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CHAINS OF MODULES WITH COMPLETELY
REDUCIBLE QUOTIENTS

JOHN DAUNS

Consider a left module V over a possibly noncommutative
ring R. The objective is to investigate finite or infinite sequences
of submodules of V of the form {0} = 4o & A, & A;--- or of
the form V= A° 2 A! 2 A? ... where all the quotient modules
A/ A; or Ai/ A are completely reducible. It is shown that
some of the known properties of such series for a module over
a ring with minimum condition hold for a more general class
of rings, a class which properly includes those satisfying the
descending chain condition, The main difficulty which this
note has attempted to solve is to generalize these well known
theorems from the minimum condition case to a much larger
class of rings and modules. The class of rings considered in
this note seems to be the natural setting in which to prove
these theorems, In spite of the added generality, our proofs
are not longer than they would be if the minimum condition
were assumed.

All modules considered here will be understood to be left modules.
A module V over a ring will be called simple provided it contains no
proper nonzero submodules and provided also RV = V # {0}. A module
is completely reducible provided it is a finite or infinite direct algebraic
sum of simple modules.

In the next definitions and subsequently, the set inclusion symbol
“c” will always indicate a proper inclusion. The next two definitions
are essentially taken from [4, p. 103].

DEFINITION. Suppose V is any left module over an arbitrary ring
R. Define L(V) to be the zero module. For any positive integer
k=12 ... let L,(V) be defined inductively as the algebraic sum of
all submodules ¥ of ¥V with L, (V)C Y and with a simple quotient
Y/L, (V). If L,(V) has been defined for all o < B; where 8 is a
limit ordinal, set Lg(V) = U{L.(V)|a < B} and define Lg. (V) to be
the sum of all submodules ¥ of V with Lg(V)C Y and with a simple
quotient Y/Lg(V). The empty sum is taken to be the zero module.
The series of submodules {0} = L(V)S L(V)<S L(V)< --- is called
the lower Loewy series of V over R.

DEFINITION. For a left module V over a ring R, set L(V) =V
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and denote by L'(V) the intersection of all the maximal proper
submodules of V. The empty intersection is by convention all of V
and the zero module is a maximal submodule of a simple module. For
any positive integer k£ =1,2,--. the submodule L*(V) is defined
induetively by L*¥(V) = L{L*7(V)]. If L(V) has been defined for all
ordinals & < B8 where £ is a limit ordinal, set LA(V) = U {L%(V) |a < B}
and define LF* (V) to be L+ (V) = L{LP(V)]. The series V = LY(V) 2
L(V)2 L (V) 2 --- is called the upper Loewy series of V over R.

Clearly, the quotients of the consecutive terms of the lower Loewy
series are completely reducible; it will be shown later that this also
holds for the wupper series for all superseripts. It will also be
shown that, in a sense which is more precisely defined in conclusions
3 of the Theorems 2 and 4, the lower and the upper Loewy series are
the unique biggest chains of submodules with completely reducible
quotients., The indices on the terms of the lower and upper Loewy
series will henceforth be positive integers; except in the example at
the very end, and even here they will only be w and w + 1, where @
is the first infinite ordinal.

The radical of any ring R, denoted by N, will be the usual Jacobson
radical, i.e., the intersection of the annihilators of all simple left
R-modules U with RU= U. In case there do not exist any simple
R-modules, N = R.

From now on it will be assumed that the module V satisfies the
condition that

(1) for any submodule U of V, RU= U- A restriction will be,
imposed on the ring by requiring that

(2) R/N is completely reducible,

i.e., either zero or a direct sum of minimal left ideals L with RL = L.
The ring R considered here is neither assumed to be commutative nor
to contain a unity element. Indeed, one of our objectives has been to
develop the properties of the two Loewy series so that they would be
applicable to rings which cannot in principle contain a unity element,
e.g., if R/N is the ring of all linear transformations with finite
dimensional ranges on an infinite dimensional vector space. In the
latter example, clearly (1) and (2) are satisfied.

2. The lower Loewy series. The next lemma will be used
frequently.

LEMMA 1. Let R be a completely reducible ring with zero radical.
Then any left R-module U with RU = U 1s completely reducible.

Proof. The ring R is the algebraic direct sum R = P{L;|tc I}
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where L, is a minimal left ideal of R with RL, = L, # {0}, and I is
some indexing set. For any ve U,v is of the form v = rw, 4+ ---
+ r,w, where r,€ L;;, and w,e U for #(k)el and k=1,2,.--,m.
Let L be a minimal left ideal of R with RL = L. It suffices to show that
if for some v € U we have Lv = 0, that then Lo is a simple submodule of
U. But, if W were a proper submodule of Lv, then J = {t€ L|tve W}
would be a left ideal of R properly contained in L.

COROLLARY. Let R be a ring with radical N such that R/N is
completely reducible., Assume that Uis any left R-module with RU =
U. Then U vs completely reductble if and only 1f NU = {0}.

Proof. If Uis a sum of simple modules, then NU= {0} because
N annihilates any simple R-module. Conversely, if NU = {0}, then U
viewed as an R/N-module is completely reducible over R/N and hence
also over R.

The next theorem is the main result about the lower Loewy series.
For any subset B of a ring R, the symbol Bt denotes the subset of
a fixed R-module V which is annihilated by B.

THEOREM 2. Let the ring R with radical N and the module V
be as tn (1) and (2). Then the following holds for all integers k =
0,1,2, ---:

1. L,(V)/L(V) is completely reducible.

2. L(V)= N*.,

3. Uniqueness: if {0} = A, S A S A, < --- 1s any series of
submodules of V with completely reducible quotient modules A,.,/A,
for £ =0,1,2, ..., then A, < LV).

Proof. Coneclusion 1 is clear.

Conclusion 2 is true for k¥ = 0. By definition N°= R. If there
exist elements ve V, v # 0, for which Rv = 0, let U= {ve V| Rv = 0}.
By (1), RU = U, a contradiction.

Assuming conclusion 2 to be true for & — 1, i.e., L,_,(V) = (N*7)4,
we prove it for k. Let U be the completely reducible left R-module
U= L(V)/L,_(V). Since L,(V) is a submodule of V, by assumption
(1) we have RL,(V)= L,(V) and consequently RU= U. Applying
Lemma 1 to the module U, we find that NL(V) < L,_(V) = (N*)*
and hence that L, (V) S N*. However, since NN* < (N*7)*, Lemma
1 again guarantees that the module N**/(N*~)L is completely reducible,
and hence we have the opposite inclusion N*L & L, (V).

To establish conclusion 3, assume A4, , & L, ,(V); the latter holds
for k=1 and 2. The complete reducibility of the module A,/A._,



238 JOHN DAUNS

together with Lemma 1 implies that NA, & A4,_, and hence that NA, &

L, (V). Thus N*A, & N*'L, (V) = {0}, or A, & N™ = L(V).
3. The upper Loewy series. The next lemma is false unless
the restriction (2) from the introduction is imposed on the ring.

LEMMA 3. Let R be a ring with radical N such that RIN s
completely reducible. Let U be a left R module with RU= U. Then
for any ve Uwith ve NU, there exists a maximal proper submodule
M of U with NUS M, but ve M.

Proof. By Lemma 1, the quotient module U/NU is a direet sum
of simple modules. The vector v + NU can be written as a unique
finite sum of vectors each of which lies in a simple submodule of T/NU.
Let P be a submodule of U with NUE P, with P/NU simple, and
such that v + NU has a nonzero component in P/NU. Then U/NU is
the direct sum

u __ P ® M
NU NU ~ NU

where M is a submodule of U with NUZ M. Clearly, ve M. Since
U UNU . P

n

M — M/NU ~ NU’

it follows that U/M is simple and hence that M is maximal in U.

Next a counterexample is given to show that the last lemma is
false if the ring R fails to satisfy (2). Let R be any commutative
integral domain with a unit in which every ideal is principal and with
a quotient field @ not equal to R. The module @ over R cannot contain
a maximal proper submodule M., Otherwise, let a/b¢ M with «, be R.
Then @ = M + R(1/b) and 1/b* = m + n/b for some m ¢ M, n€ R. Hence
1/6=bm +nand % ¢ M. Thus R<Z M and for some c€ R withc¢=# 1 or
0, we have RN M = Re. Since @ = M + R(l/¢), there exists m ¢ M and
se R with 1/¢* = m + s/e. Consequently, 1/c = (mc¢* + s¢) e M, contra-
dieting the fact that R &£ M. If R has a finite number of primes, then
the radical IV of R is the principal ideal generated by the product of
all the primes. In this case NQ = @, and the previcus lemma is not
applicable. If R has an infinite number of primes then N is zero. Since
R cannot contain a single minimal ideal the hypothesis (2) that B/N is
a direct sum of minimal left ideals fails,

The following theorem about the upper Loewy series is a perfect
analogue of Theorem 2 for the lower series.

THEOREM 4. Let the ring R with radical N and the module V be
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as in (1) and (2). Then the following holds for all k=0,1,2, ---:

1. L¥V)/L¥(V) 1s completely reducible.

2. LXV)= N*V.

3. Uniqueness: if V=A2A'2A*2D --- 18 any series of
submodules of V with completely reductble quotient modules A*[A***
for k=0,1,2, then A* 2 L¥V).

Proof. By use of Lemma 1, conclusion 1 is an immediate conse-
quence of conclusion 2.

In order to prove conclusion 2, assume by induction that L* (V) =
N*1Y; the latter holds if & = 1, since N° = R by definition and RV =
V by assumption. If ve L¥'(V) but v¢ NL¥'(V), then by Lemma 3
the element v¢ L'[L*(V)] = L¥ V). Hence N*¥V 2 L*(V). Conversely,
if @ is a maximal submodule of L**(V), then by Lemma 1, NL* (V) &
Q, and hence N*V & L¥ V). Thus L¥V) equals N*V.

Conclusion 8 is valid for & = 0, assume it for &k — 1, i.e., L¥ (V) &
A**, Since the module A*~'/A* is completely reducible, we have NA*—' &
A" and consequently that L¥V) = NL*¥(V) & NA* ' < A~

REMARKS. (i) It is not clear whether the hypothesis in Theorems
2 and 4 that for any submodule U of V, RU = U cannot be weakened
to require only that RV = V. In order to do this, perhaps some
additional hypothesis may have to be placed on R, e.g., RN = N.

(ii) The associativity of multiplication in the ring R was never
used. For example, all of the previous considerations remain valid for
a Lie module over a Lie ring.

(iii) It seems reasonable to conjecture that continuous analogues
of the theorems of this paper could be formulated in order to be
applicable to the case where the ring R consists of bounded linear
transformations on a Hilbert space V. Then one would have to consider
chains of subspaces of the Hilbert space V such that the quotient of
any two adjacent terms would be a Hilbert space direct sum of closed
R-invariant subspaces containing no proper closed R-invariant subspaces.
The Jacobson radical would have to be replaced by a possibly bigger
ideal—the intersection of all closed regular maximal left ideals of R.
(If R were norm-closed and commutative, then any regular maximal
ideal would be automatically closed.)

Next some corollaries of Theorems 2 and 4 are derived. In part 3
of the next lemma the ring R is viewed as a left R-module over itself.

COROLLARY 5. Let the ring R and the module V be as in (1) and
(2) and let W be any submodule of V. For conclusion 3 assume in
addition that for any left ideal I of R, RI = I. Then for all k =
0,1,2, --- the following hold:

(1a) L(W) = W N Ly(V)
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(1b) LHW) S W LXV)

(2a) L VW] = E‘ﬁL)WJF_W

(2b) L)+ W g iviw)
W

(3a) L*R)V = LXV)

(3b) LRV S L(V).

The proof of the last lemma is an immediate consequence of parts
2 of Theorems 2 and 4. In order to show that the inclusion
relation in the b parts can be strictly proper, let R be the ring of all
7 X 1 matrices with zeroes above the diagonal, coefficients in any field
and with » and k satisfying 0 < &k <% — 2. In this case the radical
N consists of all matrices with zeroces on the diagonal; for any integer
1in0 <14 =<n, N*= N"*%and L(R) = N". To obtain strictly proper
inclusions in (1b), (2b), and (3b), simply take V= N and W = N,

Conclusions (2a) and (2b) of the last corollary can be rephrased by
saying that in the category whose objects are all left R-modules V such
that RU = U for any submodule U of V and whose maps are module
homomorphisms, L¥(V) is a functor but L,(V) is not.

It is not clear what the most natural hypothesis on the ring R
and the module V should be in order for the conclusion of the next
corollary to be valid.

COROLLARY 6. Let R, N, and V be as in (1) and (2). In addition
let V be a faithful R-module. Assume further that for any integer
k=0,1,2, --- for which N* = {0}, there exists some x € R such that
N¥x = {0} but N¥'x = {0}. Then tf N is nilpotent, the lower Loewy
series has a finite number of terms, the last term being V. If N is
not nilpotent, the lower Loewy series is an infinite ascending chain.

Proof. It suffices to show that if N* = {0}, that then N**C(N*+)t,
Take € R such that N*x # {0} but N**'x = {0}. Then 2V & (N*)*,
but by the faithfulness of V, 2V & N*!; consequently N*LcC (N*¥+)*,

It is interesting to note in connection with the next corollary that
there is an example of a ring R whose radical consists entirely of
nilpotent elements but with N*= N, see [2, p. 72] and [7, p. 50].

COROLLARY 7. Let R and V be as in (1) and (2) and assume in
addition that V is a finitely generated R-module. Then the upper
Loewy series of V over R either terminates with zero in a finite
number of steps or is an infinite descending chain,
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Proof. Under the assumption that the k-th term N*V¥ of the upper
Loewy series of V is not 0, it has to be shown that N*"'Vc N*V.
It suffices to show, more generally, that for any finitely generated
module W over R, NW = W. If NW = W, then the fact that N is
a left ideal implies that W is also finitely generated over N and not
merely over R. But now by [5, p. 200, Proposition 2] we have NW
W, a contradiction.

ExAMPLES. (i) In sharp contrast to the minimum condition case,
the following simple examples show that even if the ring R and module
V satisfy conditions (1) and (2), the upper and lower Loewy series need
not be of the same length. Let R be the ring of all matrices over
any field with an infinite number of rows and columns, with only a
finite number of nonzero entries, and having zero entries above the
main diagonal. The module V is to consist of column vectors with only
a finite number of nonzero components. Then N consists of all matrices
with zeroes on the main diagonal. Clearly, R and V satisfy (1) and (2).
For any integer &k, N*V consists of all column vectors with first %
components zero; N*! = {0} and consequently L.(V)= L,..(V)=0,
where w is the first infinite ordinal. Hence the lower series has each
term zero whereas the upper series is an infinite properly descending
chain with L°(V) = {0}. If « is an ordinal which is not a positive
integer, then there just does not seem to be in general any way of
characterizing the terms L,(V) and L,(V) of the Loewy series in terms
of the radiecal. In the above example the expected analogue of conclusion
2 in Theorem 2, i.e., L (V)= (N N**, is false.

(ii) An example satisfying (1) and (2) where L. (V)C L,..(V)=
V can be constructed by taking R as the ring of all matrices with an
infinite number of rows and columns, with zeroes below the main diagonal,
with only a finite number of nonzero entries off the main diagonal, and
having all the entries on the diagonal eventually constant. The module
V is to consist of all column vectors with an infinite number of com-
ponents but with all the components from some point on eventually
constant, The radical N is the set of all matrices with zeroes on the
diagonal; N*! consists of all vectors having all components zero except
possibly the first k. Hence L,(V) is the subspace of all vectors having
only a finite number of nonzero components. Since V/L.(V) is isomorphic
to the coefficient field, L,..(V) = V. Although the lower Loewy series
is a proper infinite ascending chain, the upper series contains only two
distinet terms.
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