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SEMIGROUPS, PRESBURGER FORMULAS,
AND LANGUAGES

SEYMOUR GINSBURG AND EDWIN H. SPANIER

An interesting class of subsets of lattice points in %-space
arises naturally in the mathematical theory of (context free)
languages. This is the class of semilinear subsets, a subset
of lattice points being semilinear if it is the finite union of
cosets of finitely generated sub-semigroups of the set of all
lattice points with nonnegative coordinates.

The family of semilinear sets is here shown to be equiva-
lent to the family of sets defined by modified Presburger for-
mulas. A characterization of those semilinear sets which
correspond to languages is then given. Finally, using the two
preceding results and the known decidability of the truth of
a modified Presburger sentence, a decision procedure is given
for determining whether an arbitrary linear set corresponds
to a language.

The class of semilinear sets, first considered in [3] was extensively
studied in connection with the theory of bounded languages [1], In [1] it
was shown that the class of semilinear sets is closed with respect to
Boolean operations. A consequence of these techniques (in particular, of
the proof of Theorem 6.1 of [1]) is that the intersection of two finitely
generated sub-semigroups of nonnegative lattice points in w-space is
itself a finitely generated sub-semigroup.

The definition of a semilinear set as a finite union is an " internal"
description of the set. More precisely, a semilinear set is defined by
a finite set of nonnegative lattice points (called constants) to each of
which is associated a finite set of nonnegative lattice points (called
periods). The semilinear set is the set generated by adding to each
constant an arbitrary finite sequence of its associated periods (allowing
repetitions of the same period in the sequence).

Another class of subsets of nonnegative lattice points is defined by
the modified Presburger formulas. This class is also closed with respect
to Boolean operations [5]. The subsets in this class are defined by an
"external" description. More precisely, each set in the class is defined
as the extension of a modified Presburger formula with n free varia-
bles, i.e., the set of all ^-tuples of nonnegative integers satisfying
the given formula.

Section 1 contains a proof that the family of semilinear sets is
Received October 9, 1964. This work was supported in part by the Air Force

Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF
19 (628)-485.

285



286 SEYMOUR GINSBURG AND EDWIN H. SPANIER

identical with the family of sets defined by modified Presburger for-
mulas. (This was stated without proof in [1].) Thus each set in this
family has both an internal and external description. Furthermore, each
description can be effectively obtained from the other. The situation
is somewhat analogous to the two ways of describing subspaces of a
finite dimensional vector space, the internal description for vector spaces
consisting of a finite subset of vectors which span the subspace and
the external description consisting of a finite system of linear equations
whose solution space is the subspace.

Our interest in semilinear sets stems from their relation to lan-
guages. Section 2 is devoted to this relation. It is shown that those
semilinear sets which correspond to languages can be given semilinear
descriptions of a particular form. For the special case of linear sets
we then give a decision procedure for determining whether an arbitrary
set corresponds to a language. The general case is still unresolved.

1* Semilinear sets and Presburger formulas* Let N denote the
set of nonnegative integers and Nn the Cartesian product of N with
itself n times. For x — (xu , xn), y = (ylf , yn) in Nn define
x + y — (Xi + 2/1, , xn + yn) and, for t in N, define tx = (tx19 , txn).
Then Nn is a semigroup and is partially ordered by the relation
x ^ y if Xi ^ 2/i for 1 ^ i ^ n.

Given subsets C, P of Nn define L(C; P) to be the set of all x in
Nn which can be represented in the form

x = χQ + χ± + . . . + χm

with x0 in C and xly , xm a (possibly empty) finite sequence of
elements of P. C is called the set of constants and P the set of
periods of L(C; P). If C consists of a single element c and P —
{Pn fPr} we write L(c; P) and L(c; pl9 , pr) for L({c}; P). A
subset L of Nn is said to be linear if there exist an element c in Nn

and a finite subset P of Nn such that L = L(c; P). In this case P
generates a finitely generated sub-semigroup S of Nn and L is the
coset of S in Nn containing c. Thus L is linear if and only if it is a
coset of a finitely generated sub-semigroup of Nn. A subset of Nn is
said to be semilinear if it is a finite union of linear sets.

EXAMPLES. (1) In N2 the set A — {(a?, y)\x^ϊ\ is a linear set,
namely A — L((l, 0); (1, 0), (0,1)). Clearly A is a sub-semigroup of
N2. Since no element of the form (1, y) is a sum of other elements
of A, A is not finitely generated.

(2) In N2 the set X = {(x, y)\y ^ #2} is a sub-semigroup which is
not semilinear. To see this, note that every vertical line meets X in
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a finite set. Thus each linear set contained in X can only have periods
φ(0, 0) of the form (x, y) with x > 0. Let Lie,; Px), , L(em; Pm) be
a finite sequence of linear sets contained in X and let

M = max {y/x \ (x, y) in U Py, (», y) Φ (0, 0)} .

Then the slope of the line joining any two points of L(CJ; PJ) is SM.
If zlf z2 in N are such that M ^ z± < z2, then the slope of the line
joining (zu zt) and (z2, z%) is z1 + z2> 2M > M. Therefore the set
L(Cj ; Pj), 1 S. 3 ^ w&, can contain at most one element of the set
{(s, z2) I £ ^ M}. Since {(«, z2)\z^ M) is an infinite subset of X, it fol-
lows that XΦ \J^L{Cj', Pj). Thus X is not semilinear.

From Theorem 6.1, Corollary 1 of Theorem 6.2, and Lemma 6.3
of [1] there follows

THEOREM 1.1. The family of semilinear sets of Nn is closed
with respect to union, intersection, and complementation. The pro-
jection of a semilinear set is semilinear.

We now consider formulas ( = statements) about nonnegative in-
tegers. If P is such a formula and has n ^ 1 free variables x19 •••,#*,
we also write it as P(xly •••,&»). The set of Presburger formulas,1

denoted by &, is the smallest class of formulas satisfying the following
five conditions:

(a) For given nonnegative integers ti9 t[, 0 ^ i ^ n,

is a formula in &>.
(b) If Pu P2 are in ^ , so is their conjunction Pt A P2.
(c) If Pu P2 are in 3?, so is their disjunction P1 V P2.
(d) If P is in ^, so is its negation — P.
(e) If P(xu •••,#») is in & and 1 ^ i ^ n, then the formula

(^Xi)P(xu -- ,xn) is in ^ .
A Presburger sentence is defined to be a Presburger formula with

no free variables. One of the main results is the following [2].

THEOREM 1.2. It is decidable whether an arbitrary Preburger
sentence is true.

REMARKS. (1) The formula

1 To be precise, this is the set of modified Presburger formulas. The original
Presburger formulas [4] were defined over all the integers.
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ίo + Σ *i»* ̂  *ί + Σ *fo

is regarded as a Presburger formula since it is equivalent to the Pres-
burger formula

Σ *Λ = *ί + Σ

(2) If P(a?!, •••,#,») is a Presburger formula, then the formula

(Xi)P(x19 • • - , & » )

is regarded as a Presburger formula since it is equivalent to

Similarly if P and Q are Presburger formulas, P=>Q is regarded as a
Presburger formula.

For w > 0, a set 4̂ is a Presburger set in Nn if

A = {(»!, , a?w) I P(Xi, ••-,&«) is true}

for some P(x19

 β , xn) in ^ . A Presburger set is a Presburger set
in Nn for some n.

It follows from (b), (c), and (d) that the family of Presburger
sets in Nn is closed under intersection, union, and complementation.
From (e), the projection of a Presburger set is a Presburger set. Our
interest in Presburger sets is due to the following result.

THEOREM 1.3. The family of Presburger sets of Nn is identical
with the family of semilinear sets of Nn. Furthermore, each des-
cription is effectively calculable from the other.

Proof. It is obvious that every linear set, thus every semilinear set,
in Nn is a Presburger set. To see the reverse, by Theorem 1.1 it
suffices to show that the set of nonnegative solutions of

(1) t0 + Σ Mi = to + Σ Mi
1 1

is semilinear. Let C be the set of minimal solutions in Nn of (1) and
let P be the set of minimal solutions in Nn — 0n2 of the associated
homogeneous equation

(2) φ M = φ M i .

Then C, P are finite (by the corollary of Lemma 6.1 of [1]) and effec-

2 We use 0n to denote (0, , 0) in Nn.
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tively calculable (by Lemma 6.5 of [1]). It follows from the method
of proof of Theorem 6.1 of [1] that the Presburger set defined by the
equation in (1) is {J cin0L(c; P). This gives the result.

2Φ Semilinear sets and languages. Let us recall the basic ideas
associated with context free languages. A grammar G is a 4-tuple
(V, Σ, Q,o) where V is a finite set, Σ is a subset of V, σ is an
element of V — Σ, and Q is a finite set of ordered pairs of the form
(?, w) with ζ in V — Σ and w a string over V. (ξ, w) in Q is denoted
by ζ —>w. For strings y, z over V, we write y ==> z if y — uξv, z =
uwv, and ξ~+w. We write y^>z if either ?/ = 2 or if there exists
a sequence of strings 20, •• ,sr> called a derivation of y^>zί such
that 2/ = #0, £r = ?/, and 2; => 2ί+1 for each i. The language generated
by G, denoted by L(G), is the set of strings over Σ, {w \ σ =£> w). A
context free language (over S) is a language L(G) generated by some
grammar G — (V, Σ, Q, σ). By a language we shall always mean a
context free language.

Let au -- ,an be distinct letters and let α* ••• αj denote the set
of all words w = aί1 α*%, 0 ^ iy for y = 1, , n. Let τ be the
Parikh mapping of α* α£ into ΛΓ% defined by

Clearly r is one-to-one. If Z £ α* αj is a language, then τ(Z) is
a semilinear subset of iVw [3]. We are interested in characterizing
those semilinear sets L S Nn such that τ~\L) is a language.

A subset X of iV% is said to be stratified if the following two
conditions are satisfied:

(a) Each element in X has at most two nonzero coordinates.
(b) There are no integers, i, j , k, m, with l^i<j<k<m^n

and x — (xlf , xn), xf — (x', •••,<) in X such that XiXjXkXm Φ 0. In
other words, no two elements X have nonzero coordinates which
"interlace."

LEMMA 2.1. If Z^af β α£ is α language, then τ(Z) can be
represented as a finite union of linear sets each of which has a
stratified set of periods.

Proof. We prove the lemma by induction on n. For n = 1 or 2
every subset of Nn is stratified, and the result is valid. Let n ^ 3
and assume the lemma holds for languages in αf α*_i. By Lemma
2.5 of [1] every language in αf α* is a finite union of sets of the
form
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L(D, E, F) = {aίuvai \ a{ in D, u in E, v in F}

where D, E, F are languages in α*αί, αf αj, αj α£ respectively,
and 1 < q < w. Hence it suffices to prove the result for such a set
UP, E, F).

Let τ': af α* —> Nq and τ": αj a* —• Nn~~q+1 be the appropriate
Parikh mappings. Let μ be the mapping of a*a« into Nn defined by
μ{a[oβn) — (£, 0, , 0, jf). By the induction hypothesis, τ'(E) is a finite
union of sets of the form L(c'; Pf) where c9 is in Nq and P' is a
stratified subset of Nq. Also by the induction hypothesis, τ"(F) is a
finite union of sets of the form L(c"; P") where c" is in JSfn~q+1 and
P " is a stratified subset of Nn~qArl. Since μ(Z>) is semilinear, μ{D)
is a finite union of sets of the form L(c; P) where c is in Nn and
every element of P has zero as the ith coordinate, 1 < i < n. Consequently
r(L(Z), J5/, ί7)) is a finite union of sets of the form

L{{c' x 0*-*) + (0*-1 x c") + c; (P' x O^UίO 9- 1 x P")UP) .

Since P', P " are stratified, so are P ' x 0n~q and O^1 x P" . Now
each element of P ' x 0n~q has its nonzero coordinates in the set {1, * , q},
each element of O9"1 x P " has its nonzero coordinates in the set
{g, •••,%}, and each element of P has its nonzero coordinates in the
set {l,n}. Therefore (P ; x O^lKO9-1 x P")UP is a stratified set.

We now prove the converse.

LEMMA 2.2. If the subset L of Nn is a finite union of linear
sets each of which has a stratified set of periods, then τ~\L) is a
language.

Proof. It suffices to prove the result for a set L — L(c; P) where
P is a stratified set. We do this by induction on n. If n = 1 or 2,
then each subset P of N or N2 is stratified. From the corollary to
Lemma 2.2 of [1], it follows that τ~\L{c\ P)) is a language if P is
finite.

Assume n > 2 and that the lemma is true for 1 ̂  m < n. We
prove the result for L(c; P) by induction on the number of periods in
P. If P is empty, then L(c; P) consists solely of c. Therefore
τ~\L(c\ P)) is finite and hence a language. Assume P is nonempty
and consider the following two cases.

Suppose P contains a period p whose first and nth coordinates pu pn

are both nonzero. Then Pt—P—{p\ is stratified and has fewer elements
than P. Therefore τ~\L{c\ P')) is a language. Let G' = (V, Σ, Q', σ')
be a grammar generating τ~\L(c; P')). Let G = (F, 27, Q, σ) where tf is
an element not in V\ V= V'\j{σ}, and Q = Q'U{tf^0"', σ
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Clearly L(G) = τ~\L(c; P)), so that τ~\L(c; P)) is a language.
Suppose that P contains no period having nonzero first and nth.

coordinates. If every period in P having a nonzero first coordinate
has all of its other coordinates zero, let q = 2. If there exists a
period in P having nonzero first and i t h coordinate with j > 1, let q
be the largest such j . Clearly 1 < q < n. From the way q is chosen
and the fact that P is stratified, it follows that every element in P
either has zero ith coordinate for all q < i ^ n or zero ith. coordinate
for all 1 ^ i < q. Let P ' be the set of those elements in P having
zero i th coordinate for each q < i g n and P " — P — P \ Let c —
(Ci, -- ,cΛ), c '= (d, •• ,c f f, 0, •••,()), and e" = (0, ••-, 0, c ί + 1, •••, cw).
Clearly c = c' + c" and

L(c; P) - L(c'; P') + L(c"; P"). 3

Let Π', Π" be the projections of Nn onto i\Γ?, Nn~q+1 defined by pro-
jecting to the first g, last n — q + 1 coordinates respectively. Let
τ': αf α* —> iVg and r": α* •••«*—• Nn~q+1 be the appropriate Parikh
mappings. Then

L(c'; P') = L(Π'(c'); Πr{P')) x 0""g

and L(c"; P") = 09"1 x L(Π"(c")\ Π"(P")) .

Therefore

τ-\L(c; P)) = [τ'

Since P is stratified, Π\P)' and /7"(P") are stratified subsets of Nq

and Nn~q+1 respectively. From the induction hypothesis,

are languages contained in α* α*, a* a* respectively. Since the
product of languages is a language, τ~\L(c; P)) is a language. Hence
the lemma.

On combining Lemmas 2.1 and 2.2 we obtain

THEOREM. 2.1. Given a subset L of Nn, τ~\L) is a language if
and only if L can be represented as a finite union of linear sets
each having a stratified set of periods.

We do not have a procedure for deciding whether a given semi-
linear subset L of Nn satisfies the condition of Theorem 2.1. The
following results are directed toward a decision procedure for the
special case when L is a linear subset of Nn.

3 For X, Y^N
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LEMMA 2.3. Let M = L{cx', Px) U U L(cr; Pr) be a semilinear
subset of Nn and let L(c; p) be a linear subset of Nn, with one period,
which meets M infinitely often. Then there exists 1 ̂  i ^ r and a
positive integer k such that kp is a sum of positive multiples of
some elements of P{.

Proof. Since L(c; p) meets M infinitely often, there exists 1 ̂  i ^ r
such that L(c; p) meets L ^ ; P{) infinitely often. Let P — 0n = {qu •••,?„}
and consider the set

X = {(«, ίi, , *•) in iVm+11 c + sp = c, + Σ ίtfi} .
1

By assumption, X is infinite. By Lemma 6.1 of [1] there exist distinct
elements (s, tl9 , tm) and (s', t{, , t'm) in X such that s ^ s' and
ίy ^ ί; for l^j^m. Then

(a' - 8)p = X (ί; - tό)qό .
1

Thus s < s' or ίy < ί' for some i . In either case, k = s' — s is positive
and &£> is a sum of positive multiples of some elements of Pi9

LEMMA 2.4. Let X be a stratified subset of Nn and Y a subset
of N71. If for every y in Y there exists x in X and a positive
integer k such that kx Ξ> y, then Y is stratified.

Proof. If kx ̂  y then y can have nonzero coordinates only where
x has nonzero coordinates. From this and the fact that X is stratified,
it follows that Y is stratified.

LEMMA 2.5. Let L be a linear subset of Nn with set of periods:
P and let U be a linear subset of L with stratified periods. Then
there exists a finite subset F of L and a stratified subset Y of P
such that U g L(F; Y) S L.

Proof. Let U = L(c; X) where X is a finite set of stratified periods.
Let Y be the set of all y in P having the property that there exists
x in X and a positive integer k such that kx ̂  y. By Lemma 2.4,
Y is stratified. For each x in X, since L(c; x) £ L it follows from
Lemma 2.3 that there is a positive integer k such that kx is a sum
of positive multiples of some elements of P. Note that these elements
of P are in Y. Let X — {xlt , xm} and for 1 ̂  i ^ m let k{ be a
positive integer such that k&i is a sum of positive multiples of some
elements of Y. Let F be the finite set
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F = {c + Σ t&i 10 ^ U <Σ
We complete the proof by showing that 1/ £ L(F; Γ) £ L. Now

each element of U is of the form c + ̂  s ^ . For each i there exists

rt and 0 <: U < fc« such that s{ = r ^ + ίi# Thus

c + J s ^ = c + J ί ^ i + ΣrJΰiXi

is in L(F; F). Hence the first inclusion holds. The second inclusion
holds from the fact that F £ L and Y £ P.

COROLLARY 1. A linear set L = L(c; P) is α ,/ϊnite union of
linear sets with stratified periods if and only if it is a finite union
of linear sets each of whose periods form a stratified subset of P.

Proof. If L = Lx U U A* where each Lt is a linear set with
stratified periods, it follows from Lemma 2.5 that there exist finite
subsets Flf * -,Fm of L and stratified subsets Ylf * ,Yn of P such
that L = UΠΌP7*; ¥<). The corollary follows from this and the fact
that, for 1 rg i g m, L(i^; 5̂ ) is a finite union of linear sets with
set of periods Yim

In case the periods are linearly independent (as vectors over the
rationale) we obtain the following result.

COROLLARY 2. Let L be a linear subset of Nn with a linearly
independent set of periods P. Then τ~1(L) is a language if and only
if P is stratified.

Proof. If P is stratified, it follows from Theorem 2.1 that τ-\L)
is a language. We prove the converse. If τ~\L) is a language, it
follows from Theorem 2.1 and Corollary 1 above that L = (jΓ^ί where
each Li is a linear set whose periods form a stratified subset of P.
Let L = L(c; P), with P = {p19 , p j . Then L(c; p,+ + pm)^L.
By Lemma 2.3 there exist 1 ̂  i ^ r and a positive integer k such that
MPi + + Pm) is a sum of positive multiples of some periods of L{.
Thus k{p1 + + pm) = tφ[ + . . . + t8p'a, where each p) is a period
of L{ and ί5 > 0. Since {p[, -- ,pr

s) £ {pj., , pm} = P and P is linearly
independent, {pi, , p's} = P and A; = ί̂  for each j . Since {p[9 , p's)
is stratified, so is P.

COROLLARY 3. Lei L = L(c; P) be α linear subset of Nn. If
τ~\L) is a language, then for every period p with more than two
nonzero coordinates there is a positive multiple kp which is a sum
of positive multiples of some stratified periods of L.
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Proof. By Corollary 1, L(c; P) = (J l^fe; Pi), each Pi a stratified
subset of P. By Lemma 2.3, there exists 1 ^ i ^ r and a positive
integer k such that kp is a sum of positive multiples of some elements
of P{.

EXAMPLES. (1) We give a simple proof of Theorem 3.2 of [l]#

That is, we show that if L £ {(£, i , fc)} 10 ̂  i ^ j , 0 ^ fc g i} and
LΓ)L((1,1, 1); (1, 1, 1)) is infinite, then τ~\L) is not a language. Sup-
pose the contrary, that is, suppose τ~\L) is a language. Then L =
Us = 1 L s where each L s is a linear set with stratified periods. Since
L((l, 1, 1); (1, 1, 1)) meets L infinitely often, by Lemma 2.3 there exists
s such that some positive multiple of (1, 1, 1) is a sum of positive
multiples of some nonzero periods pu "*,pm of Ls. Let

Vl = (Pll, Pl2, Pis), , Pm = (Ptnlf Vm2, Vmz) .

T h e n t h e r e e x i s t p o s i t i v e i n t e g e r s t,tl9

 9 ,tm s u c h t h a t £ ( 1 , 1 , 1 ) =
T h u s

Since L g {(ΐ,j, fc)|0 g i g j and 0 ̂ k ^ j} it readily follows that

Phi ^ P*2 a n d p λ 3 ^ p A 2

for 1 ^ h 5Ξ m. Hence j>Λ1 = ^Λ 2 = pλ3 for each h. Therefore ph —
(Phi, Ph2, Phz) has three nonzero coordinates, contradicting the condition
that {pu ' — ,pm} is stratified.

(2) Let L be the linear set in Nd with constant (0, 0, 0) and
periods (1, 1, 1), (1, 0, 0), (0, 2, 3). Since these periods are linearly in-
dependent but not stratified, it follows from Corollary 2 above that
τ~\L) is not a language.

(3) The set X = {aΨcW | 0 ̂  i, j} is not a language since τ{X) =
L((0, 0, 0, 0,); (1, 0, 1, 0), (0, 1, 0, 1)) whereas (1, 0, 1, 0), (0, 1, 0,1) are
linearly independent and not stratified.

We now use Corollary 1 to obtain a decision procedure for deter-
mining of a linear set L whether τ~\L) is a language.

THEOREM 2.2. It is decidable to determine of an arbitrary linear
set L whether τ~~ι(L) is a language.

Proof. By Theorem 2.1 we are reduced to showing that it is
decidable whether L is a finite union of linear sets each having
stratified periods. Let Su ",Sm be all the stratified subsets of
the periods of L. By Corollary 1, L is a finite union of linear
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sets with stratified periods if and only if there exist finite (possibly
empty) subsets F{ of L for 1 ^ i S m such that L = \J?L(Fϊ, S<).
Then F^\JmF, is finite. Since F^ L and St £ P, L = U m - W S«).
Hence, by Theorem 1.2, we need only show there is a Presburger
sentence whose truth is equivalent to the condition that there exists
a finite subset F of L such that L £ U m ^ ( ^ ; ^ ) .

By Theorem 1.3 there is a Presburger formula P(x) for L, where
x = (xu , xn). If Si consists of the elements

yi = (yii, ,vL), , 2/r(i) = d/ί(ί)i, , 2/J(«n)

let (^(s, x), where 2 = fe, * ,2Λ) be the Presburger formula

(3*0 (3ίr(ί)) A (xk = s* + Σ Wki)

Then Qi(z, x) is a Presburger formula with 2n free variables. The
corresponding Presburger set is the set of all 2^-tuples (z, x) such that
x is in L(z; Si). It follows that the Presburger sentence

[P(x) - (3 )̂ . . . Ozj[p(z) Λ Λ f e ^ M<) A V Q4(βf

is true if and only if L £ UΠΌF7; ^ ) for the finite set

Hence the result.
Our final result provides a condition for deciding for an arbitrary

semilinear set L whether τ~\L) contains an infinite language.

THEOREM 2.3. Given a semilinear subset L of Nn, τ~\L) contains
an infinite language if and only if whenever L is represented as a
finite union of linear sets one of them has a period with exactly
one or two nonzero coordinates.

Proof. If L(c; P) £ L where P contains an element p having
exactly one or two nonzero coordinates, then L(c; p) £ L. Therefore
τ~1(L(c; p)) £ τ~\L). Clearly τ~\L(c; p)) is infinite and, by Theorem
2.1, is a language. We prove the converse.

If τ~\L) contains an infinite language, it follows from Theorem
2.1 that L contains a set of the form L(c; p) where p has exactly one
or two nonzero coordinates. Given a representation of L as a union
of linear sets Lu •••, Lm, it follows from Lemma 2.3 that there exists
1 <̂  i ^ m such that some positive multiple of p is a sum of positive
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multiples of periods of Li% Then I,; has a period having exactly one
or two nonzero coordinates.

The problem of finding a decision procedure for determining of an
arbitrary semilinear set L whether τ~\L) is a language is open.
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