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NEW INFINITE CLASSES OF PERIODIC
JACOBI-PERRON ALGORITHMS

LEON BERNSTEIN

The question whether a system of n — 1 real algebraic
numbers (n = 2, 3, •) chosen from an algebraic field of degree
not higher than n9 yields periodicity by Jacobi's Algorithm is
still as open and challenging as hundred years ago. The
present paper gives an affirmative answer to this problem in
the following case: let K(w) be an algebraic number field
generated by w = (Dn — d: m)ί/n, where m, n, d, D are natural
numbers satisfying the conditions m ^ 1, n έ 3, d | D, 1 ^ d ^
D/2(n — 1). Then n — 1 numbers can be chosen from K(w),
so that their Jacobi Algorithm becomes purely periodic. The
length of the period equals n2 (or n, if d = m = 1). This is
the longest period of a periodic Jacobi Algorithm ever known.
In three corollaries the following special cases are investigated

w = (Dn— dψn , (r = 0,1, , n)

w = (Dn- drD)Vn , (r = 0,1, , n - 2)

w = (Dn — pd/m)1/71 . (n = pu, p a prime,
u = 1, 2, , m as before)

In all these three cases the Algorithm of Jacobi remains purely
periodic with length equal to n2.

The main tools in proving these results are the poly-
nomials

f.(w, D-Ϊ) = ±(n~s~1 + ty-KD - 1)* ,

F.(w, D) = ±(^n~S':1 + ly^D S (s = 1, , n - 1)

of which each is an inverse function of the other.

This paper reveals new infinite classes of Periodic Jacobi Algorithms,
adding more and wider specific cases to already existing results explored
by the author in his previous works. For any given real number α(0)

Euclid's Algorithm, namely

J ^ , (v = 0,1, - •)a & + , , α δ + ^ ,

where 6{0) = [a(v)] is the greatest integer not exceeding aiv\ leads up
to Ordinary Continued Fractions. This Algorithm was generalized by
Jacobi [l], and its theory masterfully developed by Perron [2] for any
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440 LEON BERNSTEIN

number of n — 1 real numbers (n ̂  3) in the following way.
Let ak

0) (k = 1, 2, , n — 1) be any set of n — 1 real numbers;
from this set (infinitely many) new sets ak

v) (v — 0,1, ) of n — 1
real numbers each are being formed by the recursion formula

n{v+l) _ I . Π<v+1) _ (n(v) __ h{vΛπ{v+1)

a l Γ- Γ — » & l — \ak Ok ) ( l ι

where again bk

v) = [αĵ ] is the greatest integer not exceeding a{

k

v). For
n = 2 Jacobi-Perron's Algorithm (henceforth denoted by JAPAL) is
Euclid's Algorithm, namely αίβ+1> = 1: (a{υ) - b[v)). The JAPAL is called
periodic, if there exist two nonnegative integers t, m such that

(2 ) α r w ) = ajf> , (fc = 1, 2, . ., n - 1; v = ί, t + 1, )

whereby the t lines

αί ^αί *, •• ,<2 1 (v = 0,l, . . . , ί - l )

are called the preperiod of the JAPAL, t its length, and the m lines

αί >, α^}, ••-,<!!, (v = ί, t + 1, , m + t - 1)

are called the period of the JAPAL, m its length; the sum m + t
is called the length of the JAPAL. For t = 0 the JAPAL is called
purely periodic. Whether or not there exist, for any n > 2, remarkable
classes of sets of n — 1 real numbers whose JAPAL becomes periodic,
could not be decided by Perron.

In eight previous papers [3] I succeeded to prove that the JAPAL
becomes periodic for certain sets of n — 1 Algebraic Irrationals of
degree n. Some specific results announced in my papers are the
following:

Let D, d, m, n be natural numbers such that

w ^ 3 ; m ^ l ; d\D D Ξ> dC (Ca positive constant)

and let w denote one of the following irrationals —

w = (Dn + d)Vn (Dn + d: m)1 : w (Dn + dkD)ln (Dn - d)ί:n ,

then the JAPAL of the n — 1 numbers

Wy W2, * « «, Wn~1

becomes periodic with the lengths 2n — 1; 2n — 1; 2?ι — 1; n~ + {n — I)2

respectively. Trying to enlarge the family of infinite algebraic fields
K(w) containing sets of n — 1 numbers whose JAPAL becomes periodic,
I naturally asked for the periodicity of (Dn - d: m)1:w, (Dn - dk)1:n
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(k = 0,1, , ri), (Dn - dkD)1:n (A; = 0,1, , n - 2) and succeeded to
establish it. The results are announced in this paper. My previous
results thus become a special case of (Dn — d: m)1:w (m = 1); but here
I use much more refined methods to prove periodicity.

Π Statement of the main theorem* In order to state the
main result of this paper it is advisable to introduce the following
new notations:

DEFINITION 1. A matrix of n rows and n — 1 columns of the form

( 3 )

A A ... A A

o, o, ..., o, l
o, o, ..., o, l

o, o, ...., o, l

will be called a fugue. The first row of the fugue will be called its
accumulator, and the numbers

the first, second, •••, n — 1st element of the fugue's accumulator.

DEFINITION 2. The meaning of a combined sigma-sign is given by
the formula

(4) Σ

We are now able to state

ί - l

ι = 0 Σ
i=t

THE MAIN THEOREM. Let m, n, d, D be natural numbers satisfy-
ing the following conditions

m ^ l ; n^3; d\D 1 ^ d ^ D :2(n - 1) .

Let us further denote

( 5 )

w = (Dn - d: m)ι' n ,

• In — 1 — s + i

i=0 \ i
f,(w, D-ϊ) =

then the JAPAL of the n — 1 numbers

ϊ>

1 For n — 2 we get Euclid's Algorithm leading up to the periodic Continued
fractions of a quadratic irrational. We shall demonstrate the validity of the Main
Theorem in this case, too.
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f^W, D - 1), f2(w, D - 1), , fn_λ{w, D - 1)

is purely periodic and its primitive length is n2. The period consists
of n fugues. The n — 1 elements of the accumulator of the first
fugue have the form

in — 1 — k + i
( 6 ) A 1 + Σ [

The accumulator of the sth fugue (s = 2, , n — 1) has the form:
the first n — s elements have the form

* in — 1 — k + i\
(6b) A* = - l + Σ . D'-' φ - 1)* (fc = l, . . . , w - β )

-o \ t /

the following s — 1 elements have the form

Λ_.+t=-i+ Σ (-i

The n — 1 elements of the accumulator of the nth fugue have the
form

_ (n-1
(6d) Λ

In the case of m = d = 1 the primitive length of the period is %.
The period consists here of one fugue, and the elements of its ac-
cumulator have the form (6).

In the quadratic case (n — 2) we have, according to the Main
Theorem, as can be easily calculated by the reader,

w = (D2 - d: m) 1 : 2 2d ^ D d \ D ,

the accumulator of the first fugue has the form

A - 2(Z> - 1)

the accumulator of the second fugue has the form

A1 = 2(mD : d - l ) ;

therefore we have the development in a periodic continued fraction:

(6e) (D'- - (d : m))1Λ + D - 1 = [2(D - 1), 1, 2(mZ>: d - 1), 1] .
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Illustration for (6e): D = 12; d = 3; m = 10,

1/143,7 + 11 = [22, 1, 78, 1] .

Two conclusions which follow directly from the Main Theorem are
the following corollaries:

COROLLARY 1. Let n, d, D be natural numbers satisfying the
following conditions:

n ^ 3 d \ D 1 ^ d ^ D : 2(n - 1) ,

and let denote

w = (Dn - dr)v'n , (r = 0, 1, , n)

s in — 1 — s + i\
(5a) f.(w, D-d) = d-sΣ[ . hi - ' φ - d)*

(8 = 1, . . . , ™ - l )

o/ ί/ie w — 1 numbers

A(w, D-d), f2(w, D - d), , Λ.Λw, D-d)

is purely periodic and its primitive length is n2. (the case d = 1 is
excluded). The period consists of n fugues. The n — 1 elements of
the accumulator of the first fugue have the form:

ίn—l — k+i
( 7 ) A l + d k Σ [

elements of the accumulator of the sth fugue (s — 2, 3, , n — 1)
λβ form: the first n — s elements have the form—

k in — 1 — k + i\
(7a) Ak=-l + d-kΣ>[ . b ' - ' φ - d ) ' ; (fc = 1, , n - β)

following s — 1 elements have the form:

t-un-s+t ^./s — 1 — ί + i\
i4w . .+ t=-l+ Σ (-l)M .

(7b) i=o/d»-r \ ^ /

(ί = 1,2, . . . , 8 - 1 )

t/ιe n — 1 elements of the accumulator of the nth fugue haveΓΛhe
form:

/w — 1 — ί + i\
(7c) +d-rΣ(-iη L

(ί = 1,2, • • . , > -
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COROLLARY 2. Let n, d, D be natural numbers satisfying the
following conditions:

n ^ 3 d \ D 2d(n - 1) ^ D g dn~r , (r = 0, . , n - 2)

and £e£ denote

w = (Dn - drD)1:n , (r = 0,1, , n - 2)

(5b) In — 1 — s + A

the JAPAL of the n — 1 numbers

Uw, D - d)f /f(w, D - d), , f^(wt D - 1)

is purely periodic and its primitive length is rι\ The period consists
of n fugues. The n — 1 elements of the accumulator of the first
fugue have the form:

fc in -— 1 — k+ i\

i \ t /

The n — 1 elements of the accumulator of the sth fugue have the
form: (s — 2, 3, , n — 1) ίfte ./ϊrs£ n — s elements have the form—

k in — 1 — k + i\
(8a) Ak= - l + d-*Σ ΰ w Φ - ^ , (fc=1,2,...,»-s).

«« \ * /
following s — 1 elements have the form

- t - l + ί\f n

( ί = l , 2 , • • - , « - 1 )

n — 1 elements of the accumulator of the nth fugue have the
form:

• = o / d : D \ ^ )\s — t + ιj\ d

I - 1

It is obvious that all the elements of the accumulators (6) to (8a)
are integers. We shall prove that the elements of the accumulators
(8b), (8c) are integers, too. To this end we have to prove that

n-r: D)(D : d)n-s-t-ί



NEW INFINITE CLASSES OF PERIODIC JACOBI-PERRON ALGORITHMS 445

are integers. Denoting n — s + t — i — u, we have 1 ^ u ^ n — 1;
further

Since d | D, we have to prove u — n+r^u — 1. But

u — n + r ^ u — n + n — 2 ~ u — 2 .

Ill* Auxiliary functions-notations and identities* The es-
sential tools used here to prove the Main Theorem and its Corollaries
are the following functions:

s In -— s — 1 + i\
f (w. D — 1) = Σ ]w8~τ(D — 1)*

( 9 ) «\ i )

(s = 1, , n - 1), /oO, J9 - 1) = 1 .

, In _ i _ s +
F.(w,D) = Σ*[

(10) t=o \ %
( β = l , . - , n - l ) , i?7

0(w)D) = l .

t-iin-8+t Is — t — 1 + i\
9ns t(WrD) — Σ ( — 1 ) Ί i^-β+ί-iί'w;, D)

(11) ' ί=0/m:d \ % )
/Q 9 Q •.. ΎI * f 1 9 ••• <? 1 ^
yo £i) Oy y 'v t v -*•> ^*> j o JLJ

For any polynomial P,(w, D) in w, Z) with integers c< as coefficients,
namely

(12) P,{w, D) = g cw-'D* (β = 1, , n - 1), P,(w, Z>) = 1

the following abbreviations will be used

(12a) P,(w,D) = Ps; (β = 1, • . - , » - 1 ; P , = 1) .

(12b) P,(D,D) = Pi; (β = lf . . , » - ! ; P; = l ) .

(β = l , . . . , n - l ; ( 1 'P 0 = 0 ) .

The following identities are essential for the proof of the Main Theorem
and its corollaries:

(13) f t ( , )

Proof of (13). We have from (9):
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fn — 1 — s + i\
) ~ υ-'Φ - 1)'

(13a) Fs=\^ \D'; (« = 0,1, •••, n - 1)

Proof of (13a). This is completely analogous to proof of (13).

(14) WFS = F._χ ( β = l , 2 , . - . , n - l ) .

Proof of (14). We have from (10)—

Fi = t i \ ~ 2 . + Λw'-'D* = tv + (n- 1)D

F,- Fι = w - D .

We thus have to prove

F8 - F8 = (w - D)F8_1 .

We have

s-i In — s + i\
(w - D)F8_1 = (w - 2>) Σ . \ws-1-iDi

Σ f n " s +

« in — 1 — s + A
(15) /. = Σ (-1)1 . )F.-i : (« = 0,1, , w - 1)
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Proof of (15). If we arrange the expression on the right hand of
the equation

-*

Σ (-i)f " * " s + %\ Σ (n ~ X ' S

»=o \ i I i- \ 3

in descending powers of w, we get

Now the identity holds:

n - s - 1 + j\ίn - s - 1

— 1 + ^)! = (^ — s — 1 + i)\i\
!(w - β - 1)!(< - j)\ il(n - s - 1)!j!(i -

n — s — 1 + A/ΐ^

In view of this identity we get

•-1 /% — 1 — s + i\
(16) (1)/8 = Σ ( - l ) Ί . IPUw (β = 1, 2f f Λ - 1)

ίo \ % I

Proof of (16). We have from (15):

— 1 — 8 + i\ In — 1

k + ί i r

In view of these two formulas and according to (14), we"get

(1)/. = 4 ^ ^ = Σ (-DΊ . )(F^{ - F._4):(Z> - w)
D — w <=o \ t /
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(17) (1)/8 -
 (1)/8-i = Λ - χ . (s = 1, 2,

Proo/ of (17). We have, on the basis of (16)

(18)

— 1 — s + i
F.-,-,

Σ
ί-i

• - 2

-Σ(-i)1
— s +• - 2

Σ ( )
«-* in — s + i
Σ ( i ) '

— s +

^ +
n — s + i

β-1

=0

71 — S + i

i

Proof of (18). This follows directly from (16), if we interprete
(1)0n-8,t as (gn-.8ft — 9n-u8) - (D — w). (It will be shown later that this
interpretation is in accordance with the general notation of a)P8.

(19) W9n-8,i - (1)Λ-8 = Λ-e+iM (β = 1, 2, , n - 1) .

Proof of (19). We have from (16), (18):

(D
yn-8,1
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(8 - 1 + ϊ\n-s-l

- Σ <-iW

(20)

^ + 1

o/«-β is — 1 + i\ „

= Σ (-l)Ί . Wn-s-i = flr-(.+l),l .
t=0/m:i \ ^ /

( 1 ) ^ - 8 , t + l — a)Qn-s,t = ff»-(»+l),*+l

(β = 2, , n - l ; t = 1,

Proof o/ (20). We have from (18):

- 1)

ί

=

 ύ / ^ + ί / ^ D * ' 8 - * - 2 + ΐ

- Σ_ (-i)r " , ' ' Ί*V*-κ—

/s - t - 2 + i

n-a+t (S — £ — 2 + i\

+ Σ (-D* . pτ»-.+ί_ί

— t — 1 + i

s — t — 2 + i
ί



450 LEON BERNSTEIN

S - t - 2 + i\

n~'+t

n-β+ί (S — t — 1 +

+ Σ (-1)'

(20a) Σ fl'n-l.+D.t-ί

Proo/ o/ (20a). We have from (20)

(D
9n-8,t 9n~a,q — Zi V υnsΛ-i f/Λ-βιί-t-1/

i=0
t-l-g

(20b) (1) —— -F

a
= l,2 f . . f n - l )

Proo/ o/ (20b). From (18) we derive:

a <=o

(Dyy
yo,t-i

m

— t + i

i

t-ι in — t — 1+ i

i

- i - 1 + ΐ

ΐ - 1

*-! 7^ — t + i

Γ ί-l-i — —ΓVt-1

α
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— y»-(ί+D,ί vS — Δ , o, , n — i ; .
D — w

Proof of (2Cte). We have from (18) and the definition of w

D — w D — w

Dn - (Dn - d: m)
yn-8f8-ι

3-2/71-2

«_1- Σ ( -
i 0 l d

— _Σi (."" l)*-ίn-l-< — 9n-(3+l),8

<20d) X'ΓdXD-t)1 =f-'-
Proof of (20d). We have from previous proofs and formulas

1 9 — 9 {1)Q

(m : d)(D — w) u~1 ' (m: d)(D — w) m; d

therefore

= — Σ (-1)^-^ = Σ (-
W i=0/m:i ι=0

(17a) ( 1 )/ s -
 (1>/g = Σ Λ-i-*. (1 ̂  g ^ * - 1)

Proof of (17a). We have from (17)

8—q—l 8—q—l

J a Jq = = Σ ' /«—• Jβ—i—l) == Σ Js—l-i

i=0 i=0

ί-1 Λ—s—g-1

(20e) α)gn-8,t ~ (1)Λ = ^- Λ -*- V.Σ ) Σ
i=0 t=0

Proo/ 0/ (20e). This follows immediately combining (17a), (19), (20a).
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IV. Inequalities. In this chapter we shall establish magnitude
relations between the auxiliary functions /„ F., gn^,,t. We first note
that

(21) D-l<w<D; (D - l)k < wk < D" . (k = 1, 2, •-, n - 1)

(21) follows directly from the definition of w. From (21) and the
definition of /, and F, follows further

2)

(8 = 1,2, . . . , Λ - 1 )

(23) ( l + — i - — ) " " 2 < 1,65 for 2(n - 1) ̂  D .

Proof of (23). Since D ̂  2d(n - 1), d ̂  1, we have D ̂  2(n - 1),
I> - 1 ̂  2(w - 1) - 1 > 2(« - 2). Therefore

n-2 / / I \2(n-2)\l:2

( ( 1 b ) )
< β l ! l = 1,64872-•• < 1,65.

(24) Λ ^ F4+1(JD - 1, P - 1) . ( i = 0 , 1 , • - . , * - 2 ) .

Proof of (24). We have to prove, following (13a):

fl + —3L.Y < JLzlφ -1),
V D-l/ ~ <+ 1

jD-lfci±4/l+ 1 Y.
9t — i \ D -~U

We prove α fortiori, since (i + 1): (n — i) is an increasing function,

but
n ~ 1

Z) - 1 ̂  2d(w - 1) - 1 ̂  2(» - 1) - 1 > 1,65
2

(24a) F t < F'+t

(s 0

Proo/ of (24a). It follows from (22), (24)

F,<F,< F,+1(D - 1, D - 1)
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so that

F, < Fa+1 < F,s2 < < Fe+t .

(24b) f' < f'+t '
(s = 0, " , n - 2; ί = 1, -•-,%- I; I ^ s + t ^ n - I) .

Proo/ of (24b). It follows from (22), (24)

f,<f,<F,< Fa+ι(D - 1, D - 1) = / i + 1(D - 1, Z» - 1)< / i + 1 .

(25) 2FM_2 < -±-FB_x .
a

Proof of (25). We have to prove
n-2 1 n-1

2 Σ ( i + l)wn-2^Dι < — 2vr-^D*
i=Q cί i=0

and prove α fortiori

n— 2 ^ 2ft! 3Λ Λ~1

i=0 j_) ί=0

1 ^JZ,1

We thus have to prove

TO—2 (Ύ) —— 1 Jvi/i Ti—1 n—2

w h i c h i s a l w a y s t r u e , s i n c e i + 1 ̂  n — 1, 0 < ( w — l ) ^ ; 7

V^bj / β ^ r 8_i . (s = l, Δ,

Proof of (26). We have from (15)

wf — F ,
J 8 •*• β—1

(.-D/2 / / n — s + 2i — 2\ /w — s + 2i — 1

- δ ( ( «_i Γ-«-( 2 i
/ Λ - 2\

— e\ I , (e = 0, when s is odd, = 1 otherwise)
\s - 1/

so that (1)/β ^ ί7,-!, if we can prove that the expression under the
sigma sign is not negative. We shall therefore prove

or
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and prove a fortiori

s - 2i)y 2* \s - 2* -
— s + 2 i — I n

We thus have to prove

V-2*
~ 2ΐ

or

_ 1 y-2i ^ (n - g + 2i - l)(s - Σi)^.,^,!
; ~ 2i(n - β + 2* + 1)

or

But from D ^ 2d(w — 1) we have

D 1 > J L z i L i 65 > w - g + 2i - 1 . s - 2t

(27) (1)gM_,(t < (m : d)i? f_+ l_1. (β = 2, 3, , n; ί = 1, 2, , β - 1)

Proof of (27). We have from (18) for t = 2r + 1

Fn-.+t-n ~
I

- t + 2i - 2>

We shall now prove that the expressions under both the sigma signs
are nonnegative, so that {1)gn-8,t < (m: (Z)27T

n_t+ί_1. We have to prove

or

2^
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We shall prove a fortiori

— t + 2^/

( n

2i \8 - t + 2i
s - t + 2i - 1

We have to prove

8 - t + 2i) 2i \s - t + 2i •

or

s — t + 2i — 1 n — s + t — 2i
I J ~ J L - s - t + 2i + l 2ί

which follows immediately from 2(n — 1) — l ^ D — 1 and the upper
and lower bounds of s, t, as at the end of the previous proof.

For t = 2r + 2 we have

.-r~
« - 2\ _ Is - ί + 2* - 1

+
i=2r+3

so that in order to prove (27) in this case of t = 2r + 2 we have only
to add the proof of

Since m ^ 1, we prove α fortiori

or
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We prove a fortiori

t \8

or

τ\ i ^ s ~ l n — s

"8 + 1 t

which follows immediately from D — 1 ̂  2d(n — 1) — 1 > d(n — 2) 1,65.

(28) g%_.,t < (m : d)Fn^t . (s = 2, 3, . ., n; t = 1, 2, . , s - 1) .

Proof of (28). This is completely analogous to proof of (27).

(29) [/.]= - 1 + / . . (β = l ,2 , . . . ,Λ- l ) .

Proof of (29). We have to prove

(A) - 1 + / . < / . ; (B) / . < / . .

To prove (A) we have to show that

/ , - / . < ! , or, dividing by D - w > 0 ,

<«/. < ( m :

From (25), (26) we have

(1)/8 ^ F.-χ ^ *V-2 < ( m :

(B) follows from (22). Thus (29) is proved.

(30) \gn_.,t] = - 1 + £._.,« . (β = 2, . . , n; t = 1, ...., s - 1)

Proof of (30). We have to prove

(A) - 1 + gn_Λ9t < gn_8,t (B) gn_99t < g^9t .

To prove (A) we have to show

ff—,« - ff—.,* < 1 , or, dividing by D - w ,

But from (27) we have

(1)ff-.., < (w : ^ 2 ^ . + . - ! ^ (m : d)Fn_2 < (m :

To prove (B) we have to show, after dividing by D — w

(1)flr_..t > 0 .
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But for s < n

(l)π > d)π {l)n n \ Λ .

\JnsΛ == yn—s,t ί/w—s,ί—1 — Un—(s + l),t <^ υ i

and for s = n

{1)go,t ^ {1)9o,t - {1)9o,t-i - ( m : d)ft_t > 0 ,

(that the expressions gn-8,t are positive entities will become clear^later,
while carrying out the JAPAL for the f{).

Proof of (31). It was shown that the denominator is positive.
We therefore have, to prove, after dividing by D — w

{l)fi - (1)/i > 0 ,

which follows directly from (17a).

(32) fS^Λ < λ " U = 0> 1? '''' S "" 2 ; S = 2' 3) '" •' n " 1}

Proo/ o/ (32). We have to show

(D — w)fj < f8 — /8 + 1 , or, dividing by D - w ,

But

Λ + {1)fa < /.-, + i^-i < ̂ .-3 + ^.- . < 2Fn_2 < (m :

(33) 1 < fi-J ~ § ~* + X < 2 . (i = 1, , * - 1) .
7i — /i + 1

Proof of (33). We have to prove, since the left hand inequality
was proved in (31)

Λ-x - Λ-x + 1 < 2(/, - /,) + 2 ,

or carrying over and dividing m by Z) — w

But

£* * J i J i—1 = ^ * J i = £*•*• n—2 " ^ -. •* n—Ί

ΰn-st Qn-sΛ ~^ 1, ^ 1

(34) Λ-/. + 1

(8 = 2, 3, . . . , n ; t = 1, 2, •••, β - 1; 9 = 1, 2, ••., n - s)
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Proof of (34). We have to prove

0-..« - ff-..* + K Λ - Λ + 1 ,

or, dividing by D — w>

yn-8>t Jq s> v ,

which follows directly from (20e).

(35) <
ffn- .i — 9ns,j + 1

Proof of (35). We have to prove

or, after carrying over and dividing by D — w

which follows directly from (20a).

(36) 1 < fn~* ~ [»-' + 1 ^ < 2 . (s = 2, 3, . . , n) .
9n-s,l - 9n-s,l + 1

Proof of (36). We have to prove

(A) ffM.1-&M.i + l < / - . - / - . + l,

(B) Λ_, - Λ-. + K 2(^_8)1 - £Λ_β,α) + 2 .

To prove (A) we have to show, after carrying over and dividing by
D - w

Un—β,l Jn~8 ^ υ 9

But from (19) we have

(1)0-..i - ( 1 ) / - . = g-(.+i).i , for s < n .

For 71 = s we have
( 1 W ~ (1)0o,o = (m : d)/0 > 1 .

To prove (B) we have to show, after carrying over and dividing
by D — w

But

2 (1>ftl-.,1 -
 (1)Λ-β ^ 2.(1>flrMil < 2F._. ̂  2 F . . t < (m : dJF, . , .

φ - w)fr^ ^ Ί

( 3 7 ) 0 Λ _ 8 , t - ^_ 8 , f + 1

( r = l , 2 , . . . , n - β ; β = 2 f 3 , . . . , n - l ; ί = l , 2 f . . . , 8 - 1 ) .

2 While carrying out the JAPAL in the following chapter, it will become clear
that the numerator and denominator are positive entities.
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Proof of (37). We have to prove

(D - w)fr_, < gn_8,t - gn_8tt + 1 ,

or, after carrying over and dividing by D — w

{ί)9n-s,t + fr-i < (m : d)Fn_x ,

or a fortiori

wgn-8ft + / U < ^_ 8 + ί _ 1 + Fr_x < 2Fn_2 < (m :

1 < 9n—8*t 9ns,t

(38) flrw_ffί+1 - gn-.tt

Proof of (38). We have to prove

(A) gn_.,t - gn_3Λ + 1 > flrn-.,t+i ~ 0»-.,t+i + 1 ,

(B) gn-s,t ~ Su—t + K 2(flfn.β>ί+1 ~ ^ _ 5 > ί + D + 2 .

To prove (A) we have to show, after carrying over and dividing
by D — w

which follows from

{1)Qn-s,t + l - {1)9n-S,t = 9n-(s + l),t + l > 0

for s ^ n — 1. For s = ̂  the proof is exactly as before.
To prove (B) 'we have to show, after carrying over and dividing

by D — w

2 ( 1 )^_ s, ί + 1 -
 wgn-s,t < (m:

which follows from

< 2 F M + ί ^ 2Fn_2 ̂  (m :

V. The JAPAL of the f19 /2, , fn_^ We shall now carry out
the JAPAL of the numbers fly /2, , fn_x and thus complete the proof
of the Main Theorem. To this end I shall introduce still a few more
new conceptions.

DEFINITION 4. The set of n — 1 numbers af] (i = 1, , n — 1;
v = 0, 1, •••) shall be called the vth generator of the JAPAL, the
number a^ its ith element; the set of n — 1 numbers
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(i, v as before) shall be called the i th genus of the JAPAL, blv) its
ith element. The key to the final proof of the Main Theorem now
rests with the

LEMMA. Let the n — 1 elements of the vth generator fulfill the
following conditions:

(A) αl*> = P t (w, D) Px(w, D) = w + cJD P0(w, D) = P0(w, D) = 1

(B) [αί >]= - 1 + ί M f l ) .
(i = 1, 2, , n — 1; Cj α nonnegative integer)

(C) 0 < P P + *ff < 1
(ί = 1, , n - 2; A? = 1, , rc - 2; ί + k ^ n - 1)

(39) 0 < & - »>((1>P1-* - ( 1 ) P - > < 1
-Pi —- P t + 1

,«; t = 2,3,

(ί = l, .1 < f <2.
-t ( — ft + 1

ί/ie ^ genera

bίΌ+k\ b{

2

υ+k\ , 6i!i*> (fc = 0,1, , n - 1)

form a fugue, and the elements of the v + nth generator, namely
the a[υ+n) (i = 1, 2, , n — 1) have the form

α (* + Λ ) = u ) P . + i _ d ) P i . (i = 1, . . . , n - 2)

(40) ^ ( v + n ) _ P , , 1 - P , , , + 1
α 1 ~

Proof of the lemma. In view of (39) (A), (B) and following
formula (1) the elements of the v + 1st generator have the form

(40a)

— , [i - l, , n
l

. - Pi +

Since the elements of the v + 1st generator fulfill the conditions (39)
(C), the elements of the v 4- 1st genus have the form

(40b) b{r1} = 0 • (i = 1, 2, , n - 2) δίίS1' = 1 .

On the basis of (40a), (40b) and reminding from (39) that Pί- P1 =

(D - w) - (D - w){wP1 - U)P0) we obtain, following (1), for the n - 1
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elements of the v + 2nd generator

α ( * l 2 . . . n - 3 )

(40c)

P 2 -P 2 + 1 '

D ~ W)( P\ ~~ *

*(»+2) * 1 -fj

" " p 2 - p 2

Now the elements α^+2) (i = 1, 2, , n — 1) again satisfy conditions
(39) (C), and therefore the elements of the v + 2nd genus have the
form

(40d) bϊΌ+2) = 0 (i = 1, . . . , n - 2) 6ivΛ2) = 1 .

In view of (40c), (40d) and (1) the elements of the v + 3rd generator
have the form

p | + X (< = 1, 2, . . . , n - 4)
Γ3 — JΓ3 + 1

(0+3) _ ( D

P3 - P3 + 1

α< ?> = fi ~ P» + 1 .

Continuing these considerations one arrives quite easily and by induc-
tion at the conclusion that the v + ίth generator takes the form

(v+t)
a t p _^ p + 1 '

(4M) aί,,U_l=φ'-f"'Pj-γ,-i , tf = ! . • • • . « - I )
+ 1

and that the n — 1 elements of the v + ίth genus have the form

(40g) b^ = 0 (i = l , . . . , n - 2 ) 6£U« = 1 .

Following the formulas (40f), (40g) and (1) we obtain that the n — 1
elements of the v + n — 1st generator have the form

„,,+-, = α > - . x φ . - " ' f , - ) , ( i = 1 , . . . , « _ 2 ,
(40h) ^-.. .-i ' .-.+ l

α"-1 ~ -p—ZΓβ—ZT '
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and that, on ground of (39) (C) the elements of the v 4- n — 1st
genus have the form

(40i) Vr*-l) = 0 (t = 1, 2, , n - 2) b*8-» = 1 .

Thus the n genera

6ί +ί>, &<•+'>, , δί#> , (j = 0,1, , n - 1)

indeed form a fugue as was stated in the lemma. Now we have from
(40h)

( 4 0 j ) a ^ - , = (D - n»(»>P, - <»Po) = ^ j v

so that on the basis of (40h), (40i), (40j) we receive for the n — 1
elements of the v + nth generator

α(«+n) = (l)p<+i __ (l)p. ^ (ΐ = 1, 2, , Λ - 2)

(40k) aiv+n) = P ^ + J U + 1
n ' D — w

By this the lemma is completely proved.

We are now able to prove the main Theorem quite easily in the
following steps:
(1) Let be

(41) P«(if>, D) = Λ(t0, D) = αί0^ . (< = 1, 2, . . . , n - 1) .

Following (29), (31), (32), (33) the functions fζ (ί = 1, , n — 1) indeed
fulfill the conditions (39) (A), (B), (C). Therefore, following the lemma,
we get for the n + 1st generator, which is the first generator of the
second fugue of the JAPAL

αiΛ) = (1)/ i+1 - (1)/i , (i = 1, 2, , n - 2)

D — w

so that on the ground of

D — w D — w
Λ-2

= (m : J ^ Σ
i=0

0/%-l
»=0/m:d

and on the basis of (17) we have for the n — 1 elements of the first
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generator of the second fugue of the JAPAL

(41a) αί"> = fti (i = 1, 2, • - •, n - 2) <"Λ = gn_2<ι .

(2) Let

(41b) P^w, D) = ft; (i = 1, 2, , n - 2) Pn_{w, D) = gn_ΐΛ .

Following the formulas (29) to (37) the functions of (41b) fulfill the

conditions (39), and therefore the elements of the first generator of

the third fugue have the form

α<2»> = <»/<+1 - 'V, (i = 1, 2, . , w - 3)
(42)

(2n) (l)
i r 2 —

.(2Λ) 9n-2>l 9w-2,1 " t " •*•

^^D — w

Following the formulas (17), (19), (20c) we get for the functions (42)

(42a) \\~~ ' „, ( i - ,2, . . . , Λ - )

In the same way we get from (42a) that the n — 1 elements of the

first generator of the fourth fugue have the form

aΐn) =A; (i = 1, 2, , n - 4) αi3^ = gn^Λ

Continuing this process of the JAPAL we get from (43) that the

elements of the first generator of the sth fugue have the form (s =

2 , 3 , . . ,n)

(44) ί(.-i, , _ _ _ ij

From (44) we finally deduce, for w = s, that the elements of the first

generator of the wth fugue have the form

(45) aϊ«~™ = gQ,t . (ί = 1, 2, , n - 1) .

But we have from (11)

o/i in — 2 + i\
0-..i = ft.i = Σ (-l)Ί . )F1_i

i=0lm:d \ % I

= (m: d)Fx - (n - 1)FO = (m :

so that

ffo,i - ffo i = (m: d)(Fx - ί7,) = (m : d ) φ ~ w) .

With this and on the basis of the lemma, we get from (45) that the
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elements of the first generator of t h e n + 1st fugue have t h e form

aϊn2) = ((1)<7o,ί+i - ( 1 W)(™ id); (i = 1, . . . , n - 2)

(46) α ( w 2 ) __ ffp^-x -- <}θ,n-i + 1

*~1 (m : d)(D. - w) '

Now according to (20b), (20d) we have

(46a) af> = /, (i = 1, 2, . ., n - 2) α£ίϊ = / _ , .

From (41) and (46a) we have

(47) a^ = aΐ» , (< = 1, 2, . . , n - 1)

so that the n — 1 elements of the first generator of the first fugue
are identical with the n — 1 elements of the first generator of the
n + 1st fugue. Thus (47) shows that the JAPAL of the /< (i=
1, 2, •••, w — 1) is purely periodic with the length w2 (w fugues), as
stated by the Main Theorem.

Now since

(48) A = ± IU ~ X T S + *W-*φ - l)ί . 0 = 1, , n - 1)
; o V i /

t-l/n-8 + t (S — ί + %\ -

.̂-..«= Σ (-l)Ί p
i=0/m:d

ί-i/n-β+ί Is — t -\- i\l n

(48a) = Σ (-DM . _
i=0/m:d \ t y\s — ί + ^

(8 = 2 , 3 , . . . , ?ι ί = 1 , 2 , . . . , 8 - 1 ) ,

and since we have for the elements of the various genera of the JAPAL
either

- 1 + fi or - 1 + gn_gtt

the pattern of the accumulators of the n fugues of the JAPAL as
indicated in the formulas (6) to (6d) becomes immediately obvious. If
m — d = 1 we have

We therefore get from (41a) that in this case the elements of the
first generator of the second fugue have the form

so that here



NEW INFINITE CLASSES OF PERIODIC JACOBI-PERRON ALGORITHMS 465

(48b) αΓ} = <" , (i = 1, 2, •. •, n - 1)

as stated in the Main Theorem, which, through this final remark, is
completely proved.

Proof of Corollary 1. We make the following substitutions in

w — φn __ & . my .n . Let T, t be natural numbers such that t \ T,
t ^ 1, let denote

(49) D=T:t; tf = 1 m = tn~k . (k = 0,1, , n) .

Following the conditions of the Main Theorem, we have here

l g t ^ Γ : 2 ( n - l ) .

Further iv takes the form

(49a) w^W:t W= (T* - tk)Un .

The functions /3, F3, gn_s,t take the form

/. = ί-Σ . }W-*(T - ί)' (« = 1, . . . , n - 1)
i=o \ ^ /

(49b) Fs = ί~3 Σ Γ ~ 7 δ ^) PΓ -'T* (s = 1, , n - 1)

(s = 2, 3, , n u = 1, 2, , s — 1) .

If we substitute again in (49a), (49b)

(49c) D for T d for t; w for W,

we get from the Main Theorem, that the JAPAL of the n — 1 numbers

(n-l-s + ϊ\ . . _ _ __,
— or)1-1*

takes the form as indicated in Corollary 1.

Proof of Corollary 2. Here we make the following substitutions
in w. Let T, t be natural numbers, ί | Γ; let

(50) £ > = T : ί ; d = l ; m = t*~r: T . (r = 0, 1, •-, w - 2) .

The reader should note that the condition that m is a natural
number is necessary only for the purpose that the elements of the
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accumulators in (6c), (6d) be integers. For the proof of the Main
Theorem we made use only of the fact that m ^ 1. The elements of
the accumulators in (6c), (6d) may be integers even if m is not an
integer, as was proved at the end of Chapter II. From 1 ^ m = tn~r: Γ,
we derive

(50a) T ^ tn~r ,

and from 1 g D : 2d(n - 1) and (50a)

(50b) 2t(n - 1) S T ^ tn~r t ^ (2(n - l))*< -*-i> .

From t I T and (50a) we derive the condition of (50), namely r =
0,1, , n — 2. For r = n — 2 we have Γ = ί2. w takes the form

(50c) w = TF: t W= (Tn - fΓ) 1 : . (r = 0, , n - 2) .

If we again substitute

(50d) D for T d for t w for TF

and follow the proof of Corollary 1, the proof of Corollary 2 will be
completed.

COROLLARY 3. Let d, D, u, m be natural numbers and p a prime
number such that

(51) d\D u,m^l; dp ^ D : 2(pu - 1) ,

and let denote

(52)

* -pd:m)p~

n — 1 — s + i

JAPAL of the n — 1 numbers

Uw, D - 1), / 2 (^, D - 1), . , /;,._„ (u;f D - 1)

is purely periodic and its primitive length is p2u. The period
consists of pu fugues, each fugue being a matrix of pu rows and
pu — 1 columns. The accumulators of the fugues have the form as
those in the Main Theorem, namely (6) to (6d), where d is sub-
stituted by pd and n by pu.

Proof of Corollary 3. All we have to prove is to show that all
those integers which appear in the accumulators and are multiples of
d are also multiples of p. This concerns all the numbers
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(52a) ( 1)%[ i / V β - ί
(i = O,i, . . . , t - l ; ί = l , 2 , . . . , 8 - 1 ; β = 2 , 3 , . . . , p )

where the decisive point is the relation

(KOVΛ 1 < o _ / 4 _ / / < / n M — 1

But since, as is well known,

(52c) p\(ζ\ for tt=l,2,.. k = 1, 2, . . . , p - 1

it follows from (52c) in view of (52b) that the numbers in (52a) are
all multiples of p.

We leave it to the reader to prove the interesting fact, that each
element of all the accumulators (6) to (6d) appearing in the Main
Theorem are multiples of p, if n = pu (p prime, u = 1, 2, •)

VI* Illustrations* (1) To illustrate the Main Theorem let us
take n = 5. Then the Main Theorem would sound:

Let d, D, m be natural numbers such that

Let

w = φ δ - d : m)1:δ ,

/. = Σ ί 4 - 8 + V-(D-l) . (a=l,2,3,4).

Then the JAPAL of the 4 numbers

w + 4 φ - 1) w2 + Sw(D - 1) + β φ - I)2

w3 + 2w\D - 1) + 3w(Z) - I)2 + A(D - I)3

w4 + w\D - 1) + ^ 2 φ - I)2 + w(D - I)3 + (D - I)4

is purely periodic and its primitive length is 25. The period consists
of five fugues, and the accumulators of these fugues have the form:

First fugue

5(D - 1) 5(D - 1)(2D - 1) 5(Z> - 1)(2£>2 - 2D + 1)

5D(D - 1)(Z>2 - 2? + 1)

Second fugue
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5(D - 1) 5(D - 1)(2D - 1) 5(D - 1)(2Z>2 - 2D + 1)

d

Third fugue

5(D - 1) 5(D - 1)(2D - 1) SOI2m^ - 4Z)2 + ZD - ί)
V d /

5Dίm^_φ _ 2) + 2D - ί)

Fourth fugue

- ZD + l ) δ( 2 m I Γ " (£> - 2)) + 15D - 5 ,

2) - Is)

i/itft. fugue

(2Z)--3) + l ) 5 ^ ( ( 2 £ 2 - 4D + 3) - l )

5mD φ 3 _ 2D2 + 2Z) ~ 1) .
d

In the case of n = 5, m = d = l, the JAPAL of the 4 numbers

/. = Σ ί 4 " S + %)w -*{D - 1){ (β = 1, 2, 3, 4) w = φ 5 - 1)*

is purely periodic and its primitive length is 5. It consists of one
fugue, the accumulator of which has the form

5(D - 1) 5(D - 1)(2D - 1) 5(D ~ 1)(2D2 - 2D + 1)

To illustrate Corollary 3 we shall take p = 2; u = 2. Then Corol-
lary 3 would sound:

Let d, i? be natural numbers such that d\D, d ̂  D: 12 and let
w = (D4 — 2d); then the JAPAL of the three numbers

w + 3(D - 1) w2 + 2w(2? - 1) + 3(D - I)2

wz + w\D - 1) + w(Z> - I)2 + (D- I)3

is purely periodic and its primitive length is 16. The period consists
of four fugues, the accumulators of which have the form
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First fugue

4(2? - 1) 2(2) - 1)(32? - 1) 2(2) - 1)(22?2 - 2? + 1)

Second fugue

4(2) - 1) 2(2? - 1)(32) - 1) ii^L _ 32)2 + 22) - l)

Third fugue

4 φ - l) ; j*22©L - 82) + 2 ^L{2D - 3) + 2(22? - 1)
α d

Fourth fugue

JmD_ _ 2 \ 22£(3Z> _ 4) + 2 ™£-(22?2 - 32? + 2) - 2 .
V d / d d
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