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ON THE NONSINGULARITY OF COMPLEX MATRICES

PAUL CAMION* AND A. J. HOFFMAN**

Let A — (aij) be a real square matrix of order n with
nonnegative entries, and let M(A) be the class of all complex
matrices B = (6^) of order n such that, for all i, j , 1bi3 [ = ai3.
If every matrix in M(A) is nonsingular, we say M(A) is regular,
and it is the purpose of this note to investigate conditions
under which M(A) is regular.

Many sufficient conditions have been discovered (cf., for instance,
[8] and [3], and their bibliographies), motivated by the fact that the
negation of these conditions, applied to the matrix B — λJ, yields
information about the location of the characteristic roots. We shall
show that a mild generalization of the most famous conditions [2] is
not only sufficient but also necessary. (The application of our result
to characteristic roots will not be discussed here, but is contained in
[5]. See also [7] and [9]).

If

(1.1) au > Σ aij , i = l , •-.,%,

then ([2]) M(A) is regular. Clearly if P is a permutation matrix, and D a
diagonal matrix with positive diagonal entries, such that PAD satisfies
(1.1), then M(A) is regular. We shall show that, conversely, if M(A)
is regular, there exist such matrices P and D so that (1.1) holds.

2* Notation and lemmas* If x — (xu , xn) is a vector, xD is
the diagonal matrix whose ith diagonal entry is xim If M = (mi3) is
a matrix, Mυ is the vector whose ith coordinate is mu. A vector x =
(xlf •••,#„) is positive if each xά > 0; x is semi-positive if x Φ 0 and
each xd ^ 0 . A diagonal matrix D is positive (semipositive) iί Dυ is
positive (semi-positive). If A = (α^ ) is a matrix with nonnegative
entries, a particular entry ai3 is said to be dominant in its column if

ai3 > Σ akj
kφi

LEMMA 1. If eu , en are vonnegative numbers such that the
largest does not exceed the sum of the others, then there exist complex
numbers Zi such that
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(2.1) |S ί l = βί i = l , . . . f n

and

(2.2) Σzt = O.

Proof. It is geometrically obvious (and can easily be proved by
induction) that the conditions on {e^ imply there exists a (possibly
degenerate) polygon in the complex plane whose successive sides have
length eu e2, , en. Let the vertices xlf , xn be so numbered that
I xt - xi+ι I = eiy i = 1, , n - 1, | xn - x1 | = en. Sett ing s< = x{ - xi+1

obviously satisfies (2.1) and (2.2).

LEMMA 2. Let M be a real matrix with m rows and n columns.
Then

(2.3) Mx ^ 0 , x semi-positive

is inconsistent if and only if

(2.4) w'M > 0 , w ^ 0

is consistent. Further, if (2.4) holds, we may assume there exists
a w satisfying (2.4) with at most n coordinates of w positive.

This lemma is well known in the theory of linear inequalities.

3. THEOREM. Let A — (a^) be a matrix of order n with each
entry nonnegative. The following statements are equivalent:

(3.1) M(A) is regular:

(3.2) if D is any semi-positive diagonal matrix, then DA contains
an entry dominant in its column)

(3.3) there exists a permutation matrix P and a positive diagonal
matrix D such that PAD satisfies (1.1).

Proof. (3.1) => (3.2). Assume (3.2) false for some semipositive D
with Dv = (du , dn). Let ( α ^ , , anjdn) be any column vector of
DA. The coordinates of this vector satisfy the hypotheses of Lemma 1,
so there exist complex numbers zly ,zn satisfying

(3.4) ΣZi = 0 ,

and

(3.5) | ^ | = ai3-di , i = 1, , n .
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Let

Vij = ttijZill %i i y

with Zil\Zi\ = l, if Zi = 0. Then (3.4) and (3.5) become

(3.6) Σ<2Ai = 0,

and

(3.7) |δ«l = α*i, ί,J = 1, ~-,n.

But (3.7) states BeM(A), and (3.6)—since not all d< are 0—asserts a
linear dependence among the rows of B. Thus B e M(A) would be
singular, violating (3.1).

(3.2) ==> (3.3). Let K be a matrix of order n with fc« = 1, kiS =
— 1 for i =£ j , and let A, be the jth column of A. Consider the system
of n2 linear inequalities in the semi-positive vector x

(3.7) KAfx^O, i = l , - , Λ .

Notice that (3.2) is identical with the statement that (3.7) is inconsistent.
By Lemma 2, there exist n nonnegative vectors μ1, , μn such

(3.8) Σ μt'KAf > 0 .

Let μj = (μf, ••, μi). By the last sentence of Lemma 2, we may
assume at most n of the n2 numbers {μi} are positive.

Since each row of each KAf contains at most one positive entry,
it follows from (3.8) that exactly n of the {μi} are positive. We now
show that, for each j9 there is exactly one k such that μi > 0. Assume
otherwise, then for (say) j — j*, μj* = 0. Let A be the matrix obtained
from A by replacing A5* by 0. Then (3.8) would still hold with Aό

replaced by 0, so (from the "only if" part of Lemma 2), for any semi-
positive diagonal matrix E, EA contains an entry dominant in its column.
Let y be a real nonzero vector orthogonal to the columns of A, let
N — {% I y{ ^ 0}, and N' the complementary set of indices. Then, for each./.

/QQ\ V oi n — V (— oj λπ

ίeN iew

If E is the diagonal matrix with Er = (| y11, , | yn |), then EA, from
(3.9), would contain no entry dominant in its column, a contradiction.

Let σ be the mapping sending j —> k, where μi > 0. By (3.8), σ
is a permutation of {1, , n}, and

which is (3.3).
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(3.3) => (3.1) was noted in the introduction.

4* Remarks* (i) It is perhaps worth pointing out that the
permutation in (3.3) is unique. For, without loss of generality, assume
P and D both the identity matrix, so that (1.1) holds. Assume Q and
E given so that QAE satisfies (1.1). If Q is not the identity permu-
tation, then there must exist some cycle such that (say)

(4.1)

> αff Λ β f f l

(^qrQi

eQ1 ^ ^QrQr

eQr

Multiplying the inequalities (4.1) together, we obtain

which violates (1.1).
In fact, it is clear from the foregoing that the diagonal entries

in the PAD of (3.3) will be that collection of n entries of A, one from
each row and column, whose product is a maximum. Further, that
collection is necessarily unique. Finding the collection amounts to
solving the assignment problem of linear programming [1] where the
"scores" are {loge%}. In some cases this can be done easily ([4]), but
not in general [6].

(ii) If we had confined our attention to real rather than complex
matrices, our theorem does not apply, and the problem seems difficult.
With somewhat stronger hypotheses than the real case of (3.1), the
problem has been solved by Ky Fan [3],
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