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INTEGRAL EQUATIONS AND
PRODUCT INTEGRALS

BURRELL W. HELTON

H. S. Wall, J. S. MacNerney and T. H. Hildebrandt have
shown interdependencies between the equations

/(») = <JΓ (1 + dg) and f(x) = 1 + [fdg
Ja

this paper extends and consolidates some of their results. Let
S be a linearly ordered set, R be a normed ring, and OA° and
OM° be classes of functions G from S x S to R for which

- G = o

and

respectively. We show the following. If G has bounded vari-
ation, GeOA0 if and only if GeOM0. For some rings, the

existence of Γ G ( I ) and α Π b [1 + G(/)] imply that GeOA0 and
Ja

OM°, respectively. This is used to prove a product integral
solution of integral equations such as

fix) = f(β) + {RL)\\fG + Hf),
Ja

where / is a function from S to R and G and H are func-
tions from S x S to R. Then these results are used (a) to
show that each nonsingular mx m matrix of complex numbers
has n distinct wth roots, (b) to show that, with some restric-
tions, ΣΠ=i AX exists if and only if ΠΠ=i ̂  + Aϊ) exists and
(c) to find solutions of integrals equations such as

f(x)=f(a)+

In his recent paper, Integral Equations and Semigroups [7], J. S.
MacNerney develops some of the interdependencies between additive and
multiplicative integration processes for rings, defines two classes OA and
OM of functions V and W such that the integral-like formulas

Via, b) = [\ W - 1) and W(a, b) = αIΓ (1 + V)

Ja

are mutually reciprocal, shows a one-to-one correspondence between the
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298 BURRELL W. HELTON

classes OA and OM and shows that this leads to an integral-equation
theory of Cauchy-right and Cauchy-left integrals which extends earlier
results of H. S. Wall [9], T. H. Hildebrandt [4] and MacNerney [5] [6].
In several recent papers, W. D. L. Appling [1] [2] has based several
proofs on the following theorem: "If G is a real-valued function of

ί b

G(I) exists, then
a

L ί G ( 7 ) - i G ( J )
= o

In this paper we extend this theorem to matrices and to some types
of rings, prove a similar theorem for product integrals in which

(1.2) ( [1 + G(I)] - Πz [1 + G(J)]
J[α,6]

and use these concepts to extend and consolidate some of the theorems
of MacNerney [7] and Hildebrandt [4].

We denote by OA° and OM° the classes of functions G satisfying
equations 1.1 and 1.2, respectively; MacNerney's class OA is a proper
subclass of OA° and OM is closely related to the class OM°. Using
MacNerney's theorems, we prove that, if G has bounded variation,
G e OA° if and only if G e OM\ The defining properties of the classes
OA° and OM° are used in the proofs of theorems which give solutions
and reciprocal relations for integral equations of the form

/(*) = h(x) + (RL)\\f-H(I) + G(I) f] ,
Ja

where the range of each function is a subset of a ring N. Then these
theorems are used

(1) to prove that each nonsingular m x m matrix of complex
numbers has n distinct nth roots;

(2) to prove that, with suitable restrictions, ΣιT~i A% exists if
and only if ΠΓ=i (1 + A%) exists; and

(3) to find the solutions of integral equations such as

y(x) = y(a) + \\yG + ynF) .
Ja

2. Definitions* Most of the definitions used in this paper are
the same as those used by MacNerney [7]; where a new definition is
used, the symbol "°" is added (OA to OA°) to indicate a changed, yet
similar, definition. Occasionally a phrase or a symbol defined by Mac-
Nerney will be used without repeating his definition and will be in-
dicated by [7, p. •••].

0 is a linear ordering [7, p. 149] of a nondegenerate set S. N is
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a ring which has a multiplicative identity element denoted by 1 and
has a norm | | with respect to which N is complete and 111 — 1.
Lower case letters will be used for functions from S to a subset of
N; from S x S to N by capital letters.

If G is a function from SxS to ΛΓand {α,6} e SxS, the sum (product)
integral of G exists on {α, b) means there is an element J of N such that
if c is a positive number there is an O-subdivision D of {a, b} [7, p. 150]
for which | χ? = 1 G(x^u xj - J\ < c (\UU G(x^u xt) - J\ < c), provided
{Xili^o is a refinement of D [7, p. 150]. Π?=i G{x^u x%) means

G(x0, x,)G{xly x2)G(x2, xz) G(xn_ly xn) .

G and aΐl
b G will be used to represent the sum and

a

product integrals, respectively.

OA° denotes the set of functions G from S x S to N such that if

S y

G exists

and \H= 0, where H(x, y) = G(x, y) - \ G .
Ja Jx

OM° denotes the set of functions G from S x S to N such that if
{a,b} e S x S and {α, x, y, b} is an O-subdivision of {α, b}, then xJ[y (1 + G)

exists and [K = 0, where ίΓ(a, 2/) = [ 1 + G(x, y) - xΐ[
v (1 + G) |.

Ja

OB° denotes set of functions G from S X S to N such that if
{a,b}e S x S there is a number Jlf such that, for each O-subdivision

^U of K 6}, Σ?=i I G(x^ly x,) I < M.

OP0 denotes the set of functions G from S x S to N such that if
{a, b} e S x S there is a number M such that, for each O-subdivision
{Xi}ΐ=0 of {a, 6}, I Π?=p [1 + G(%i-u Xi)] I < M for 0 < p S q S n. Note
that OB° is a proper subset of OP\

The function G from S x S to N is bounded means if {a, b} e S x S
there is a number M such that if {a, x, y, 6} is an O-subdivision of {a, b)
t h e n I G(xy y)\< M.

Occasionally, statements such as "the function f(x)G(x, y)" will be
used as a substitute for the statement "the function H from S x S to
N such that for {a;, y}eS x S, H(x, y) = f(x)G(x, y)". Similarly, df =
df(x, y) = f(y) — f{x). Where no misunderstanding is likely, fif dfi and
Gi will be used as shortened notations for f(Xi),f(Xi) — f(Xi-d and
G(Xi_u xt), respectively.

The following special symbols will be used for sum or product
integrals of G whenever G is defined in terms of functions / and H
from S and S x S, respectively:
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f(x)H(x,y);

f(y)H(x,y);

H(x, y)[f(x) + f(y)]

(L) J P (1 + /ff) ~ 1 + f(x)H(x, y) etc.

(L)\bfH
Ja

(R)\bfH
Ja

2(M)\hHf
Ja

In Theorem 5.8, ΠΓ=i(l + A) exists means lim*-*, Π?-i (1 + A^ and
[ l i m ^ ΠLi (1 + A,)]-1 exist.

3* GeOA0 only if GeOM0. In this section the properties of
functions belonging to OA° and to OM° are studied and some inter-
dependencies of the two sets are shown. The first theorem is an ex-
ample in which the OA° properties are used; the next two theorems
are used in the proofs of later theorems.

THEOREM 3.1. If {a,b}eS x S and H, F, V, G, K, Fι and Gί are
functions from S x S to N such that

(1) H, F,G and K are bounded,
(2 ) FV and VG are elements of OA°, and

FV and
VG,

then \ HF1GK= ΫHFVGK^ [HFG.K, provided one of the integrals
J a Ja ja

exist.

Proof. Since FV and VG are elements of OA\ then Γ| FV- F, \ = 0

S b Ja

I VG — G11 = 0 and, since H,F,G and K are bounded, it follows that
I H(F, - FV)GK = 0 and ΫHF{VG - G,)K = 0. Therefore,
Ja Ja

\bHF1GK= \bHFVGK+ [HiF, - FV)FK
Ja J a Jα

= [HFVGK
Ja

HFG.K + \bHF(VG - G,)K

= [HFG.K .
Ja

THEOREM 3.2. If {a,b}eS x S and F and G are functions from
S x S to N such that F and G are elements of OP°f there is a number
M such that if {Xi}ΐ=0 is an 0-subdivίsion of {a, b}, then
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Π [i + F(χ,_lt xty\ -

< M* Σ 11 i-u xt) - G(xi_ι, xt) I .

Proof. Since FeOP0 and GeOP0, there is a number M such
that, for each 0-subdivision {#JΓ=O of {α, 6} and 1 ^ p ^ g ^ n,

Π (1 + Ft) < ikf and Π (1 + G.) < if.

From the algebraic identity

n n

Tib,-Ha, = Σ ( Π α y ) ( δ i - α 1 ) ( π

it follows that for each 0-subdivision {#*}?=<> of {α, 6}

Π (1 + F,) - Π (1 + G<)
i i

Σ Π (1 + GAM - Gd Π (1 + Ft)

THEOREM 3.3. // {a, b} e S x S and G is a function from S x S

to N such that G e OP0, G e OA° and the function ?G e OP0, then

1 + IGj, provided either product integral exists.

Proof. From Theorem 3.2 there is a number M such that for
each 0-subdivision {a?<}?=0 of {a, b}

Π (l + (" G) - Π [1

G - Gfe^, x

Since (* G - \G =0, it follows that αΠδ (1 + G) = oΠδ fl + [G\ pro-
vided one of the product integrals exists.

THEOREM 3.4. If G is a function from S x S to N such that
GeOB0, the following statements are equivalent:

(1) GeOA0 and (2) GeOM0.

Proof. 1 —> 2. Let V be the function from S x S to N such

that for each {x,y}eS x S, V(x,y) = Γ G . By Lemma 3.1 [7, p. 152]

there is a function a in OA+ [7, p. 150] such that the pair of func-
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tions α, V satisfy the hypothesis of Theorem 3.1 [7, p. 153]; therefore,
for each element {x, y} of S x S, xΐl

y (1 + V) exists and, by Theorem
3.3 above, J[v (1 + V) = Mv (1 + G). For each 0-subdivision {αt.}?=0

of an element {a,b} oί S x S

Σ
l

(1 + G) - [1 + Gix^, *<)]

. ^ Π " α + V) - [l + Vix

^ Σ I . ^ Π " (1 + α) - [1 + «(«*

g Σ I + Σ

+ Σ I
£ = 1

Since Ge OA° and ae OMQ (by definition and also by our Theorem 4.2),
the last member can be made arbitrarily small; therefore

and GeOM0.

2 —• 1. Let W be the function from S x S to N such that for
each element {x, y} oί S x S, W(x, y) = J F (1 + G). By Lemma 3.2
[7, p. 152] there is a function μeOM+ [7, p. 150] such that the
pair of functions μ, W satisfy the hypothesis of Theorem 3.2 [7, p.

Γb

153]; hence, for each element {a, b} of S x S, \ (W — 1) exists and
Ja

for each 0-subdivision {a J U of {a, 6},

Σ
i l

(Th. 3.2 [7])

(TΓ-1)

- Σ I *t-JlXi (1 + G)-[1 + G(Xi-u ».•)] I
4 = 1 2

Since G e OM° and (μ — 1) e OA° (by definition, also by our Theorem
4.1), it follows that

S b Cb

G=\(W-1),
a Ja

= 0 ,

and GeOA\
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REMARK. OA° is not a subset of OB° and OB° is not a subset of
OA°. Let S be the set of real numbers. If h is the function from
S to S such that h(x) = 1 for x rational and h(x) — 0 for x irrational,
then the function H(x, y) — h(y) — h(x) is an element of OA° but is
not an element of OB\ Let G be the function from S x S to S such
that

(1) if x g y then G(x, y) = y — x and
(2) if x > y, then G(B, y) — y — x it both x and ?/ are rational,

S i ro

G exists but I G does not exist
0 J l

and G <Z OA°.

MacNerney's Lemma 4.3 [7, p. 156], which is used in the proof
of Theorem 3.5, could have been stated as follows:

LEMMA 4.3°. // each of F and G is in OB [7, p. 155] and a is
a member of OA+ [7, p. 150] such that \ dF\ < a and \dG\ < a then,

S b Ca

FdG and (R)\ FdG exist and—if e is
a member of S such that {e, α, b} is a subdivision of {e, b)—

F(a)dG(b, a)\ = FdG - F(a)dG(a, b)

S b

a(e, )a — a(e, a)a(a, b) .
a

Furthermore, each of the functions

F(x)dG(x, y) , F(y)dG(x, y) , dG(x, y)F{x)

and dG(x, y)F(y) is an element of OA° and of OM°.

Indication of proof. MacNerney gives a proof for

(L)\bFdG - F(a)dG(a, b) ^ (L)Γα(e, )a - a(e, a)a{a, b) .
Ja Ja

The definition of the function a (as well as our Theorem 4.1) assures that
the function α(e, x)a(x, y) is an element of OA°; therefore F(x)dG{x, y)
and F(y)dG(x, y) are elements of OA° and, since the integration by
parts theorem (Lemma 4βl, [7, p. 156]) applies, dG(x,y)F(x) and
dG(xy y)F(y) are element of OA°. It follows from Theorem 3.4 that
each of these four functions is an element of OM°.

THEOREM 3.5. If each of flff2, f3 and f4 is a function from S
to N and df{ e OB° for i = 1, 2, 3, 4, the function G is an element
of OB° and OA° and H is the function

H(x, y) = [fix) + A(y)]G(x, y)[fΛ(x) + My)] ,
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then He OA° and He OM°.

S y

G. From Lemma 4.3°
X

it follows that each of the functions fi(x)V(x,y)9f2(y)V(x,y), V(x,y)f3(x)
and V(x, y)My) is an element of OA\ Since f(x)V(x, y) and G are ele-
ments of OA°, and

Σ Γ Λ( )V( , )-fί(x)V(x,y)

= Σ I Γ /i( )^( , ) - Λ(*)G(x,v) + Λ(x)G(xyy) - f(x)V(x,y)

, )-Λ(x)G(x,y) -Σ\fM\\G(x,v)-V(x,y)\

it follows that f{x)G(x, y) e OA°. Similarly, the other three composite
functions of f{ and G are elements of OA°. HeOA0 because OA° is
closed with respect to addition. Since He OB°, it follows from Theorem
3.4 that HeOM\

REMARK. If H is the function

H{x, y) = Σ Fi(
i

where, for i — 1, 2, 3, , %, Gi is an element of OB° and OA° and each
of the functions F{ and H{ is composed of products and sums of func-
tions / from S to N for which df e OB\ then, by using Theorems 3.1
and 3.5, it follows that HeOA" and HeOM\

4* OA°, OM° and a special ring* In this section it is shown
that if suitable restrictions are placed on the ring N, then the ex-

S b

G implies that G e OA° and the existence
of the product integral af[

b (ί + G) implies that G e OM°.
Let R be a ring which has K subsets Ru R2, - *,RK such that

•B = \Jf=i ϋ% a n d R has a norm | | with respect to which R is com-
plete and 111 = 1 and, if A and B are elements of the same subset
Ri of R, then \A + B\ = \A\ + \B\. The field of complex numbers
with the norm of (α, b) defined as | a \ + | b \ satisfies these conditions.

THEOREM 4.1. If G is a function from S x S to R such that

S y
G exists for each element {x, y} of S x S, then G e OA°.

X

S y

G — G(x, y) for
X

each element {x, y} of S x S, then there is an element {α, 6} of S x S,
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a positive number c and an 0-subdivision D = {ccjĵ o of {α, b} such that

ί̂ i-if »̂) I > c a n c * if {l/j}y=i is a refinement of D, then

The following definitions are used to define a refinement Dr of D
which will lead to a contradiction. For each integer k, 1 <£ & <£ if, let
-At be the set of integers such that peAk only if H(xp_u xp) e i?^.
Since Σ?=i I H(%i-ι, #*) I > c, there is an element A of {ΛJf-i such that
YaeA I £Γ(ίci_i, Xi) I > C/UL. For each integer iyl ^ i ^n, let .D^ be a
subdivision of {#<_!, ίcj and kL be an element of R such that

( 1 ) it ieA, then D; — {flĉ u x.} and fci = H(Xi_u x^) and
( 2 ) if i ί A, then ^ is an 0-subdivision of {α?t _lf a J such that

*• = P G - Si* G(*s-» »i) and I Jk, | < c/(2*.2iΓ). Let 2?' = Uf=i A ;

then D' is a refinement of £> and

Σ ( Γ G-

hence c/K > | Σie^H(Xi_u x{)\ =

proves that Ϋ\H\ = 0 and that
Jα

- Σ 0/(2* 2K)
%0Λ

> clK. This contradiction

THEOREM 4.2. If G is a function from S x S to R such that
for {α,i)}eSx S ίfeβre is a number M such that, for each 0-sub-
division {α, x, y, b} of {a, 6}, xU

y (1 + G) and [xΐ[
v (1 + G)]-1 exist and

are bounded by M — 1, £ftew G e OM°.

Proo/. For each element {a?, y} of S x S let F(x, #) = 1 + G(», y)
and fl(a?, 2/) = xU

y (1 + G) - [1 + G(x, i/)]. If the theorem is false, there
is an element {a, b}e S x S, a positive number c and an 0-subdivision
D = {Xi}Uo of {α, 6} such that 2>=i | flίa?*^, x{) \ > c and, if {ys}
refinement of D and 1 ^ i ^ w, then

p

jssί i s a

3=1

Π F(Vs-i,Vs)

and
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< 1/(2M3) ,

where ys_x = x{ for i = ?<.

The following definitions are used to define a refinement Df oί D
which will lead to a contradiction. For each integer kyl ^k ^ K, let
Ak be the set of integers such that i e Ak only if

is an element of Rk. Since 2?= 11 JE7(α?i_1, α̂ ) | > c, there is an element
A of {AΛ}f=1 such that ΣaeA \ H(x^u x{) | > c/K. For each integer i,
1 ^ i ^ w, let !)< be a subdivision of {x^u Xi) and ki be an element
of R such that

( 1 ) if i e A, then Z)̂  = {x^u xτ) and ^ = H(Xi_u Xi); and

( 2 ) it igA, then D^ is an O-subdivision {Zj}%Q of {^ _i, a J such

that h = e | - i n e i ί7 - Πϊ t i ^ i - i , «i) and \k{\ < c/(2*4M*ΛΓ).
}?-i; t h e n I?' i s a refinement of D andLet D'= U?.iA =

c/(4M*K) >

Σ?=i (.IF1-1 F)h Π Πz,,

ΣI ] Σ l^

-l, Vk)

(Identity, Th 3.2)

Π Πi

- M

hence

Σ
ί€4

c/(2M*K)

j=i+l DA

Σ,
iβA

Σ
€

« ί + 1
WF

Π

Therefore
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Σ'
iβA

iβA

I(.π

(See def. of Ak, A and kf.)

wF)\ \ςi+1irF)-11

S δ

I ί ί I = 0 and that G e OM°.
a

5* Integral equations; special uses* In this section several
theorems are proved showing that product integrals can be used in
solving integral equations. Then these theorems are used to show
that a nonsingular m x m matrix of complex numbers has n distinct
nth roots and that, with some restrictions, XΠ=i Ai exists if and only if
ΠΓ=i (1 + A4) exists. The first four theorems show interdependencies
between equations containing sum integrals and equations containing
product integrals. Since the proofs of these theorems are similar ex-
cept for minor algebraic manipulations, the proof for Theorem 5.1 is
given and the other proofs are omitted. We are indebted to the re-
feree for the proof of the following lemma which is used in the proofs
of the next four theorems.

LEMMA. Suppose the functions F, G and H are elements of OB°
such that F e OA° and xΐ[

y (1 + H), yU
x (1 + G) and

W(l + G)-F.tIl»(l +

exist for {x, y}eS x S. If {a, 6} e S x S, then

F(x, y) - = 0 .

Proof. Let {a, b} be in S x S, M be a positive number, and V and
W be functions such that if {a, x, y, b} is an 0-subdivision of {a, b} then
I,Π (1 + G) \< M, U P (1 + H) | < M,

V(x,y)=\yF,
Jx

and

W(x, y) = (Λβ)(",Π (1 + G)'F tU
y (1 + H) .

Jx
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Since F is in OA° it is clear that if {α, x, y, b} is an 0-subdivision of
{α, 6} then

W(x, y) = (ΛB)fjΓ(1 + <?)• F JΓ (1 + H),

and that the assertion of the lemma is equivalent to this:

[\V- TΓ| = 0 .

Since H is in OB°, there exists a function β such that if {α, α?, 2/, 6}
is an 0-subdivision of {α, 6} then /3(x, ?/) is the least number Q such that,
for each 0-subdivision {tp}% of {x, y), Σa I H(tp_u tp) | ^ Q. If {α, a;, #, 2, 6}
is an 0-subdivision of {a, 6} then β(x, y) + β{y, z) ^ β(x, z); hence noting
that if {tp}o is an 0-subdivision of {x, y} then

one readily finds that 11 - xU
y (1 + H) \ ̂  M Γ / 3 . Similarly there is

Ja;

a function a such that if {α, α?, 7/, &} is an 0-subdivision of {α, 6} then
a(x, y) is the least number Q such that, for each 0-subdivision {tp}o
of {x, y), Σί I G(ί,, tv-d I ̂  Q, and 11 - yW (1 + G) \ ̂  M\\.

Suppose that c > 0; let

dll + ikfΓ/3 + M2\ba + {M + M2)Γ| F | l - c ,

and w be a positive integer such that

S b cb Γ&

a <nd , \ β < nd , and I | F | < %d .
Now, let [α, 6] denote the subset of S to which w belongs only in

case {α, u, 6} is an 0-subdivision of {α, 6}, and let A be the collection
to which X belongs only in case either

(1) there is a positive integer i less than n such that X is the
subset of [α, b] to which w belongs only in case

(i - l)[a ^ (n)\Ua < (ί)[a ,
Jα Jα Jα

or (2) X is the subset of [α, b] to which u belongs only in case

(n - l)[h<x ̂  (n)\*a ̂  (n)Ϋa .
Ja Jα Jα
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Note that A is a finite collection of mutually exclusive subsets of [α, b]
filling up [a, b] such that

( 1 ) if X and Y are members of A, then either {u, v} is in 0 for
each u in X and each v in Y, or {v, u) is in 0 for each u in X and
each v in Y, and

( 2 ) if {a, u, v, b} is an 0-subdivision of {α, δ} and there is a member
α < d.

u

S u
β, and

S o ,

\V\. Let J5
α

be the collection to which T belongs only in case there exists a member
X of A, a member IT of B, and a member Z of C such that Γ is the
set to which u belongs only in case u belongs to X, to Y, and to Z.
Now, D is a finite collection of mutually exclusive subsets of [α, 6]
filling up [α, δ] such that

( 1 ) if X and Y are members of D, then either {u, v) is in 0 for
each u in X and each v in Y, or {v, u) is in 0 for each u in X and
v in Y, and

( 2 ) if {α, w, v, b} is an 0-subdivision of {a, b) and there is a mem-
ber of D to which both w and v belong then

\*a<d, [β<d, and [\V\<d.

If D has only one member, let t be the 0-subdivision {a, b} of
{a, b}. Otherwise, let N be an integer such that D has only N + 1
members, {XP}^ be a simple ordering of D such that if up is in Xp

(p = 0, , iV) then {α, 6̂0, , 6̂JΛΓ, 6} is an 0-subdivision of {α, 6}, and
{ίp}f be an 0-subdivision of {α, 6} such that tp is in Xp (p — 0, , N).
Let {rp}^ be a refinement of ΐ .

Suppose, temporarily, that p is a positive integer less than m + 1,
and let {sjf be an 0-subdivision of {rp_u rp} such that

V(rp-ιt r,) - Σ rllsi

1 *

Denote
k

V(rp_u rp) — Σ rβ"
1 P

by Z7, so that

< d/m

s ί (1 + ^u sj .ΐl'* (1 +

^ Σ M β4) I
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x {|i - JΓ*( i + H)\ + | i - , j r (i + G)\ |.4Π''d + H)\}

If there exists a member of D to which each of rί?_1 and r p belongs,
then

1

S d\M[P β + M2[P a) .

Otherwise, there exist members X and Y oί D and a positive integer
j in [0, m] such that s{ is in X for 0 ̂  i < j and ŝ  is in Y for
j" ^ i ^ m, whence

l

i-,, st) I {MΓ* /3 + MY a}

rp \V\ {Md + M2d} .

Therefore, in either case,

I F(r,_lf r,) - f ( r p . t , rP) |

< 4 l M + M'* /3 + M2ΓP a + (M + M*)[" \V\\ .

From the considerations of the preceding paragraph it follows that

Y,\V{rv^rv)-W(rp^rp)\

< dh + M\bβ + M2\ba + (M+ M2)\b\ V\\ - c ,

and the proof is complete.

THEOREM 5.1. Suppose
(1) ae S,f and h are functions from S to N suck that f(a) =

h(a) and dheOB0,
(2) G, H, A and B are functions from S x S to N such that

(l—H)-1 exists and is B,B is bounded, (dh)B e OA\ and for {x,y} e SxS
A(x, y) = [l + G(x, y)][l - H(x, y)Yx and A-le OB°, and

( 3 ) h is a constant function or xYlyA exists for each {x,y}e SxS.
The following statements are equivalent:

(1) f(y)H(x, y) + f(x)G(x, y) e OA° and
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f(x) = h(x) + (RL)[(fH + fG)
Ja

for each element {a, x} of S x S; and
( 2 ) if {α, x, y} is an ^-subdivision of {α, y}e S x S, then

(L)[\f( )[UA-A( , )]| = 0
Ja

and

f(v) = f(χ) .IF A + (R)[[(dh)B tn
y A].

Furthermore, if f~λ exists and is bounded, then (A — 1) e OM°.

Proof. We will consider the statements concerning 0̂ 4° and 0M°
after the other parts of the theorem have been proved.

1 -+ 2. If {α, y} e S x S, {a, x, y) and {x^Uo are O-subdivisions of
{a, y} and of {x, y}, respectively, and 1 ̂  i ^ n, then

hence

(5.11) Λ - f^ + dfe, + fH, + f^Gi + c,

where dh, — h{x^) — h{x{_^) and

ct = (RL)\" (fH + fG) - (fiHi + f-A)

hence,

= f-Λi + (dh, + cJBi .

By iteration, using i = 1,2, •••, w in order, we obtain

(5.12) / ^ / . Π Λ + Σ ^ i Π 4i + Σ ^ i Π A,.

Since the product integral xJ[y A exists, dh e 0B°, B is bounded,

(A — 1) e OP0 and 2?=11 ĉ  | can be made arbitrarily small, it follows

that (R) \V(dh)BJlvA exists and that

f(y) = /(a?) . I F A

Equation 5.12 shows that if h is a constant function, the requirement
that sΠ1' ̂ 4 exists is not needed.
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2 —> 1. It {a, x}e S x S, {̂ }?=o is an 0-subdivision of {α, x} and
1 ^ i :g n, then

(dh)B tU
Xi A

/Ld« + dλ,B, + βt,

where

rfi = . i - 1 Π Ά-i4(a? 4 . l f a? < )

and

β 4 =

Hence,

/4(1 - fl,) - / U l + Gt)

+ f^dJίX - H<) + dh<

and

1 # ]

Since Σ?=i I fi-i^i I a n ^ , by using the lemma, Σ?= 11 β41 can be made
arbitrarily small, it follows that

To prove the statements concerning the sets OM° and OA°, we
combine equations 5.11 and 5.13 and obtain

c* - Λ-A( l - Hi) + β*(l

A review of the definitions of ci9 d{ and e4 shows that if c and d are

S x Cx

I c I = 0 if and only if (L)\ | fd \ = 0; also,
I d I = 0 if Z"1 exists and is bounded.

a

REMARK. If N is the field of complex numbers, then

Π A = Π(i + G*)(i - a*)-1 = Π (i

and

.Π ^ = .Π (i + G)/.Π d
for the special case where
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.IP A = jp

THEOREM 5.2. Suppose
(1) aeS,f and h are functions from S to N such that f(a) =

h(a) and dh e OB°, and
(2) G, H, A and B are functions from S x S to N such that

(1 — H)-1 exists and is B, B is bounded, B(dh) e OA°, for {x,y}e S x S
A(y, x) = [1 - H(x, y)Y\l + G(x, y)] and A-le OB° and

( 3 ) h is a constant function or xJlyA exists for each {x,y} e SxS.
The following statements are equivalent:

(1) H(x, y)f{y) + G(x, y)f{x) e OA° and

for each element {a, x} of S x S; and
(2) if {a, x, y) is an O-subdivision of {a, y}e S x S, then

= 0(L)ί' [B.A-A( ,
Ja

and

M = (vIίxA)f(x) + (R)\\(,n* A)B(dh)] .
Jx

Furthermore, if f~λ exists and is bounded, then (A — 1) e 0M°.

THEOREM 5.3. Suppose
(1) ae S, f and h are functions from S to N such that f(a) —

h(a) and dheOB0 and
(2) G, H, A and B are functions from S x S to N such that

(1 - H)-1 exists, B(y, x) = [1-H(x, y)]~\ {1-H)~ιdh e OA°, (B-l)e OB°,
(B - 1) G OM°, G e OB°, G e OM° and A = 1 + G. The following state-
ments are equivalent:

(1) H(x, y)f(y) + f(x)G(x, y) e OA° and for each element {a, x) e
SxS

f(x) = hix) + iRL)["iHf + fG) and
Ja

( 2 ) if {a, x, y) is an O-subdivision of {a, y) e S x S, then

f(y) = (vUxB)f(x)(xn»A)

- H)-\dh){tW A)} .
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THEOREM 5.4, Suppose
(1) ae S,f and h are functions from S to N such that f(a) =

h(a) and dh e OB° and
(2) G, H, A and B are functions from S x S to N such that

(1-H)-1 exists and is B, (B-l)eOB°, (B-l)eOM°, dhBeOA\
G e OB°, G e OM° and A{y, x) = 1 + G(x, y)eS x S. The following
statements are equivalent:

(1) f(y)H(x, y) + G(x, y)f{x) e OA° and for each element {a, x) 6
S x S

f(x) - h(x) + (RL)\\fH + Gf) and

(2 ) if {a, x, y) is an ^-subdivision of {a, y}e S x S, then

f(y) = (JΓ A)f(x)(xn
y B)

vW A)(dh)B(tW B)] .

REMARK. The integrals (.E)\"fG, (L)\'fG, (R)[°Gf, (L)\XGf, (M)\XfG

Gf are special cases of the integrals (RL)\ (fH + fG) and

(RL)\ (Hf+Gf) used in Theorems 5.1 and 5β2. Hildebrandt [4, p.

354] defines a modified Riemann-Stieltjes integral as follows [g(x) has

bounded variation and gc(x) denotes the continuous part of g(x)]: "If

S b

fdgc exists as an R — S integral, then for any closed interval (c, d)
α

of (α, 6) we define

\df(x)dg(x) - \df(x)dgc(x) + f(c)[g(c + 0) - g(c)]

+ Σ /<
c<x<d

+ f(d)[g(d) - g(d - 0)]."

S d

(fH + fG) be-
c

cause the right member can be simplified as follows:

R - S\df(x)dg(x) = l/2(R)\dfdgc

Jc J c

)\dfdgΰ+ X f(x)[g(x) - g(x - 0)]
Σ

^ d

- l/2(K)\*fdg.
J c

ll2(L)\dfdgc + (β)(V<^ +(L)(VdΛ
J e J c J c
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+ gι) + fd(ll2gc + gr)]

= (RL)\\fH + fG) ,

where gx and gr are the functions of the "left breaks" and the "right
breaks", respectively.

THEOREM 5.5. If ae S,f and h are functions from S to N and f-1

exists and is bounded, H and G are functions from S x S to N such
that H and f(x)G(x, y) are elements of OA° and, for each {a, x}e S x S,
\Ή + h(x) = (L)\*fG, then for {a, x} e S x S
Ja Ja

(L)[f-ίH+(L)\Xf-ίdh= [G,
Jα Ja Ja

provided two of the integrals exist.

Proof. Since H and f(x)G(x, y) are elements of OA°, for each
xe S and for each O-subdivision {aji}<=0 of {a, x} there is a sequence
{Ci}i=i of element of N such that

and

Since /- 1 is bounded and since ΣJU | C4 | can be made arbitrarily small,
it follows that for each {a, x} e S x S

provided two of the integrals exist.

THEOREM 5.6. Suppose {a, b}e S x S, F and G are functions from
S x S to N such that

\*\
Jα

FG\ =

Fe OB°, G e OB\ αΠ6 (1 + F) and J[b (1 + G) exist and G(x, y), G(p, q),
F(x, y) and F(p, q) commute for all elements {x, y) and {p, q) of S x S;
then

( 1 ) J P (1 + F) aW (1 + G) = αIP [1 + (F+ G)];
( 2) [αIP (1 + G)]" = J[» (1 + nG), for n a positive integer; and
( 3 ) aW (1 - G) = IW (1 + G)]-1, provided aW (1 - G) exists.
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Proof of (1). If {Xi}i=o is an O-subdivision of {α, &} t h e n

Π (1 + F<) Π (1 + G<) - Π [1 + {Ft + (?,)]

Π (1 + Ft + Gt + F&) - Π [1 + (F< + G,)}

^ΛP^lFtGtl (Th. 3.2).

Since [b\FG\ = 0, it follows that
Ja

.IP (1 + JF).IP (1 + G) = .IP [1 + CF+ G)] .

Parts (2) and (3) are corollaries to part (1).

Theorems 5.7 and 5.8 are stated for matrices of complex numbers
but these proofs can be extended to other rings, provided a function
g exists having properties similar to those of the function g used in
these proofs.

THEOREM 5.7. If A is a nonsingular m x m matrix of complex
numbers and n is a positive integer, then A has n distinct nth
roots.

Proof. Since A is nonsingular, there is only a finite number of
values of z for which det 11 + z(A — 1) | is zero; therefore, since
det 11 + z(A — 1) I is not zero for a complex number z near (0, 0) and
(1,0), there is a continuous function g from the real numbers to the
complex numbers such that g(0) = (0, 0), g(l) = (1, 0), dgeOB0 and
det 11 + g(x)(A - 1) | Φ 0. Let M(x) = 1 + g(x)(A - 1); then Af(0) = 1,
ikΓ(l) = A, and If"1 exists and is bounded on {0,1}. Let H(x, y) =
M-\x)[M{y) - M(x)l then M(x) - (L) J Γ (1 + M~ιdM) = (L) 0Π* (1 + H),
He OM\ He OB°, Γ| H21 = 0, £T(p, g) and H(r, t) commute for all num-
ber pairs (p, q) and (r, t). By Theorem 3.4, He OA°; hence (l/n)He OA\
(l/n)He OM° and (L) 0 IΓ [1 + (l/n)H] exists for 0 ^ a? ̂  1. For each
wth root a of the complex number (1, 0)

{a oil1 [1 + (l/n)Hψ - α oΠ1 (1 + # )
= A .

Since # is continuous, {oΠ1 [1 + (Vn)H]}~~1 exists; therefore each distinct
wth root of the complex number (1,0) gives a distinct wth root of A.

THEOREM 5.8. If {AJJLi is a sequence ofmxm matrices of com-
plex numbers such that Σ£=i -A< exists and, for 0 < i S j , I A% I < 1/4
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and Ai and Aό commute, then the following statements are equivalent:
oo

(1) 2, Ai exists and

( 2 ) Π (1 + Λ) exists.

Proof. Let g be the function from the real numbers to the com-
plex numbers such that g(x) — (x, 0) and let {/̂ }Γ=i be the sequence of
functions such that for each positive integer i, h^x) = 1 + A{g(x). For each
integer i and each number x, 0 ^ x 5j 1, | Λ g(x) | < 1/2, h.t(0) = 1, 7̂ (1) =
1 + Λ , ̂ 7 l exists on {0, 1}, | hj\x) \ < 2 and

Iφ) - /^(0).(L)0ir(l + kT'dhi

= (L)0Tί*[l + (1 + Aigy'

= (L) QUX {1 + [A, - (1 +

- (L) d p (1 + Λdff) W oΠx [1 ~ (1 +

For each pair m,n of positive integers, with m < n, there are ele-
ments a(my n) and /5(m, n) of iSΓ such that

Π (1 + A<) = Π h,(l)
i=m i=m

= oil1 ( l + Σ AdLg) oΠ1 Γl - Σ (1 + Λflr)-1^^]

= oil1 (1 + Bdg)[l + a(m, n)\ ,

where

B=%Ai
i=m

- oΠ1 (1 + Bdg) + β(m, n)

and such that a(my ri)—>0 as m,n—>oo and, if oΠ1 (1 + Bdg) is uni-
formly bounded as m, n —> co, then | /3(m, ̂ ) | —-> 0 as m, w —•> oo.

1—>2. Since ΣΓ=i^i exists, oΠ1 (1 + Σ?=m Λ ^ ) is uniformly
bounded as m, n —> oo and | /9(m, w) | —> 0 as m, w —> oo. Let m, w be
an integer pair and / be the function such that, for 0 ^ x ^ 1,
f(x) = (L) oΠ" (1 + ^ ^ ) , where J5 = Σ?=™ Λ; by Theorem 3.5 and 5.1,
f(x) = 1 + (L)\XfBdg; hence,

Jo

Π (l + A) = /(i) + /3(™, w)

= 1 + (L)l fBdg + β(m, n) ,
Jo

and
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Π (1 + Λ) - . fBdg + β(m, n)

lo

^ I B l l/lmax Σmax 1 &Q I + I £(m, " ) I .
Since there are maximum values for f(x) and Σ I dg I o n {0,1} which
are independent of m and w and since | β(m, n) \ and | Σt=m A< | = | JB |
can be made arbitrarily small, it follows that | Π?=m (1 + A) — 11 —> 0
as m, %—> oo# Since the sequence {Π?=i(l + A*)};^ is bounded,

lim Π (1 + Ai)

exists. Since for each integer i

hτ\x) = ^ ( 0 oil*

by repeating the above manipulations for hj1 and for Π?=™ (1 + Â
we can show that lim^oo Π?=i (1 + A)" 1 exists and then show that

lim Π (1 + A*)-1 = I lim Π (1 +

2 —> 1. Since dg e OB°, oil1 (1 + Σ?=m Λd^) exists for each pair of
positive integers m, n. Since ΠΓ=i (1 + AJ and [ΠΓ=i (1 + A^)]"1 exists
and since | a{m, ri)\—*0 as m,n—+oo9 it follows that {Π?=i (1 + A)}Γ=i
and {Π?-i (1 + A)" 1 }^! are bounded and | β(m, n) \ —+ 0 as m, n —> ©o.

If 2 y> 1, there is a positive number c such that if J is an integer
there are integers n^m> J such that 1/4 > | ΣLm A< | > c. Therefore,
there are positive integers m and w such that c/6 > | Π?=m (1 + ^ ) — 11,
φ > I /3(m, %) I and 1/4 > | Σ ? = m A41 > c. Since 0 I Γ (1 + Σ ? = . Λ % )
exists, there is an 0-subdivision {%}?=o of {0,1} of evenly spaced num-
bers such that if v = g(Xί) — g(xQ), B = Σ?*» ^

= oΠ1 (1 + Bdg) - Π {1 +
l

then

and c/6 >

= oil1 (1 + Bdg) - (1 + Bvf

Hence,

c/6> Π (1 + A{) - 1

= I oΠ1 (1 + Bdg) + β(m, n)-l\
^ I (1 + Bvγ - 11 - I /3(m, n) \ -

By using the binomial theorem and the above inequalities, we obtain
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e/2 > I (1 + Bvγ - 11

= 11 + pBv + p(p - l)(BvY/2l

+ p(P - 1)(P - 2)(Bvfβ\ + + (Bv)p - 11

+ \B\*\pv\\{p - l)v\\(p - 2)v\IZ\ + ~- + \B\*\v\r\.

If 0 S j is P, I (p — j)v I Sa 1; therefore,

Hence, c > | B | = | X?-=w A{ | > c; this contradiction proves that 2 —• 1.

6* Solutions for integral equations* In this section we present
several examples to show how product integrals can be used in the
solution of several types of integral equations. In each example we
assume that all elements commute, that all the preceding theorems
hold when needed and that functions such as nf,f*, and f~ι exist
for n a rational number. Lower case letters will be used for func-
tions from S to N and capitals for functions from S x S to N. All

fdg and (L) aH
b (1 + fdg). Observe

a

that

and that, under the conditions stated above,

[f(x)Y = [/(α)] (L) . Π ' (1 +

EXAMPLE 1. (n + l)\"fndf = [/(δ)] +1 - [
Ja

Proof. [f(x)Y+1 = [/(α)]"+1 J p [1 + (n +

EXAMPLE 2. I g~\gdf — fdg) =

Proof. f(x)g-\x) = f(a) o ]p (1 + f^df^rHfl) ,Π" (1 -

= f(a)g-\a) aW (1 + Z"^/ - tΓ'dg)
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EXAMPLE 3. \\fhdg + fdhg + dfhg) = f(b)h(b)g(b) - f(a)h(a)g(a) .
Jα

Proof. f(x)k(x)g(x) = f(a)h(a)g(a) J[' (1 + f-*df + g~xdg + hrWh)

= f(a)h(a)g(a) + ̂ fhg{f~ιdf + g-'dg + h~ιdh).

EXAMPLE 4. If y(x) = y(a) + \(yG + y"F) and n Φ 1, then
Jo

y(x) = aW (1 + G){[y(a)Y- + (1 - n)\'m (1 - G)]1-^}1"'""" .

Proof. y(x) = y(a) β Π β (1 + G + r ^ ί 1 )

[2/(x) . Π 1 (1 - G)]1-'1 = [^(α)]1- .Π* [1 + (1 - n)y-ιF]

= Ma)]1-" + (1 -n)\'[U (1 - G ) ] 1 - ^ .
Jα

EXAMPLE 5. If k is a constant and

„(*) = y(a) + f"(y + k)(hy + f)G ,
Ja

then

x \[y(a)

Proof.

y(x) + k = [y(a) + k] o ] p [1 + (hy + f)G]

= Ma) + k) 0Π^ [1 + (hy + hk)G] J p [1 + (/ - Λfc)G]

= [y(a) + A;]-1 -

EXAMPLE 6. If f(x)u(x) =/(α) +Γ/ P G, then /(x) = ? Indication

of proof. f{x)u{x) = /(α) + Γ[/P^Ί^"PG; the remainder of this proof
Jα

is similar to Example 4.

EXAMPLE 7. If y(x) + (p + ̂ )Γi/G + M Γ ( ( V G ) G = /(«), where

and g are constants, /̂(ίi?) = ?
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Indication of proof. The given equation can be rewritten

\y{x) + pj V?] + j"[!/(ί) + p^yGJqG = f(x) ,

which is covered by Theorem 5.1 with y(t) + pi yG treated as one
Ja

function. Then Theorem 5.1 is used a second time.

EXAMPLE 8. If y(x) = c + \*(y + p)ll\y + q)ll2G, and c, p and q
Ja

are constants, y(x) = ?

Indication of proof.

[y(χ) + PΓ = (c + pfi* . π [i + \(y + P)-ψ(y +

Similarly,

[y(χ) + ^] 1 / 2

Substituting [y(t) + ^] 1 / 2 in the preceding equation gives

lv(x) + P]φ = (c + ?))1

and this can be rewritten as a special case of Example 7,

(χ) + p]lβ - \

= (c + pyi* + M\c + qyι*G .
Δ Ja

EXAMPLE 9. If A; is a constant and G, s and c are functions such

that s(x) = k + \*cG and c(a?) = - ΓsG, then s2(ίc) + c2(ίc) = ifc2.
Jα Jα

Proo/. Since s(x) = k aU
x (1 + s-'cG), then

s2(x) = k2 . Π (1 + 2s-1cG) = A;2 + 2("βcG
Jα

= ¥ - 2Γ(TsG)sG = A;2 - ([SGJ = ¥ - c\x) .
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REMARK. In the preceding examples the function G(x, y) was used
instead of the function dg because G{x, y) might be a more general func-
tion such as

G(x, y) - f(x)h(y)[g(y) - g(x)][p(x) + q(y)] .
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