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NILPOTENCE OF THE COMMUTATOR SUBGROUP
IN GROUPS ADMITTING FIXED POINT

FREE OPERATOR GROUPS

ERNEST E. SHULT

Let V be a group of operators acting in fixed point free
manner on a group G and suppose V has order relatively prime
to I G I. Work of several authors has shown that if V is cyclic
of prime order or has order four, G' is nilpotent. In this paper
it is proved that G' is nilpotent if V is non-abelian of order
six, but that G' need not be nilpotent for any further groups
other than those just mentioned. A side result is that G has
nilpotent length at most 2 when V is non-abelian of order pq,
p and q primes (non-Fermat, if \G\ is even).

A fundamental theorem of Thompson [7] states that if G is a
group admitting a fixed free automorphism of prime order, then G is
nilpotent. It appears to be well known that if, in this theorem, the
group of prime order is replaced by any group of automorphisms of
composite order acting in fixed point free manner on G, one can no
longer conclude that G is nilpotent. (For the sake of completeness,
this fact is proved at the end of § 1.) However, one can frequently
draw weaker conclusions concerning G in these cases. For example,
D. Gorenstein and I. N. Herstein [4] proved that a group, G, which
admits a fixed point free automorphism of order four, has nilpotent
length at most two. S. Bauman [1] in 1961 obtained a similar result
for the case that the fixed point free operator group was the four-
group. Other more general results giving bounds for the nilpotent
length of a solvable group, G, admitting various fixed point free oper-
ator groups, V, of order prime to | G | can be found in Hoffman [5],
Thompson [8] and Shult [6]. In summarizing these results we remark
only that the bounds are best possible when V is abelian and subject
to a certain restriction on the prime divisors of its order (a restriction
which vanishes when | F | and \G\ are both odd), but that the bounds
are very large otherwise.

In the case that V has order 4, something rather special obtains.
Not only does G have nilpotent length 2, but moreover G has a nilpotent
commutator subgroup. These findings raise the following question: Let
G admit a fixed point free group of operators, V, of order prime to | G |.
For what groups, V, does this imply nilpotence of the commutator sub-
group? From the above-mentioned results of Thompson, Gorenstein
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and Herstein, and Bauman, this situation obtains whenever V is cyclic
of prime order, or has order four. In this paper, it is shown that G'
is also nilpotent when V is S3, the symmetric group of degree three,,
but that this implication does not hold for any further groups, V.

In order to address the general question concerning which fixed
point free operator groups, V, yield the nilpotence of G', it would
seem imperative that one have available general information concern-
ing groups admitting fixed point free groups of operators, particularly
information concerning nilpotent length 2. Information of this type
can be obtained for the special case that V is abelian (Shult [6]), but
so far only bounds on nilpotent length which exceed 5 are available
when V is non-abelian (Thompson [8]). In the second section of this
paper we produce a special result for the case that V is non-abelian
of order pq, p and q primes. Here, if G admits V as a fixed point
free operator group, G has nilpotent length at most 2, provided nei-
ther p nor q are Fermat primes when G is even. Although this meagre
result barely scratches the surface for the case that V is non-abelian,
it turns out to be sufficient to answer the central question of this paper:
when is Gr necessarily nilpotent? In § 2, it is proved that G' is nilpotent
when V — S3. Unlike proofs for the case V has order four, this proof
does not merely hinge on the fact that a group fixed point free under
an automorphism of order two is abelian. Rather, the proof asserts
that a group which admits a fixed point free automorphism of order
three in a very special way (a special case of condition (3) of (*) in
Theorem 1) is abelian. The final section merely consists in showing
the existence of groups G, fixed point free under V, for which Gf is
not nilpotent whenever V is not cyclic of prime order, not of order
four and not S3.

1* Technical preliminaries* The purpose of this section is to
standardize notation and to list a few preliminary results which are
used repeatedly in the arguments in the main sections of the paper.
Throughout all groups considered are finite and E denotes the identity
group. The symbol Oπ(G) denotes the maximal normal 7r-subgroup of
G, where π is a fixed collection of primes.

If V is a group of operators acting on a group, G, the following
subgroups are distinguished:

Gv = {g: geG, v(g) = g for all v e V}

(V,G) = the subgroup generated by {v(g)g~1: g e G, v e V}

V is said to act fixed point free on G if Gv = E. If N is a normal
F-invariant subgroup of G, V will also be regarded as a group of oper-
ators acting on N and G/N. The following two lemmas are obvious.
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LEMMA 1.1. (a ) (V,G) is always normal in G.
(b) If W < V, Gw and (W, G) are both V-invariant.

LEMMA 1.2. If N is a normal V-invariant subgroup of G, then
(a) (G/N)r = G/N if and only if (V,G)QN
(b) if V is fixed point free on G/N, Gv S N.

From part (b) it can be seen that if V is fixed point free on both
GJN and N, then V is fixed point free on G.

The following lemma is essentially a special case of a result of
Glauberman [3].

LEMMA 1.3. Let V and G have relatively prime orders and let
N be normal and V-invariant. Then

(a ) G = Gr(V,G)
(b) (G/N)r = GvN/N.

Proof. If the coset xN is fixed by V, the theorem of Glauberman
asserts that xN — yN for some yeGv, whence (b). (a) follows from
(b) upon setting (V,G) — N, and using Lemma 1.1 (a) and Lemma
1.2 (a).

Theorem 1 of § 2 requires a technical theorem which is a special
case of Theorem 4.1 proved in [6]:

THEOREM (A). Let U be cyclic of prime order, p, and suppose
U is a group of automorphisms acting on a solvable group G of order
relatively prime to p. Let H = GU be the semidirect product and
suppose A is a faithful indecomposable KH-module, where K is any
field whose characteristic is not p. Then if U acts in fixed point
free manner on the module A, U centralizes G provided (i) Or(G) = E
when the characteristic of K is r, and (ii) p is not a Fermat prime
when \G\ is even.

We say that a group theoretic property, P, is residually complete
if for any group G and any collection of two or more normal sub-
groups JVlf , Ns intersecting at E, the fact that G/Nt has property
P for i = 1, , s implies G has property P. In short, P is residually
complete if the collection of finite P-groups is closed under taking
subdirect products. It is easy to show that (a) having nilpotent
commutator subgroup and (b) having nilpotent length ^ k, are re-
sidually complete group theoretic properties, and these facts are assumed
throughout the remainder of the paper.

We now settle in the negative the question whether there are
groups, V, other than those which are cyclic of prime order, which
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imply the nilpotence of groups, (?, admitting V as a fixed point free
group of automorphisms.

THEOREM. Suppose V is a group of composite order. Then there
exists a non-nilpotent group, G, admitting V as a fixed point free
group of operators.

Proof. Let T be a proper subgroup of V and suppose | T | is
composite. Then by induction there exists a nonnilpotent group, G19

which admits T as a fixed point free group of automorphisms. Set

V = xxT + x2T + - + xkT with xλT = T

and let G be a sum of k isomorphic copies of Gu so G — Gλ x x Gk.
The action of V on G is defined by letting V permute the components,
G%1 as wholes, with T being the subgroup leaving G1 invariant, and
Gtι = Gi. T acts in fixed point free manner or G1 and Tx% acts in
fixed point free manner on Gim In effect, G may be regarded as a
normal subgroup of the semidirect product, VG, consisting of all k-
tuples (gu X2lg^2, β, ^Qk^k), 9ie Gu

 o n which V acts by component-
wise conjugation. Then if u = (ulf , uk) was a fixed point, t^ufi —- 6̂ΐ

for all te TXί. As TXί is fixed point free on Giy each Ut — 1 so u —
leG. Thus G is a nonnilpotent group admitting F as a fixed point
free group of automorphisms. Thus we may suppose that all proper
subgroups of V are cyclic of order p. Then V is metacyclic of order
pq (p and q primes), and we may suppose that U, the g-subgroup of
V, is normal in V. Let R be cyclic of prime order r = 1 mod p and
let V act on R in such manner that U acts trivially on R. Then in
the semidirect product, X= VR, U is normal and X/U is the non-
abelian group of order pr. Let s be a prime such that s = 1 mod
qr, and let Mι be the faithful irreducible i?-module of dimension 1
over GF(s), and convert Mx into a ίTB-module by letting U act by
scalar multiplication on Mι% Now let M be the induced GF{s)X-
module,

affording the representation, p, of X Then G = ME, is a subgroup
of the semidirect product XM, and F can then be regarded as a
group of automorphisms acting on G. Then V is fixed point free on
G/M — R since VG/UM ^ X/[7 is non-abelian of order pr. Also U is
fixed point free on M since M is a sum of conjugate 1-dimensional
faithful t/-modulesβ Thus V is fixed point free on G. Also M is a
sum of conjugate faithful i2-modules and r is prime to s; hence [R, M] —
M and so G is not nilpotent.
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2* Groups w i t h metacyclic fixed point free operator groups
of order pq. Throughout this section, V denotes a non-abelian meta-
cyclic group of order pq where p divides q — 1. We suppose v and w
are elements in V such that vv — wQ — 1, v~λwv — wa, where ap = 1 mod q.
We set W ~ {w}, the subgroup of order q in V.

THEOREM 1. Let G be a group admitting V as a fixed point free
group of operators, where \V\ and \G\ are coprime and, if \G\ is
even, p and q are not Fermat Primes. Form the semidirect product
H—GV and let Abe a faithful KH-module where Kis a splitting field
for H chosen so that if char K— r, r does not divide pq and Or(G) — E.
G is assumed to be solvable. Then if the representation, a, afforded
by A is such that V acts in fixed point free manner on the non-
trivial elements of A, then G has the following properties
•(*) ( 1 ) G — Gλ x G2 where G{ is V-invariant (i = 1, 2).

( 2 ) Gt is fixed elementwise by W.
( 3 ) G2 contains a set of normal subgroups, N^G), •••, JVg(G),

such that
( i ) the Ni(G) have trivial meet
(ii) w(Nt(G)) = Ni+lίmodq)(G)
(iii) if v — vly v2, , vq are the successive conjugates of v under

w~ι (i.e. wViW~ι = vi+1(mOdff)), then vt leaves N^G) invariant and fixes
G/Ni(G) elementwise.

Before proceeding to the proof of Theorem 1, we first establish a
number of lemmas. The first few of these concern several aspects of
the property (*).

LEMMA 2.1. Let G be a group admitting V as a fixed point
free operator group. Then if G enjoys property (3) in (*), G is
fixed point free under w.

Proof. Since W <] V, by Lemma 1.1 (b), Gw is a F-invariant sub-
group of G. Since V is fixed point free on G, v is fixed point free on
Gw, whence, by Lemma 1.3 (a) Gw = (v, Gw). But since v{ fixes G/N^G)
elementwise, (viy G) gΞ N{(G), by Lemma 1.2 (a). Now vi+1 = wιvw~ι,
and we may write every element in G which is of the form vi+1(x)x~1 —
wίvw~~ί(x)x~1 as w^viyty-1) by setting y — w-l(x). Thus

(vi+ι, G) - (v, GYl , i = 0 , 1 , 2 , . . . , ? - l .

We now have

Gw = (v, Gw) s (v, Gr'-1 = (vi9 G) s NAG) , i - 1, , q .
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Since the N^G) have trivial meet, Gw = E.

LEMMA 2.2. // a group, G, satisfies condition (*), then G is
nilpotent.

Proof. From (*), G = Gλ x G2. By Lemma 2.1, G2 is fixed point
free under an automorphism, w, of order q and so, by the theorem of
Thompson, is nilpotent. Also, Gλ is fixed point free under an auto-
morphism, v, of order p, whence G is also nilpotent.

LEMMA 2.3. The condition (*) is inherited by V-invariant sub-
groups.

Proof. Let H be a F-invariant subgroup of G. Then by Lem-
ma 1.3 (a), H — HW(W, H). From Lemma 1.1 (a), we always have
{W,H)<\ H. Since Gw == Gx is normal in G, £Γ^ = i ϊ Π Gw <\ H. Finally
i ί ^ Π (W, H) S GV n (W, G) = E. Under these circumstances, H =
Hw x (W, H). Since W<\ V, by Lemma 1.1 (b), each of these direct
factors are F-invariant. Setting H1 = Hw and H2 = (W, H), H satisfies
(1) and (2) of (*).

Now set Ni(H) = H Π N^G). Then, because of the ^-isomorphism
H/Ni(H) ~ HNiiGyNiiG), v, fixes H2/N-(H) elementwise, proving (iii)#

Now

w(fiΓ Π Nt(G))

where the subscripts are taken mod q. This proves (ii). Finally the
intersection of the N^H) is necessarily trivial, so (i) holds.

LEMMA 2.4. The property (*) is preserved under taking direct
products.

Proof. Let G and £Γ be two groups admitting F as a fixed point
free group of automorphisms and suppose (*) holds for each group.
Set L = G X H. Then L admits F in a natural way and is fixed
point free under F. Set L{ — G; x Hi (i — 1, 2) so L — Lt x L2, each
^ is F-invariant, and Lw = Lu (W, L) = L2. Thus (1) and (2) hold
for L. Now define N{(L) = ΛΓ (G) x Ni(H). Then N^L) is ^.-invariant
and normal in L2, and the N^L) have trivial meet.
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Consider any left coset of N^L) in L2, say (x, y)Ni(L) where
x e G2 and y e H2. Since vt fixes G/N^G) and H/N^H) elementwise,
Vi(x) = xn, Vi(y) — ynr where ne N^G) and nf e N^H). Then

Vi(x, y)NAL) = (x, y)(n, n')NAL) = (x, y)Nt(L)

since (n, nf) e N^L). Thus vt fixes LJN^L) elementwise. Clearly, the
Ni(L) have trivial meet, and w(Ni(L)) = Ni+1(L). Thus (i), (ii), and
(iii), and hence (3), hold for L. Thus L satisfies the condition (*).

Proof of Theorem 1. Suppose A is decomposable as a Zΐf-module
(if = G F ) : Then A = A1 + A2 + + As where each A< is indecom-
posable.

Case I. Either s > 1 or at least one At is reducible.

Let Bi be a proper maximal submodule of A{ and consider the
module AQ defined by the external direct product

( 1 ) A = AJBX + A2/B2 + . . . + A./B. ,

and let α^ and μ be the representations afforded by AJBi and Ao

respectively, i — 1, 2, ««-, s. We now set out to show that μ is
faithful. If char K = 0, each ^ is irreducible, whence Bi ~ 0 so Ao

coincides with A. Then μ is faithful, since, by hypothesis, A is a
faithful i£iϊ-module.

On the other hand, if char K—r, Or(G) — E. Since G is solvable,
we must have, in this case, C; = O ^ k e r ^ Π G) Φ E. Then Ĉ  fixes
AJBi elementwise. Now as an additive group, A{ is a finite ele-
mentary abelian r-group, acted on by a group of operators, Cζ of
order prime to r. Then, since Ĉ  centralizes AJBif by Lemma 1.3(b),
we must have At = (Ai)OiBi9 so (Ai)σ. Φ E. Since C { is F-invariant
and normal in G, Ct <\ H. Then by Lemma 1.1 (b) (Ai)σ. and (Ci9 AJ
are J££f-submodules of AiΦ Moreover, by Maschke's theorem, At =
(Ai)σ. φ (C<, Ai). Then, because of the indecomposibility of A4 and
the fact that (A^. Φ E, (Cif At) — E, whence Ct centralizes all of A{.

Now suppose ker μ ΓiG Φ E. Then, since G is solvable and Or(G) —
E, Or,(ker μΠG) Φ E. Also, Or>(ker μ (Ί G) is a normal r'-subgroup of
ker (XiΠG and so Or,(ker μ f] G) g C<, i = 1, , s. Then Or,(ker μnG)
centralizes each A; and hence all of A. Since A is faithful

ΓlG) = E ,

contrary to our assumption that ker μ f]G Φ E. Thus μ |ff is a faithful
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representation of G.
Now each Ai\Bi is an irreducible iΠί-module and G/(ker a% Π G)

has no normal r-groups (since any normal r-subgroup of G necessarily
acts trivially on AJBi). Further, both Ai\Bi and G/(ker a* Π G) are
fixed point free under the action of V. Now if s > 1, or s = 1 and
BXΦ E (which will be the case if A1 is not irreducible), dimκ (AJBi) <
dim^ A, i = 1, , s. Thus, by induction, G/(ker ai Π G) satisfies (*).
Then by Lemma 2.3,

L = Π (G/(keτ a% n G))

satisfies (*). But because of the decomposition (1), μ(G) is isomorphic
to a subgroup of L and hence, by Lemma 2.1, also enjoys (*). Since
μ is faithful, G itself satisfies (*).

Case II. s — 1, Aj, = A is an irreducible KH-module.

Here we may apply Clifford's theory [2]. Since G <\ H, A decom-
poses into homogeneous ifG-components, Du , Dt, which are permuted
transitively by V. Thus t divides pq.

Subcase (a), t — pq.

Here, the permutation representation of V afforded by the permu-
tations V effects upon the Di9 is the regular representation. Con-
sequently, Di — uiD1 for some unique ut e V. Thus, selecting dλ G DU

d1 Φ 0, Ui(dL) G Dίy and so

is a nonzero element of A, fixed by V. This contradicts our assump-
tion that V is fixed point free on A and so subcase (a) cannot occur.

Subcase (b). t — q.

Here, the permutation representation is isomorphic to that induced
by multiplication in V on left cosets of a subgroup of index q. Since
all such subgroups are conjugate in V, without loss of generality we
may take this subgroup to be {v}. The upshot of this is that w
permutes the Di in a cycle of length q, while v fixes one component,
say Dly and permutes the remaining q — 1 components in cycles of
length p. If D1 contained a point dQ fixed by v, then
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would be a nonzero point of A fixed by all of F. Thus v acts in fixed
point free manner on Di% Let δx be the representation of G afforded
by Di. Now δt can be extended to a representation of K(G/ker δ^M,
and, by another result of Clifford's is indecomposable since G{v} is the
stability group in H for the submodule D1% Set Hi — Or(G/ker δ^).
Since D{ is a sum of equivalent irreducible KG -modules, each Di is
also a sum of conjugate irreducible KHi-modules. But each of these
is trivial since Hi is an r-group and char K — r. Thus Hi — E and
so none of the groups G/ker δt have normal r-subgroups. If [G; ker δj
is even so is \G\, and in that case our hypotheses guarantee that p
is not a Fermat prime. The groups {v}, G/ker δ± and module, Du now
satisfy the conditions of Theorem (A). Thus v fixes G/ker δ± element-
wise. Then also, v{ ~ wi~1vw~{i~1) leaves D{ invariant and fixes G/ker <?,-
elementwise. Finally, since A is faithful, the groups ker δi9 i — 1, , 2,
have trivial meet. Thus G satisfies condition (3) of (*), and so (for the
case (?! ~ E) also satisfies (*).

Subcase (c). t — p.

Here, the Di are permuted in a cycle of length p, by v (or any
Vi), and w leaves each D{ invariant. Under these circumstances, w
must be fixed point free on each Di since otherwise it would be a
simple matter to construct a nonzero point in A fixed by V. Then
since q is not a Fermat prime, by Theorem (A), w fixes G/ker ^ ele-
mentwise, i = 1, , p. Thus (w, G) ϋ Πi ker δ{ — i?, whence G is
fixed elementwise by w. Thus G satisfies condition (*) for the special
case that G2 = E.

Subcase (d). t = 1.

Here G is homogeneous as a i£G-module. At this point we can
apply Clifford's theorem relative to any normal subgroup of H lying
in G, i.e. any V-invariant normal subgroup of G. Let M be a maximal
F-invariant normal subgroup of G. Since G is solvable, G/M is an
elementary abelian regroup which, as a vector space over the field of
rt elements, is an irreducible GF-module. Since A is an irreducible
ZG-module, we may decompose A into its homogeneous JOf-components,
Elf , Emy and, these are permuted transitively by the elements of G
alone. Let N denote the subgroup of G which leaves each component
invariant. Then if x e N, x{E%) = E{ and v(x)Ei = v{x)v{E3) = v{xEβ) =
i;(2£j ) = -£7̂ . Thus v(x)eN whence N is F-invariant. Clearly, N^2M.
If MaN, N = G because of the maximality of M and the fact that
N <l H. Since G/N is abelian, the permutation of the Et under the
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action of G is permutation isomorphic to the regular representation of
G/N. If G Φ N, [G : N] = [G : M] = r\ = m, the number of homo-
geneous ZΛf-components. On the other hand, if N = G, there is only
one component, so A is a homogeneous iTM-module. Let us consider
the two cases separately.

Subsubcase (i). N = G; A is α homogeneous KM-modulβ.

Since Λf is a proper subgroup of G admitting F and A is a i£M-
module fixed point free (along with M) under the action of V, by in-
duction, I is a subgroup with property (*). By Lemma 2.2, M is
nilpotent and so has a nontrivial center, Z(M). Since the hypotheses
of the case under investigation demand that A be a homogeneous KM-
module, all the irreducible KZ(M)-submodules of A are conjugate by
an element of M9 Since Z(M) is the center, these submodules are
even equivalent. Since Z(M) is abelian, A is a homogeneous KZ(M)-
module and K, being a splitting field for all subgroups of H is cer-
tainly a splitting field for Z(M), Z(M) must be represented on A by
scalar multiplication by elements of K. Under these circumstances,
aside from the fact that Z{M) is cyclic, the matrices representing V
commute with those representing Z(M). Since A is a faithful KH-
module, this means that the elements of V centralize those of Z(M),
contrary to our hypothesis that V acts in fixed point free manner
on G.

Subsubcase (ii). N — M.

Here there are [G : M] distinct homogeneous iOί-components. By
applying induction on M and using Lemma 2.2, we have already seen
that M is nilpotent, whence Z(M) Φ E. The components Et are permuted
by H — GV, the resulting permutation representation having kernel, N.
Thus the transformation of the E{ can be associated with a faithful transi-
tive permutation representation, π, of the semidirect product, V(G/N) —
VG/N = H/N, of degree rf. But this is permutation isomorphic to the
permutation representation induced by multiplication of the left cosets
of some subgroup of index rf, in V(G/N). Such a subgroup neces-
sarily has index rί, and so, since V(G/N) is solvable, is an ^-com-
plement and is conjugate to V. Thus the representation, π, is per-
mutation isomorphic to that induced by multiplication of left cosets
of V in V(G/N) by elements of G/N. In such a representation, V is
the subgroup fixing some letter elementwise. Thus, because of the
permutation isomorphism, we learn that V leaves some jOί-component,
say Eu invariant. Then, by a theorem of Clifford's, since VM is the
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stability group of Et (a consequence of our case division), E1 is a VM-
module. Moreover, V is fixed point free on E1% Since Ex is a homo-
geneous iQf-module, Z(M) is represented by scalar multiplication on
Eλ. Then the matrices representing elements of V commute with the
scalar matrices representing Z(M) on E±. Let βx be the representation
of VM afforded by E,. Then if Z(M) g ker ft, V would centralize
Z{M) ker ft/ker βx Φ E. Since V has order prime to M, by Lemma
1.3 (b), this would imply CM(V) Φ E contrary to our hypothesis. Thus
Z(M) s ker ft. But the 2^ are conjugate i7.Λf-modules, i.e. E{ = a(x^)E1

for some XtMeG/M. Under these circumstances, if kerft is the kernel
in M of the iθf-representation afforded by Eiy

ker ft = (ker β)xi' ,

whence, since Z(Λf) is normal in G,

Z(M) = ZiMγ'i1 S (ker A)35^1 = ker ft , i = 1, , rf .

Since 4̂ is faithful (even when restricted to M) the ker ft have trivial
meet. Thus

e Π ker ft = E .
ί=l

But this is impossible since M is nilpotent. The subsubcase (ii) doesn't
arise. This completes the proof.

COROLLARY 1.1. Theorem 1 still holds when the condition that
K be a splitting field for all subgroups of H — GV is dropped.

Proof. Let G and V satisfy the conditions of Theorem 1. Let
K be a field chosen so that if char K — r,G has no normal r-groups
and r is prime to pq. Let A be a faithful i£ff-module whose non-
zero elements are fixed point free under the action of V. Let L be
a splitting field for all subgroups of H, where [L: K] is finite, and
form the module A ®^ L — A!. Then char L is char K. The re-
mainder of the proof simply consists of the observation that A! is
faithful and fixed point free under V. An application of Theorem 1
then shows that G satisfies (*).

COROLLARY 1.2. Let G be a solvable group admitting V as a
fixed point free group of operators, where \V\ = pq is prime to \G\.
Then for every prime r dividing \G\,GjOr>r{G) is nilpotent.

Proof. Let Fr be the Frattini factor group of the r-group,
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Or,r{G)IOr{G). Then Fr is a V(G/Or,r(G))-moάule, faithful when re-
stricted to G/Or,r(G). Moreover, from Lemma 1.3 (b), Fr and G/Or,r(G)
are both fixed point free under the action of V. By Corollary 1.1,
G/Or'r(G) satisfies (*) and so, by Lemma 2.2, is nilpotent.

COROLLARY 1.3. Let G be a solvable group admitting V as a
fixed point free operator group and suppose \G\ is prime to pq =
\V\O Then G has nilpotent length at most two.

Proof. Let G 3 M(G) a M\G) a - ,F(G) and n(G) denote the
lower nilpotent series, Fitting subgroup, and nilpotent length of G,
respectively. By Corollary 1.2, G/Or>r(G) is nilpotent for every r divid-
ing G. Thus M(G) S Or,r(G) and in general

M(G) S Π Or.r(G) = F(G) ,
f \ \ G )

(where the intersection is taken over all primes, r, dividing | G |) whence
M(G) is nilpotent. Thus M\G) - E and so n(G) S 2.

COROLLARY 1.4. Let G be a solvable group admitting V as a
fixed point free group of operators, where \V \ — pq is prime to
\G\. Then G has π-length at most one, where π is any collection
of primes dividing \ G .

Proof. Since F(G) = Oπ(F(G)) x OX,(F(G)), F(G)OAG)/OAG) is a
normal ττ-subgroup of G/O^(G) whence F(G) Ξ̂ O^π(G)m Since, by
Corollary 1.3, n(G) ̂  2, G/F(G) is nilpotent and thus its factor group
G/Oπ>π(G) is also nilpotent. But in this case, G/Oπ>π(G), being a nil-
potent group with no normal π-groups, is itself a 7r'-group. Thus
O-'χ-,(G) — G and so G has π-Iength at most one.

3* Nilpotence of the commutator subgroup in groups ad-
mitting S3 as a fixed point free group of operators* Let G be a
group of operators, F, isomorphic to *S3, the symmetric group of
degree three. Then V is a metacyclic group of the type disscussed
in the previous section, with p = 2 and q — 3. Our object is to show
that if V acts in fixed point free manner on G and G is solvable of
order prime to 6, then Gf is nilpotent. This property is almost entirely
the consequence of

THEOREM 2. Let G be a group of order prime to six admitting
V — S3 as a fixed point free group of operators. Let V be generated
by elements w and v such that v2 = wz — 1, vw2 = wv. Set v1 — v,
v2 — vw and v3 = vw2 (all conjugates in V). Suppose G contains
three normal subgroups, Nu N2, and iV3 such that
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( i ) N^NtΠNs^E
(ii) Ni is Vi-invariant, i = 1, 2, 3,
(iii) w\N%) = Ni+limoά3) ί = 1, 2, 3,
(iv) (T/ΛΓ. is ^xβd elementwίse by vh i = 1, 2, 3.

G is ahelian.

Proof. The reader will recognize that (i)—(iv) is the condition
(3) in (*) imposed on the subgroup G2 in Theorem 1, for the case
that p — 2 and g = 3. Then by Lemma 2.2, G is nilpotent, since it
is fixed point free under the automorphism, w, of order three. Then,
by a theorem of B. H. Neumann G has nilpotent class 2, i.e. G' g Z(G).

Now let if be an arbitrary F-invariant subgroup of G. Then V
is fixed point free on H. We now show that the hypotheses (i)—(iv)
inherit to H. Set N( = H n # „ ΐ = 1, 2, 3. Then iV/ n iV*' n -W =
H Π (iVi Π iV2 Π N3) = 1?, proving (i). Clearly Λ7 is ^-invariant, being
the intersection of two ^-invariant subgroups of G. Also, w\Nl) —
w\H Π N,) = w\H) Π w\N%) = J ϊ Π JV<+1 - iV/+1 (indices taken mod 3).
Thus (ii) and (iii) hold. Finally, H/N? is ^Γisomorphic to HNt/Nif a
subgroup of G/Ni. Since the latter is fixed elementwise by vif so is
the former, proving (iv).

Since G is nilpotent, each of its Sylow subgroups admit V and
satisfy (i)—(iv). If G is not a p-group, each of these is proper and,
by induction, is abelian. Then their direct product, G, is also abelian.
Thus, without loss of generality, we may assume that G is a p-group.

Let F denote the Frattini factor group, G/0(G). Then F is a
F-module, and since ; p | | F | , by Maschke's theorem, F is a direct
sum of irreducible F-modules: F = Fx 0 F2 0 © Ft. Let G4 be
chosen so that GJ0(G) — Fi% If t > 1, each G{ is a proper F-invariant
subgroup of G and hence is abelian. In that case G 2 CG(0(G)) 2
{(?!, , GJ = G whence 0(G) £ ^(G), the center of G. If, moreover,
t > 2, each of the subgroups Ĝ Gy is a proper F-invariant subgroup
of G and hence is also abelian. In that case,

G 2 C,(G,) B {Gx, ...,Gif . . . , G ί } = G

so each G^ lies in the center of G, whence G, which is generated by
the Gi, is itself abelian, and we are done. Thus without loss of
generality we may assume t g 2.

Let us take a closer look at the irreducible F-modules, FiΛ These
are modules over the field of p elements. The kernel of the repre-
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sentation of V which each affords, is a normal subgroup of V and so
is either the identity (in which case each module is faithful) or con-
tains W, the normal subgroup of order 3. In the latter case, F
contains points fixed by W. Then by Lemma 1.3 (b), Gw Φ E, a
contradiction. Thus each Ft is faithful. In this case, we can show
that each Fi is, indeed, 2-dimensional.

First, we observe that if p = 2 mod 3.

/ n (0 1\ / 0
( A )

 ( )

is a faithful irreducible representation of V. Second, if p = 1 mod 3,
there exists an integer a ^ 1 mod p such that α3 = 1 mod p. Then

0 1\ la 0

(where α < 3 is taken as an element of GF(p) = ϋJ/(p) is also a faithful
irreducible representation of V of dimension two. Now each Ft is
isomorphic, as a Gi*7 (p)V-module, to a minimal left ideal of the semi-
simple group algebra GF(p)V of dimension 6. But the modules cor-
responding to the trivial representation, and to the representation
having W as its kernel are both 1-dimensional and thus account for
two one-dimensional minimal left ideals in the direct decomposition of
GF(p)V. This leaves a four-dimensional complement which must con-
tain a two-dimensional minimal left ideal affording one or the other
of the representations (A) and (B) given above. Since there are only
three conjugate classes in V, these exhaust the nonisomorphic GF(p) V-
modules. Thus each of the Fi afford representations equivalent to one
of the two matrix representations (A) and (B) given above.

Since G' £Ξ Z(G), commutators in G obey the following laws:

(x, yz) = (x, y)(x, z)

1 (xy, z) = (a?, z)(y, z)

(x\ yj) = (a?, y)ί+j

ώ> υ ) — K^y y) — y^f y) — v^ 9 y)

Now suppose t — 1. We can no longer assert that 0(G) lies in the
center of G, although 0(G) is certainly abelian. Here G/0(G) = F is
two-dimensional, and so G is generated by two elements, say x1 and a?2.
Thus if # and Λ are arbitrary elements in G, each can be expressed as
"words" in x1 and x2y i.e.,
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h = xV-xi1 x\™x\™ .

Then from (1)

(fir, h) = (a,, fc)*"*(a2, Λ)»*

whence G' is cyclic. But in that case G'/0(G') is a one-dimensional
GF(p) F-module, and hence is fixed by w. Since w is fixed point free
on G, it is also on G'/0(G') whence G'/0(G') = £7, i.e. G' = 0(G') = # .
Thus G is abelian.

We are left with the case that t = 2. Here ί 7 = F1 0 .F2, and
0{G) lies in the center of G. Then the commutators (x,y) all have
order p, for (α, ?/)p = (a?, yp) = 1 since ^ e 0(G) S #(G). Thus G' is
elementary abelian and can also be regarded as a F-module. Com-
mutation now defines a F-homomorphism: F x F —> G', which, being
bilinear in each component, can be factored through F(&VF. Thus
if x and y belong to the same left coset of 0 (G) in G, x — 3/2 for
some £ in the center. Then (#, g) = (3/2, (7) = (2/, g) and similarly,
(gy x) — (gy yz) =z (gy y)y so the map is well defined in the sense that
F x F can be regarded as its domain. Since, for any u e V, u(x, y) —
(u(x), u{y)), the map is a F-homomorphism. For convenience we write
the elements of the modules, F and G', additively so that (x, y + z) ~
(x, y) + (x, z) and (x + y,z) = (x, z) + (y, z).

Now suppose p = 2 mod 3. Then both of the modules F1 and F2

afford representations equivalent to (A). Thus we may select a basis
{x19 x2, Xz , #4} for F such that

lΛ/ytA/2/ — *Ί *^2 fΛ/y*Λ/^J — *k3 tΛ/̂  .

Let »! and xz be elements of G such that under the homomorphism

J. U yjj \O [yrjy J \ ̂ i) — i*'i>/\ */3/ — *̂ 3 HIGH / yWyJ/ij) — Λ>2 d,Il\l j \U/\Jl/$)) —

xA. Then G is itself generated by xu w{x^, x3 and w{x3). The groups
Gif chosen so that f(G{) = Fifi = 1, 2, are abelian, whence (XiW(x^i) = 1
and (x3, w($3)) = 1. Thus in module notation

and G' is generated by the four elements

(xiyxj) , i = 1, 2,;j = 3,4 .

Now
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( 2 ) w\x^ xd) = w(x2, x4) = {-xι - x2j -xs - x,) = Σ(xiy x5) ,

i = 1, 2;j = 3, 4C

Since w is fixed point free on G', for any element ceG',

(1 + w + w2)c = c + i φ ) + w\c) = 0 .

Setting c ~ (xly x3), we have from (2)

( 3 ) 2(xu x3) + 2(αs> x4) + (»!, x4) = (xt, x3) = 0 .

Similarly, setting c = (a ,̂ ίt?4), we obtain

(1 + w + w*)(ceux4) = Q

= -(xu x,) - (x2, x,) + (xu xA) - 2(x2, xd) .

Solving for (xu x4) in (4) and substituting for (xu x4) in (3), we obtain

3(0?!, xz) + 3(x2? x4) + 3(^2, ŝ) = 0

or

( 5 ) (xu x,) + (a?2, a?4) + (ί»2, xd) = 0 .

Adding (4) to (5) yields

Thus Gr is at most two-dimensional, and from (5) and (6) is generated
by (xu x3) and (x2, aj4).

Now iSΓi is a normal subgroup of G and contains (v, G), Then
vix^x^e JVΊ for i = 1,2, 3, 4. Since JVj. is normal, (fe, gf) e iVx for any
h 6 iV2 and g eG. Thus the commutators (v^J^Γ1, ŝ) a n ( i (^(xJa Γ1, w(^3))
lie in N, Π G'. Thus

(x2 — xu x3) = ( β 2 , ίκ3) — ( x 1 ? ίc3)

and

(x2 - xl9 x4) = (x2, x4) - (xu x4)

= (x2, x4) ~ (x2, x3) ,

by (6), all belong to N, Π G\ Thus

(a;2, a;3) Ξ (X2, a;4) Ξ (X1? X4) = (xu x3) mod ΛΓX n Gr .

Then from (5) 3(xl9 xz) = S(x2, x4) = 3(a?2, »3)
 Ξ 0 mod Nx Π G'. Since

p | 3 , (a?!, x3) and (#2, sc4), the generators of G', both lie in ΛΓlβ Thus
Nx 3 G'. Then iV2 = w 2 ^ ) 2 G-; and Nz = w(NJ 2 G'. Since the JV€

have trivial meet, Gr — E and G is abelian.
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Now suppose p = l mod 3. Then the two irreducible V-modules,
Fx and F2, afford representations of V equivalent to that given in
{B). Thus we may select a basis, {xu x2, xa, x4} for which

v(xx) = x2 v(xz) = x4

( 7 ) w{xλ) = αx± w(x3) = bxz

w(x2) = α2x1 w(x4) — ¥x4

where α and b are scalars in GF(p), different from 1, and satisfying
α? = 63 = 1. Now the multiplicative group of nonzero elements in
GF(p) is cyclic and so has a unique subgroup of order 3. Thus,
since α and b both belong to this subgroup, either α = b or α — b2.

Let ά?! and x3 be chosen so that /(#*) = α?t , i = 1, 3. Then, setting
x2 — v{x^} and $4 = v(x3), / (δ, ) = β, for j = 2, 4. If G{ is chosen so that
GJ0(G) — F^i — 1, 2, then, by induction, the G{ are abelian. From
this and (7) we have

(xl9 x2) = (a?8, ̂ 4) = 0

w{xu x3) = a&(xx, a?3)

< 8 ) w(xu x,) = α62(xx, a;4)

w(a?2, fl58) = α 2 δ(a; 2 , a;8)

w(x2, Xt) = α2&2(α?2, α?4) .

If α — δ, (#!, α;4) and (x2, x3), being fixed by w1 must be zero. If
α = 62, (a?!, a?3) and (x2, x4) are zero. In either case, G' is generated by
two elements. By interchanging the symbols representing xz and x4

if necessary, we can, without loss of generality assume that α — b
so that (xlf x4) — (xi9 x3) = 0.

Since vix^xϊ1 e Nu (x2xς\ x3) eN.nG' for ^ = 3,4. Thus

(x2 - x u x3) = (a;2, α?8) - (xu x3) = (x 2 , a;8) Ξ 0

(a;2 — a?!, x4) = (α?2, α?4) — (a?3, a?4) = — (^ x, a?^ = 0 m o d Gf f] Nλ .

Since G' - {(^, α?8), (x^ x4)}, N, 2 G' whence G' S iV, n w(JVΊ) Π
J57. Thus G is abelian.

COROLLARY 2.1. Let G be α group admitting V — S3 as a fixed
point free group of operators and suppose G has order prime to
\V\ — 6. Then the commutator subgroup of G is nilpotent.

Proof. The property that G' is nilpotent is residually complete,
and so, since V is fixed point free on each factor group, we obtain
immediate reduction to the case that G has a unique minimal normal
F-invariant subgroup, M. Since G is solvable, M §Ξ OP(G) for some
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p dividing G, and OP>(G) = E. Thus OP>(G) = OP,P(G). Now V is meta-
cyclic of order 6. Since G is odd, the restriction on Fermat primes does
not apply, and hence we may use Corollaries 1.1 and 1.2 to obtain that
G = G/OP,P(G) satisfies (*). Then G = G 1 x G 2 where Gλ is fixed point
free under v, an automorphism of order 2, and G2 is a group satisfying
conditions (i)—(iv) of Theorem 2. Thus both Gλ and G2 are abelian,
whence G is abelian. Thus G' S OP>P{G) = OP(G), which shows that
G' is a p-group and hence is nilpotent.

4* Nilpotence of the commutator subgroup in groups ad-
mitting fixed point free operator groups. In this section we prove
the impossibility of extending the results of Corollary 2.1 to solvable
groups, V, other than those already considered. We begin with

THEOREM 3. Let V be a solvable group satisfying one of the
following properties

( a ) V contains a normal subgroup W' Φ E such that [ V: W] is
an odd prime, p.

( b ) V has a factor group of order 4, | V \ Φ 4.
( c) V has a dihedral factor group of order 2p, p ^ 5.
Then there exists a group, G, having order prime to \V\ which

admits V as a fixed point free group of operators and for which
the commutator subgroup is not nilpotent.

Proof. Case I. (V satisfies (a)).

Since V is solvable, Wf is a proper subgroup of W, normal in
G. Select U maximal with respect to the properties: W £ Ud W,
and U <| V. Then Vj U is either abelian of order p2 or pq or it is
metabelian of order pqe where e is the exponent of p mod q defined
by letting an element of order p act irreducibly on the elementary
abelian group (W/U) of order qe.

Let G be a group of order r3srP having a normal elementary
abelian subgroup, A, of order srP and factor group G/A isomorphic
to the extraspecial group of order r3. The primes, r and s are chosen
so that r = I m o d p and s = 1 mod rq (or rp if [V:U] = p2). Since
γ φ s,G splits over A and we may write G = AR where R is generated
by two elements x and y such that xr = yr ~ 1 — zr, where z = (x, y)
generates the center of i?β

V acts on G as follows: First U acts trivially on G, and W acts
trivially on R. If v generates VmoάW, set v(x) = xa, v(y) = ya, v(z) =
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za% where a is a primitive pth root modr. (Such a root exists since
r = 1 mod p.) The action of V and R on A is defined by writing the
elements of A additively, selecting a basis α u , α12, , α^ , , arP>rP

for A, and letting {αm α12, , alr} afford the representation p± of
(W/U)R, defined by

ρx{z) = = I r

where w1? , wβ are a basis for W/Ϊ7 (β = 1, and the last matrix is
not involved if [W: U] — q or p.) Ir is the r by r identity matrix,
and β and y are respectively primitive r t h roots and gth roots (or
pth if [W: U] — p) modulo s. Also,

Pl(x) = diag(l, βr\

and

0 O7

If H denotes the semidirect product (V/U)R, set

p(h) — diag(p1(h)1 pj^ϋhv1), , p^^hv1^))

for he (W/U)R, and

/ 0 Ir 0 0\

\ulr 0 0

where u — y if V/U is cyclic of order £>2 and 1 otherwise. This com-
pletely defines the action of VR on A.

W acts in fixed point free manner on A since, on each component
{aiu ai2, , air} it is represented as scalar multiplication by 7, (the
kernel of the representation of W/U may differ on each component,
of course.) Since p is odd, α2 == 1 mod r, and so v acts in fixed point
free manner on R. Summing up, then, V is fixed point free on
G/A ~ R whence Gv g A. Again, Gυ g Av = E, whence V is fixed
point free on G.

Note that G' = is not nilpotent.

I/. F satisfies (b).
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Let W be the nontrivial subgroup of order 4, and select U so
that W S Ud W, U <\ V and U is maximal in this respect. We shall
define a group, G, admitting F a s a group of operators in such manner
that U acts trivially on G. G will have the form QM, where M is an
elementary abelian normal subgroup of G and Q is a Hall complement
of M in G, such that M becomes a sum of faithful irreducible Q-
modules, so that [Q, M] — M. Moreover, M will be fixed point free
under the action of W alone, while at the same time Q will be V-
invariant and centralized by W. In this way, V induces the group
V/W of order 4 on the group Q. Now V/U has the normal series,
E = U/U<\W/U<\V0/U<\V/U, and we select elements v, and vt in
V so that vx generates Vo mod W and v2 generates V mod Vo and v\ = 1
or vx (moάW) according as V/W is the 4-group or is cyclic. Now we
define Q as follows. Let r and s be odd primes, such that (rs, [V: U]) = 1
and s = 1 mod r. Then Q is a group of order rs2 defined by

χr = 1 = yl = yt
j_

^~Vî  = yϊ, % y2χ = 2/j-1

where α and α"1 are primitive rth roots mod s, such that aar1 ~ 1 mod s.
Then the action of V/W on ζ) is defined by

t;2(sc) = x"1, v(x) = x for all v e Vo .

ViiVi) = 2/trl, i = 1, 2

2/x if vl = 1 mod PΓ
2̂(2/1) = 2/2 and ( )

PΓ acts trivially on Q. Then it is easily seen that Q is fixed point
free under V/W and has nilpotent length 2.

Now W/U has order 2, p or p2, where p is an odd prime, and
acts as an irreducible V/W-modxύe. We can then find a factor system,
TΠij e W/U, such that v{Vj = wra^ , mod ί7 where u is the appropriate
coset representative, 1, vu v2, vxv^ of W/U in y/Z7. Now let ί be a
prime different from 2, r and s such that £ = lmodp if W/U has
order p or p2. Let MΊ be a faithful irreducible Q-module over GF(t).
We make -Mj into an irreducible (U/W)Q-module by letting W/U act
nontrivially by scalar multiplication by — 1 or by a pth root according
as [W: U] = 2 or is odd. Then, as TF acts trivially on Q, ΫFQ < FQ.
Set

the induced module. Then W has a conjugate representation which
is also scalar multiplication on each component xMu x — 1, vu v2, or
^^2. Now set G to be the semidirect product Qilf, where I is a
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normal abelian subgroup on which VQ acts in a manner prescribed
by the module construction of M. Then M has order prime to | VQ |,
and is a sum of conjugate faithful irreducible Q-modules, whence
[Q,M]^ M. Thus M is the Fitting subgroup of G and G has nil-
potent length three. V/U has order prime to G, V is fixed point free
on both Q ~ G/M and M and hence is fixed point free on G, by the
remark following Lemma 1.2. Evidently G' is not nilpotent.

Case III. V satisfies (c).

V contains a normal subgroup U such that V/U is dihedral of
order 2p, where p ^ 5 .

In this example we let G = RQ where R is a normal elementary
abelian r-group and Q is a special g-group of order q8. We select
the primes q and r so that r = 1 mod g and g s l mod p, both g and
r odd. Q is generated by four elements xu x2<! x3, x4 subject to the
rules:

x\ = 1, i = 1, 2, 3, 4 , (α?!, a?2) = (a?8, »4) = 1

»ί = 1, ΐ = 1, 2, 3, 4 , fe, zt, zz, zA) = Z(Q) .

JB will consist of p irreducible Q-modules, each of which has dimen-
sion q. Thus R has order rpq.

The action of V on G is defined as follows: First, U is assumed
to act trivially on G so that G admits V = V/ U, the dihedral group
of order 2p, as a group of operators. Let V be generated by elements
v and w such that t;2 — 1, wp = 1, and ?w = w 1 !;. Since p ^ 5, we
can find four primitive pth roots modulo g, α, α"1, 6, δ""1, such that
aorγ = δδ"1 Ξ 1 mod g and δ is incongruent to both a and or1 mod g.
Then we set

Then w acts in fixed point free manner on Q/Z(Q). We must also
have

The action of v is given by

t fe) = x2, v(x2) = a?!, φ 8 ) = a?4, v(a;4) - xz

Φi) = «4, ^fe) = S8, V(«8) = «2, V(Z4) = Zx
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so that both Q/Z(Q) and Z(Q) are the direct sum of two irreducible
V-modules. Form the subgroup Qx — (v, Q). This subgroup is gener-
ated by the elements x^1, #s#Γ\ zftl1, z??*1, and (#i#i"\ #3) — zfiϊ1, and
has order q5. Then Q/Z(Q) is an extra special g-group of order qz,
generated (modQO by the elements xλx2 and xzxA, with center gener-
ated (modQi) by zxz2zzz^ Q\Qλ is fixed elementwise by v.

Writing R additively we may regard R as a QF-module. We
take R to be the direct sum of p irreducible Q-modules, Rly •• ,i2p,
which are permuted by V according to the rules

w^Rj w — Rj+1 (indices take mod p)
oi~Φ 01 — 7? oi—l-ϊ? oi — T? 01-ΛT? 01 — T? . . . oi—!T? oi — 7?
U ±\J\V -* ̂ lj t/ ±.\>2U JL4/p9 U -*-v%V J-vp—ij j t/ -Lv{/p l ) / 2 ^ * - * / ( p + l ) [ 2

so that the manner in which the Rι are permuted by V provides a
faithful transitive permutation representation of V of degree p. v is
assumed to act on Rλ by scalar multiplication by — 1 . Q is represented
irreducibly on Rx with kernel Ql9 that is Rt represents QIQ± faithfully.
The matrices are

ρ{xx) = ρ(x2) = diag (1, c~\ , c~q+1)

ρ(xs) = p(x4) =

= ρ(z2) = ρ(z3) = ρ(z4) = clς

where c is a primitive gth root modulo r, and Iq denotes the q by q
identity matrix. By defining the representation of Q on Rι as the
conjugate representation under wl-\ the representation of Q F on i?
is completely defined.

We next observe that V is fixed point free on G. First w~ivwί =
vwu leaves Ri+1 — w^R^w1 invariant and for any element, β, in Ri+U

we have e — w~{e, wι for some e! in Rl9 Then

(w~ivwi)~1e(w~ivwi) — {wiv~'1wi)w~iefwi{w~ivwi)

— wiv~1ervwi — wi( — e^)wi

= —w~lerwl = — e .

Thus vwu acts on Ri+1 by scalar multiplication by — 1 . Now suppose
h is an element of R fixed by V. Then we may write h uniquely in
the form h = h± + h2 + + hp, where h{ e Ri9 Then w~lvw~~l sends
each hj e i?y into some element of Rk where k Φ j unless j — i + 1.
But since it fixes h it must fix hi+1. On the other hand it acts on
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Ri+1 by scalar multiplication by — 1. Since r ^ 2 , this implies that
hi+1 = 0. Repeating this argument for each i — 1, 2, 3, , p, we have
that h = 0. Thus V is fixed point free on R. But V is also fixed
point free on Q/Z(Q) and Z{Q) whence it must be fixed point free on
all of G.

In each case Z(Q) is represented on Rt by scalar multiplication by
c; thus (Z(Q), R) = R^G' and Z(Q) = Q' £ G', whence G' contains the
subgroup RZ{Q), which is not nilpotent.

COROLLARY 3.1. Let V be a solvable group containing a non-
trivial subgroup W such that W is normal in V and Vj W is the
symmetric group of degree three. Then there exists a group G
having order prime to \V\, admitting V as a fixed point free group
of operators, such that G' is not nilpotent.

Proof. This case is not directly subsumed under those cases
listed in Theorem 3, but the required example is easily provided by
that theorem. Let F* be the unique subgroup of index 2 in V con-
taining W. Then F* is a solvable group containing a nontrivial normal
subgroup, namely W, of index 3, which is an odd prime. Thus V*
satisfies (a) of Theorem 3. Accordingly, there exists a group G1 having
order prime to F* which admits F* as a fixed point free group of
operators and which has a commutator subgroup which is not nilpotent.
Let the element v generate F module F*, so that v2 is an element of
F*. Also, let G2 be an isomorphic copy of G1 and let / be the iso-
morphism /: G1 -^ G2. Then if H = Gx x G2, the action of F on H
can be defined as follows: Gx already admits F*. Let v(g) — f(g) for
every geGlf and v(g) — v\k), where g — f(k), for every geG2. The
latter is well defined since / is onto and one to one (making k unique)
and v2 is an element of F* whose action on Gx is already known. For
any u e F*, and geG2 we define u(g) to be f[(v~1uv)(k)] where/(/c) =
g; thus, writing v for / when the domain of v is in Gl9 this becomes
v[v~ιuv{v~1(g))\ — u(g) so that F* can in this way be regarded as a
group of operators applying to H. Clearly F* acts in fixed point
free manner on the subgroup G2 since, if f(k) — g and F* fixes g,
i)-1V*v — F* must fix fc, which is impossible unless k (and hence g)
is the identity. Thus F acts in fixed point free manner on H =
Gλ x G2. Now by hypothesis G[ is not nilpotent, and hence its iso-
morphic copy, G[ is also not nilpotent. But it is obvious that both
of these subgroups lie in H', whence H' is not nilpotent.

THEOREM 4. Let V be a solvable group with the property that
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if G is any group admitting V as a fixed point free group of
Operators and G has order prime to \V\, then G' is always nilpotent.
Then V is one of the following groups:

( i ) V is cyclic of prime order
(ii) V is one of the groups of order 4
(iii) V is the symmetric group of degree three.

Proof. Case I. V has a factor group of odd prime order.

If W <\ V and V/W has odd prime order, then by Theorem 3,
since V satisfies (a) if W Φ E, we must suppose that V is cyclic of
prime order.

Case II. V has no factor groups of odd prime order.

Since V is solvable, it contains a normal subgroup V1 of prime
index, and because of the case division the prime must be 2. If V1 —
E, V is cyclic of order 2, and so V enjoys (i). Thus we may take
Vx Φ E. Select F2 maximal with respect to being a proper subgroup
of V1 and normal in F. Then, since V is solvable, VJV2 is elementary
abelian, and is irreducible as a F/ FL-module. If [FX :F 2] is a power
of 2 it is in fact equal to 2, so V/V2 is a group of order 4. Then
if V2Φ E, V satisfies (b) and so by Theorem 3, we would be con-
fronted with a counter example to the hypothesis of this theorem.
Thus we must suppose, in this case, that F2 = E, whence (ii) holds.
If [ F x : F2] is not a power of 2, it is an odd prime, p. If p ^ 5, by
Theorem 3, the hypothesis would be denied. Thus p — 3. Then if
F2 Φ E, by Corollary 3.1, the hypothesis is once more denied. Con-
sequently, F2 = E and F is the symmetric group of degree three.

COROLLARY 4.1. The condition that V is solvable can be dropped
in Theorem 4.

Proof. Let T be a proper subgroup of F and suppose that T is
not cyclic of prime order, does not have order 4 and is not isomorphic
to S3, the symmetric group of degree 3. Let 1 = xu x2y , xk be a
full set of right coset representatives of T in V. By induction on
the order of T, there exists a group, Gu fixed point free under T
such that G[ is not nilpotent. Let G be the formal set of A;-tuples
(θu^Qi^it •• 9®k19k%k)9 where the gt lie in Gx. Under the rule that
XtXj1 — 1, G becomes a group (under component-wise multiplication)
isomorphic to a direct product of k copies of Clm By defining t~~xgt =
gι for all te T and geG1 (the exponential notation indicating that t
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acts as an operator in the manner given by the induction hypothesis),
the action of V on G is defined by componentwise conjugation. Then
it is easy to verify that V is fixed point free on (?, and that G' is
not nilpotent. We may thus suppose that any proper subgroup of V
is either cyclic of prime order, has order 4, or is S3.

By Theorem 4, it now suffices to show that V is solvable. Assume
V is not solvable. Then a 2-Sylow subgroup, S2, of V, being proper,
has order 2 or 4. If Nr(S2) — V, V/S2 is metacyclic and hence V is
solvable. If Nr(S2) < V, it is clear that since A^ is not a proper sub-
group of V, S2 lies in the center of its normalizer and so V has a
normal 2-complement, K, which is also metacyclic and hence is solvable.
Thus V is solvable, contrary to our assumption.
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