z,. In this manner we show that both Z, and Z, are
left ideals of S. Then abac Z,. But abac W,, and abe Z,. There-
fore if W,, > R, we have abac Z, and abac Z, N Z,. Hence we must
have W,, = R,. Since the only element of R, in Z, is ¥ we have
ab = y. Similarly ba = 2.

Since R, = {y, 2} must satisfy B, =< W, for all a we have S =
Z,\ Z,. Also, since there is only one nontrivial W, then Z, and Z,
must be semilattices.

Again using the duality principle, if L, = {y, } then there are
two disjoint semilattices Z, and Z, such that « is a zero of Z,, y is a
zero of Z, and a < Z, and be Z, implies

ab=2 and ba=1y.

In this case let o be a right congruence of S. Let o, and o, be
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the right congruences induced by o on Z, and Z, respectively. Also
let § be the congruence whose only nontrivial equivalence class is L,.
Now, since Z, is a right ideal any (right) congruence 7 on Z, may
be extended to a (right) congruence z’ on S by defining az’db if and
only if a =b or a,be Z, and arb. In this way we extend o, and o,
to congruences ¢, and o,.
We claim that ¢ = ¢’ where

o' =o,Uo, if x#ymodo
o'=0,Uo0,U0 if x=ymodo.

We note that if acb with ae Z,, be Z, then acba, or acy and abob or
xob; hence xoy. Thus ¢ = o’. Conversely, suppose acd. If {a,d} S Z,
or Z, then clearly ao’b. If for example a € Z, and b e Z, then, as above,
aoyoxab, so that ao,yoxa’d, and we have ac’d. It now follows that

2A8) = 8.(Z,) x &(Z,) x {;, 6} .

Note that since Z, and Z, are semilattices then the congruences of
L(Z,) and 2.(Z,) are two sided. Also both L and J are two sided.
Therefore 2,(S) = £.(S).

Using the duality once more we can concluded that we have the
same result if R, = {y, «}.

We have just shown that if S=Z7,U Z, with Z, and Z, defined .
as in the statement of the theorem then

8(8) = &Z,) x &(Z,) x {¢, 0} .

Since {¢, 0} is a distributive lattice then a necessary and sufficient con-
dition that £,(S) be distributive is that both 2(Z,) and *(Z,) be dis-
tributive. This concludes the proof of the theorem.

The following corollary is a consequence of one of the remarks
made in the above proof.

COROLLARY. If Z.(S) and 2,(S) are both distributive then every
congruence of S is two-sided.

6. In this section we give a imore detailed description of an idem-
potent semigroup S whose right congruence lattice is distributive.
Throughout this section we shall consider a semigroup satisfying con-
ditions (i), (ii), (iii), and (iv) of Theorem 10. We denote by ¥ and 2z
the unique pair (if they exist) of elements such that W, = L, = {y, z}.

DEFINITION. For ac S let S, = {b|W,, = L,}.

In particular S, is empty and if no ¥ and #z exist, S, = S. Also,
if W, W, then ac S, so that S, # ¢,
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LEMMA 9. If W= W, + W,= L, then S, = S,. In particular
if €S, S, = S.. = S..

Proof. Now W, = W, implies W,, = W,, for all e S. Thus if
W,, #+ L,, then W,, + L, and so S, & S,. On the other hand, suppose
that xe S,. Since W, = W,, and W, = W, from condition (i) we must
have that W,, = W, or W, = W,,. Hence W,,oW, = W,,, is either
W, or W,,, neither of which is W,. But W,, = W,,, and so W,, = W,.
Thus € S, so that S, & S,.

As an immediate consequence we have that if xe S,, then S, =
S.e = S,

LemMA 10. For all @, b, € S, either S,NS, =@ or S, = S,.

Proof. If S.NS, #p, letceS,NS,. From Lemma 9, S, = S,.=
S, while S, = S;, = S..

LemmA 11. If S, is nonempty, S, is a sub-semigroup of S and
S, U W, ts a two-sided ideal.

Proof. Let b,ceS,. From Lemma 9 we have S, =S, = S,;
in particular bce S,. The fact that S, U W, is a two-sided ideal follows
easily from the observation that for all xe S, W, = W,, = W,, = W,.

Lemma 12, If a,b¢ L, and W.oW, = L, then aS, = {ab}.

Proof. Let b and b'eS,. Thus W, #+ L, and so W,,, = R,.
By (6) we then have, since W, > W,,, that b(b’b) = b’'b. Again, since
ab and ab € L,, and W,, > W, it follows from (7) that ab = ab(b'b)
and (ab)b'b = (ab’)b = ab’. Thus ab = abb'b = ab’b = ab'.

LeMMA 13. Let a¢L,. If xe S, and xz = xy then uy =uz=1x2
whenever we S, and W, =< W,.

Proof. Without loss of generality suppose xy = 22 =%. Now
W,< W, and W, = R, so that xu = u. Also the hypothesis implies
ULz = Y.

If ux = u, then uz = wy and it must follow that uz = uy = y for
if it were the case that uz = uy = 2z then y = xz = a(uz) = (2u)z =
uz = z; a contradiction. Thus we may suppose that W, = R, = {u, '}
and that ue = %', hence that ux = w'x = /. On the other hand since
w'x = u' we may replace w by «' in the above argument to conclude
wy =4z =19y and so uu'y = uy. But ww’ = u’ so thit wy = y. Simi-
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larly if uz = z it follows that w'uz = 'z, or uz = w'z = 2z, a contradic-
tion. In this way we have y = uy = uz.

LEMMA 14, Let a¢ L,. If az =1y then for x€ S,, xy = ¥.

Proof. Wehaveaz =ay =y. LetxeS,. If W, < W, the result
is that of Lemma 13. On the other hand if W,= W, and 2y =2
then from Lemma 13 it would follow that az = ay = #, a contradiction.
Hence 2y = ¥ in this case. Finally suppose that W, and W, are in-
comparable. We have W, > W,, By Lemma 13 axz = axy = y. Also
W, > W,, and if a2y = z, then Lemma 13 gives axy = 2z, a contradic-
tion. Thus xy = y.

CoROLLARY. Let a¢ L, FEither xy =1y for all x€ S, or xz=2
for all x€ S,.

Proof. If bz =y for some be S, = S,, then, from Lemma 14,
a2y =y for all xe S, = 8..

LemMmA 15, In S, the following two alternatives obtain:

(1) For all a¢ L, ay = az.

(2) There exists a vnique S, such that for some a,€ S, it s
true that ay =y and ar = 2. Moreover if W, = W,, then a,y =y
and az = z.

Proof. Suppose that (1) does not hold. Then for a,¢ L,, ay = ¥
and a2 =2. (If ay =2 then ay =az ==2) Now if b¢S, then
ba,€ L, and so

(bay)y = ba, = blayy) = by
and
(bay)z = ba, = b(ar) = bz

so that by = bz. Thus it follows that if ay = ¥ and az = 2z it must
be the case that ae S,. This establishes the uniqueness of S,,.

Now suppose that W, = W,. If ay = az then Lemma 13 shows
that e,y = a2, a contradiction. Hence ay = ¥ and az = z.

COROLLARY. The set D ={W, |ay =y and az = 2z} forms a dual
ideal of L.

Proof. First note that from condition (2) of Lemma 15, D is well
defined, and indeed if W,e D and W, = W, then W, € D. Lastly, if

al_...
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W.eD and W,eD then W,oW, = W,,€ D since from ay =by =1y
and az = bz = z it follows that aby = ¥y and abz = z.

LEMMA 16. If a¢ L, and ay = az then for b¢ S,, ab = ay = az.
Moreover, if xy = xz for all xe S, then if S, + S., S.S, = {ay}.
Finally if a¢ L, and ay =y, az = 2z then for b¢ S,, ab = by.

Proof. Since b¢ S,, abe L, and so ab = a(ab) = ay = az. Under
the second assumption 2y = 2z = ay — az and so xb = ab = ay = az,
for all x€S,. On the other hand, from Lemma 12, aS, = {ab}, thus
S.S, = {ab} = {ay}. Under the third assumption we have abe W,,
ab = aby = by since byec W,.

As a result of Lemmas 10 and 11 we may write S as the disjoint
union of sub-semigroups S, and the sub-semigroup W, = L, = {y, 2}.
Lemmas 12-16 describe how these semigroups multiply. The typical
possibilities are summarized in the table below. We assume that

(14) S, contains an element a, such that ¢,y = ¥ and a2 = 2z and
other elements = such that xy = xz;

(15) that S, # S, and by = bz = ¥, and

(16) S,=+ S, and ¢y =cz ==z. A single entry in a box means
that all entries in that box have the entered value.

S, Sy | Sc || ¥y | 2
Ay |oo| Y 2 ||l Y z
S. S,
X ||y |2y | 2y | 0Y = 22
S, Yy \|S Y|y |y
S, 2zl 2z |S. |2 |2 |2
Yy Y\ Y| Y\|Y|Y|Y
z z |z | 2z| 2| 2|2

Another way of decomposing S is to construct

I, = {x|zy = 2z =y}
IL ={x|xoy =22 =2}

and

J={e|xy =y, 2z =2}.
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It is easy to see that these sets are mutually disjoint and that
I, and I, are left ideals. It is clear that if J is nonempty it contains
those elements of the single set S, such that by = ¥ and bz = 2. Any
other S, falls into either I, or I,. The remainder (if any) of the S,
falls into either I, or I, depending on whether by = ¥ or bz = 2z for
all be S,.

Idempotent semigroups whose right congruence lattices are dis-
tributive may be constructed by pasting together semigroups with the
structure of an S, by using the rules laid down in Lemma 9-16. Thus
let & be a collection of distinet semigroups S, satisfying conditiong
(i), (ii), (iv), and in addition that W, = R, for all . Let ¥ and z be
elements not appearing in US. UG U {y, z} is made into a semigroup
by defining the multiplication between the sets S, and {y, 2}. It is
convenient to think of this as being done in a multiplication table.
We insist that yx = ¥, ze = 2, for all 2. For all S;, with one possible
exception we may choose with complete freedom, we define for x € S,,
xy = xz€{y, 2}. The choice of the particular value is arbitrary. Then
for all ¢¢ S,, ®c is defined to be xy = 2. For ce S,, the multiplica-
tion is of course to be that of S;. After this stage only the exceptional
semigroup, call it S,, has yet to be handled. In 28(S,) let D be any
dual ideal. We define dy =y, dz =2 if W,e D, For all ¢ D we
make xy = 2z € {y, 2} and the choice is again arbitrary. We now claim
that under these rules U& U {y, 2} is an idempotent semigroup with
distributive right congruence lattice.

To verify that the associative law holds we need to check several
cases of the identity p(qr) = (pg)r.

Case 1. S,=S,=3S8, or {p,q, 7} < {y,2}. Here p,q, r belong to
a set assumed to be a sub-semigroup.

Case 2. pe{y,z}. Here the multiplication gives (pq)r = pr =
» = p(gr).
Hereafter we assume that p ¢ {y, z}.

Case 3. py = pz. By Lemma 16, px = py = pz for all ¢S, so
that associativity holds here.

Case 4. py =19y and pz = 2. Thus pe S, and in TKS,), W,e D.
In view of the corollary to Lemma 14 we may suppose, without loss
of generality, that for all x€ S, such that W,¢ D, 2y = 2z = y.

If ge{y, 2} then p(qr) = pg = q while (pg)r = gr = q, and so we
may assume q ¢ {y, 2. We may also suppose that ¢qr¢ S,, otherwise
S, =S, =S,. Under these assumptions for Case 4 two main subcases
arise.
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Case 4.1, S, =S, # S,. From Lemma 13 we have pq = pr = p(q7r)
and since pq € {y, 2} we have (pg)r = pg. Thus associativity holds.

Case 4.2. S, + S,. Here qre{y, 2} so that under the hypothesis
of Case 4, p(gr) =¢qr. If S,+ S, then from Lemma 16 we have
Pq = qy = qz = qr, so that (pg)r = (qr)r = gr. Thus in this case we
may assume S, =S, =8, # S,, in particular we have pge S, = S,.
Now if W,,€ D, then since W, = W,, we have W,e D and thus qy = ¥
and gz = 2. Since S, # S, it follows that 7y = r2 and thus from
Lemma 16, that gqr = ry = r2 = (pg)r. On the other hand, if W,, ¢ D
it follows that, since W, e D, it must be the case that W,¢ D. Thus
(pg)r =y and qr =y from the Case 4 assumptions; so that p(qr) =
py = y. This completes the verification of the associative law.

Finally we need to see that conditions (i), (ii), (ili) and (iv) of
Theorem 10 are satisfied. From the multiplication table it is easily
seen that for all x€ US, W, is unchanged in the large semigroup
while W, =L, ={y, 2} = L, = W, is the minimal element of 2. Thus
conditions (ii) and (iii) hold. 2(W) is distributive since for the large
semigroup, T is the set sum of the individual T, of the member
semigroups together with W,. The only new order relations present
are W, < W, for all x€ US. For this reason it is clear that (iv) holds
since if L, = W, < W, it must be that S, = S, and condition (iv) was
assumed to hold in S,.
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