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ISOMETRIC IMMERSIONS OF MANIFOLDS
OF NONNEGATIVE CONSTANT
SECTIONAL CURVATURE

EDSEL STIEL

Let M¢ denote a C~ Riemannian manifold which is d-
dimensional and complete. Our first result states that an iso-
metric immersion of a flat /¢ into (d + k)-dimensional Euclidean
space, k < d, is n-cylindrical if the relative nullity of the immer-
sion has constant value n. This result was obtained by O’Neill
with the additional hypothesis of vanishing relative curvature.
We next consider the case in which M¢ and M, k < d, are
manifolds of the same constant positive sectional curvature.
In this case we show that an isometric immersion of }M? into
M+ i totally geodesic if the relative curvature of the im-
mersion is zero on a certain subset of /7.

Let M*® and M** be C~ Riemannian manifolds of the same con-
stant sectional curvature C, M? being assumed complete and k& < d.
Let +: M%— M%"* be an isometric immersion. The character of such
immersions has been studied in [4] and [5] in terms of what Chern
and Kuiper call the tndex of relative nullity of + [2]. This func-
tion, v, assigns to each m e M the dimension of _#"(m), the subspace
of vectors x in the tangent space M, such that 7, = 0. The linear
difference operators T, act on My, and contain the same informa-
tion as the classical second fundamental form operators S, where z is
a tangent vector to M orthogonal to dv(M,) [1]. In fact 7T, is char-
acterized by its skew-symmetry and the equation T,(2) = dy(S.(x)).
Our first theorem concerns the case in which M? is flat and M** =
R** d + k dimensional Eueclidean space. It states that when v is
constant on M? the immersion + is ‘eylindrical’. We next investigate
the corresponding situation for C > 0.

We use essentially the notation in [4]. In particular we identify
M?® with (M%) when it seems safe to do so. Let N denote the bundle

of normal k-frames of M relative to «; that is

N ={m, E)|me M and E is a k-frame (orthonormal set of &
vectors) of My, orthogonal to dy(M,)} .
The Riemannian connection of M%* induces a natural connection on

N. The curvature form of this connection is called the 7relative
curvature of 4. We say that +: M*— R** is n-cylindrical provided

Received August 5, 1964. Part of this work was supported by the NSF while
the author was a Research Assistant at UCLA.

1415



1416 EDSEL STIEL

M and + can be expressed as Riemannian products M? = B*™ x R"
and 4 = 4 X 1 where + is an isometric immersion of B*" in R%t**
and 1 is the identity map of R". We can now state our first theorem
precisely. This result was obtained by O’Neill as Theorem 2 of [4] but
with an additional hypothesis, namely, the assumption of zero relative
curvature. We shall use a similar assumption in our Theorem 3.

THEOREM 1. Let M?® be a complete, flat, C= Riemannion moni-
fold. Am isometric immersion +: M*— R** is n-cylindrical ©f the
relative nullity has constant value n.

We summarize some results applicable to an isometric immersion
between two manifolds of constant curvature C. Let .4 (m) be the
orthogonal complement of _#7(m) in M,. From [5] we have: If n
denotes the mintmum value of v, then n=d — k and G, the open
subset of M® on which v = n, is foliated by complete totally geodesic
subspaces (the leaves of .47) which are also totally geodesic relative
to . Also there exists for any me G an xe€ 4" +(m) such that T,
is injective on A4 +(m). The two cases of interest to us are:

Case 1. G = M* (i.e., v is constant), M** = R** (C = 0) and
a = oo (see below).
Case 2. C>0and 0<a<n/4VC.

The parameter a appears in the following lemma. Let v:(—a,a)— L
be a unit speed geodesic in a leaf L of 4" in G. Then there exists
a frame field E = (K, ---, E;.,) on a neighborhood or v in G such
that:

1. The geodesic v is an integral curve of Ei

2. Each integral curve of E, is a geodesic of M;

3. The vector fields E,, ---, E, are contained in A, E,.., --+, K,
in 4L, and E,,, ---, E;., are contained in the orthogonal comple-
ment of yw(M,) 11 My

4. The frame E 1s parallel on ~v. The construction for this
lemma is contained in Lemma 1 of [5], except we use the additional
fact that the leaves of _#~ are R™ planes in Case 1 for a = . We
pull the connection form ¢ of the frame bundle of M*"* down to G
by way of the frame field E. Using the following index convention,

1=a,b=n; n+l=gqr,s=d;
1=4,j=4d; d+1=a,B=d+k,

we get
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¢:5 = $;;odE  (connection forms of M),

Tin = P dE  (Codazzi forms),
Ou = PoagodE  (normal connection forms).

A set of linear operators on .4+ dependent on the frame field E can
be defined by

Py (E) = 2,¢,.(E)E, .

From the second structural equation and the properties of the frame
field F one can show that the matrixz P(t) of P, satisfies the dif-
ferential equation P' = —P*— CI on (—a,a) where I denotes the
(d — n) x (d — n) identity matrix. See Lemma 3 of [5]. Our proof
of Theorem 1 hinges on the central result from [4] which states that
if for all me M® and xe€ 4™ we have that P, = 0 then the immer-
ston s n-cylindrical. Theorem 1 can now be easily proved with the
help of the following lemma which is applicable in both Case 1 and
Case 2.

LEMMA 1. Let me L. If ve 47(m) and ye 4 +(m) then Ty, =
T,o P, on 4" *+(m).

Proof. Since L is complete there exists a geodesic v:(—a,a)— L
with v(0) = m and a frame field E as defined above in a neighborhood
of v. From T, (E;) = 2.t.5(E)E, and the definition of 4~ we get
that z,, = 0. Using this fact with the Codazzi equation for z,, we
have

0=d7,n = =260 N Tiao — 2pTup N Opo = Zifog N Toa «
This implies that
2 ,000a(B)Tad BB = 2o, 000u(B)T oo (B Ee
or that
T5,(Pp(E)) = T5(Pa.(E))) .
Hence for xe _#7(m) and y, z€ _#"L(m) we have
T(P(2) = TAP.(v) = Tr,w(2),

the last equality above following from the symmetry of the second
fundamental form operators.

2. Proof of Theorem 1. We shall show that P, =0 for x € _#"(m),
me M* We may assume & is a unit vector and < is a unit speed com-
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plete geodesic of the leaf through m with v'(0) = . By a previous
remark we may pick y€ ._#"t(m) such that T, is injective on .+ 1(m).
Then 4+t + T,(_#"*) is invariant under both 7T, and T, ,. Hence
the 2(d — n) x 2(d — n) matrix of T,|(4#"* + T,(#"t)) can be re-
presented by a (d — %) x (d — n) matrix A in the upper right hand
corner, — A’ in the lower left hand corner and zeros elsewhere. If
B is the analogous block for T, then @ = —AB* will be the matrix
of TyoTp | #"+. The difference operators T, and T,,, commute
on M, since M is flat and hence we have AB' = BA’. By Lemma 1,
P,=T,"Tp | ++ and hence P(0) = (A™")'B’. Let

R — _A—lQ(A—l)t —_— Bt(A-—l)t .

Since @ is symmetric so is R and therefore P(0) has the same (real)
eigenvalues as R. These eigenvalues satisfy A, = —\l on the real
line (since P satisfies this equation by a result stated above) and
hence each A\, = 0. Thus R =0 and this implies P(0) = 0 which is
the desired result.

3, Positive curvature case. For completeness we include Corol-
lary 1 of [5] as

THEOREM 2. Let M?® and M2* be C= manifolds with the same
constant positive curvature C, M* being assumed complete. Let r:

M?*— M** be an isometric immersion with 2k <d. Then + s
totally geodesic.

As above let n denote the minimum value of v and let G consist
of the me M*? for which v(m) = n.

THEOREM 3. Let M? and M** be C* manifolds with the same
constant positive curvature C, M?* being assumed complete. Let q:
M?®— M** be an isometric immersion with k < d. Then + is totally
geodesic if the relative curvature of + s zero on G.

Proof. The proof is by contradiction. If 4+ is not totally geodesic
then » < d. Let L be a leaf in G and let me L. We first show that
for any xe€ .#7(m), P, is a symmetric operator and is independent of
the frame field used in its definition. Let ye .#"‘(m) such that T,
is injective on .#"*+. Using a geodesic v:(—a, a) — L with v (0) =«
and Lemma 1 we have as in the proof of Theorem 1 that P(0) =
(A7Y)!Bt. Since the relative curvature of + is zero we get from the
Ricei equation of the immersion that the Codazzi forms satisfy the
relation ¥;7,; A 7, = 0. From this we conclude that 7, and T,
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commute on (dy(M,)): or A'B = B*A. This equation implies that
P(0) is symmetric. From the first structural equation we have that

[EM Es] = Zz(‘,ﬁm(ES) - ¢sz(Er))E7,

which together with the symmetry of P, implies |E,, E]e _#"*; thus
A% is integrable. For xze._#, P, is actually a second fundamental
form operator of the leaf through .#"! and thus P, is independent
of the choice of frame field used in its definition.

From the completeness of L it follows that we can find a unit
speed geodesic v in L defined on the real line. Since M is of constant
positive curvature, v is a compact immersion and P, is a periodic
function on the real line. Let )\ be one of the d — n real eigenvalue
functions determined by the symmetric operator P,. We may assume
M attains a maximum at m = v(0). Let E bhe a frame field as above.
Then M must satisfy MN(0) = —3*0) — C = 0 since P satisfles P’ =
—P?* — CI on an interval containing 0. This implies M0) is not real,
which is the desired contradiction. Hence n = d or + is totally geodesic
on M.

As a Corollary we get a result of O’Neill’s from [3]. Let S**{(C)
denote the sphere of curvature C.

COROLLARY 1. Let M® and M*"* be C~ manifolds with the same
constant positive curvature C, M¢ being assumed complete. Then any
isometric immersion v M?*— M*+* is totally geodesic. In particular
of M+ = S“YC) then any such immersion is an imbedding onto a
great sphere.

Proof. The vanishing of the relative curvature of + is trivial in
the hypersurface case. In case M*" = S*C) we have that (M) =
SYC) = 8*(C). Letting S%C) denote the universal covering manifold
of M? and 7 the natural projection, we have that 4oz is a local iso-
metry onto (M). Hence +yom and therefore +y is injective. Thus
is an imbedding onto S%C).
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