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BOUNDARY VALUE PROBLEMS FOR NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

H. A. ANTOSIEWICZ

Conditions are given under which a quasi-linear differential
equation has at least one solution in a given compact interval
that satisfies a given system of homogeneous or nonhomogeneous
linear constraints. These conditions are not formulated in the
space in which the solutions take their values, as is usually
done; instead they involve the set of continuous mappings
subject to the constraints and the set of forcing terms for
which the associated nonhomogeneous linear differential equa-
tion has solutions satisfying the constraints, The latter set
is, under mild conditions, a topological direct summand of the
space of continuous mappings. This occurs in the problem of
the existence of periodic solutions which is discussed in detail
as illustration,

In the present note we derive simple sufficient conditions in order
that a differential equation

(1) © = Aty + f(t, )

have at least one solution % in a compact interval K which satisfies
a system of constraints of the form

(2) ci(w) = 7; 1<i<m.

Here (c;) is a linearly independent family of continuous linear forms
on the Banach space C of continuous mappings of K into X, the
underlying real Banach space, and y = (y;) is an arbitrary point in R".

Our results are in the spirit of two very general theorems,
essentially due to Corduneanu [7], which Hartman and Onuchic [9]
have applied to the asymptotic integration of differential equations such
as (1). However, unlike these theorems, our considerations do not
depend upon the work of Massera and Schiffer (see, e.g., [11], [12])
but instead are based on some elementary facts concerning linear dif-
ferential equations that admit solutions for which (2) holds. An entirely
different treatment of boundary value problems has recently been given
by Conti [4], [5], [6].

For the sake of simplicity, we assume throughout that ¢ — A(¢) is
a continuous mapping of K into the normed space of continuous
endomorphisms of X and that f is a continuous mapping of K X K
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into X. Much less restrictive assumptions would suffice.

2. Let I" be the mapping ¢ — (¢;(¢)),<i<m Of C into R™ and denote
by V the inverse image by I" of any y€ R™. Since I” is a continuous
linear surjection, V is a closed linear variety of codimension m in C.

We first examine under what conditions a linear differential e-
quation

(3) x' = A(t)x + b(t)

with be C has at least one solution which belongs to V.

Corresponding to some (fixed) ¢,e€ K, define ¢: C— C to be the
mapping which associates with each be C the particular solution of (3)
that equals 0e X at t,, and let ¢: X — C be the mapping whose value
at each xe X is the solution of the homogeneous equation associated
with (3) which equals = at ¢,. Clearly, ¢ and « are continuous linear
injections, and every solution v of (3) in K has the unique represen-
tation v = r(x) + ¢(b) where x = v(t,). It follows that (3) has a solution
in ¥V if and only if the equation

(4) Ioq(w) =y — I'o¢(b)

has a solution in X,

Set Y=To4(X), ®= —I"o¢, and define B as the inverse image
by @ of the closed linear variety —y + Y in R™ Then B is either
empty or a closed linear variety in C. Indeed, in the latter case, every
equation (3) with b€ B has at least one solution belonging to V.

Observe that the null space X, of "o is a closed linear sub-
space of X whose codimension is at most equal to m. Hence X, admits
a topological supplement X, and there exists a continuous endomorphism
P of X which projects X along X, onto X,. Moreover, since the
restriction of "o+ to X, is obviously an isomorphism of X, onto Y,
there is a constant A > 0 and, for each z€ Y, a unique z,€ X, such
that "o 4r(x) =2z and ||z, || S N ]| z].

LemMA 1. If B is nonempty, there exist positive constants o, S5,
v such that, given any x,€ X,, (3) has for every be B a unique solution
v eV with Pv(t,) = «, for which

(5) lvll = allell + Bllyll + v IIb].

The proof is an immediate consequence of our preceding remarks.
Lemma 1 shows that, if B is nonempty, (3) induces a mapping
a: (%, 0) > v of X, X B into V which is continuous. For, whatever
(2, b)), (&, b,) in X, X B, the mapping w = o(x,, b)) — d(Z,, b,) is a
solution of (3) with b = b, — b, such that Pw(t,) = x, — %, and I"(w) = 0,
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and this implies by (5)
(6) oo, b) — 0(@0, b) || = [y — Zoll + 7[5 — B: ] .

It may happen that ye Y or, equivalently, that B is a closed linear
subspace of C. This occurs if and only if the homogeneous equation
associated with (3) has at least one solution which belongs to V. Of
course, this is always the case when y = 0.

LEMMA 2. If yeY and I'ogdor 48 surjective, then B 1is a
topological direct summand of C.

Proof. Since I'og¢ o is a continuous linear mapping of X onto
R™ whose null space is a topological direct summand of X, there exists
a continuous linear injection M: R™ — X which is the right inverse of
I o goqp, Define the injection ¥ = —+p o M of R™ into C and let @
be the projection of R™ along Y onto any supplement of Y. We assert
that 7=70oQo® is a continuous projection of C for which z~*(0) = B.
Clearly, = is a continuous endomorphism of C. It is idempotent, hence
a projection, because @ o ¥ is the identity mapping of BR™. Moreover,
7(c) = 0 for some ce C is equivalent to @ o @(c) = 0 which, in turn,
is equivalent to c€ @-%(Y). Since ye Y implies B = @~%(Y), it follows
that z—(0) = B.

3. We now turn our attention to the nonlinear differential e-
quation (1).

For convenience we introduce, for every be V, the injection
gt — (£, b(t)) of K into K X X so that we may write fo g, for the
continuous mapping ¢ — f(¢, b(¢)) of K into X. The constants «, 8,7
will always be those referred to in Lemma 1.

Evidently, a necessary condition for (1) to have a solution in K
belonging to V is that B be nonempty. Therefore we will make this
assumption in the sequel, without further mention, To obtain suf-
ficient conditions we proceed in the following way, which suggests
itself rather naturally,

Suppose there is a closed ball B in V¥ such that fo g, € B for every
be B. Then (1) gives rise to the mapping 23 (x,, b) — o(x,, fog,) of
X, X B into V; of course, 3(x,, b) is the unique solution v of the linear
differential equation

(7) g’ = A)x + f(¢, b(?))

which belongs to V and satisfies Puv(t,) = ®,. It is easy to see that ¥
is continuous. For the continuity of f in K x X implies that the
mapping b— fog, of B into B is continuous, and the continuity of
g: X, X B—V was shown previously. Clearly, every u € B such that
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X(x,, w) = u for some x,€ X, is a solution of (1) in V with Pu(t,) = «,.
Thus, we only need to look for further conditions under which the
mapping b — X(x,, b) of B into ¥V has a fixed point for some x,¢ X,.

THEOREM 1. Let a =0, » >0, 0 >0 be constants such that
aa + Bllyll +v0 = r and denote by H, the closed ball in X, with
center at 0 and radius a. If X has finite dimension and tf be V
and ||b]| < r implies fog,e B and || fog,|| £ p, then (1) admits, for
each x,€ Hy,, at least one solution we V with ||ul|] < for which
Pu(t,) = x,.

Proof. The ball B={be V:||b|| = r} is a convex closed subset of
C, because V is closed. Lemma 1 and our assumptions show that
S(x,, By B for any x,¢ H,., From this we deduce at once that the set
{v(): ve 3(x,, B)}, for each te K, is relatively compact in X. More-
over, since any ve€ 3(x,, B) is a solution of (7) for some be B and so
satisfies, for every ¢, s in K,

(8) o) = o) | < 7 ||114@ 1z | + o1t — 5],

X(x,, B) is equicontinuous and therefore, by Ascoli’s theorem, relatively
compact in €. Thus, Schauder’s theorem implies, for each x,¢ H,, the
existence of at least one ue B such that X(x,, u) = u.

THEOREM 2. Let a = 0 and positive constants k, r, 0 be so chosen
that aa + Bllyll +v0 =7, (kv <1), 2kr < p, and denote by H the
closed ball in X with center at 0 and radius r. Suppose

(i) f ts Lipschitzian in K X H for the constant k;

(ii) fog,€B for every be V with |[b] < »;

(iii) there is a b,e V with |[b,|| = r such that || fog, || = o-2kr.
Then (1) admits, for each wx,€ H,, a wunique solution u, €V with
%, || = 7 for which Pu,(t) = x,. Moreover, the mapping x,— u,,
18 continuous in H,.

Proof. The ball B={be V:||b|| =< r} is a complete subspace of C.
Since, by our assumptions, ||fecg,|| <o for every be B, Lemma 1
permits us to define a sequence (v,) of points in B such that v, = b,
and v, = X (%, v,_;) for n = 1. By induction we may write v, = u,(x,)
where each u,: H,— B is continuous. From (6) we infer then that

(9) (@) — Us(@o) [| = o || thoa(0) — Uy o) [| = 21(Ry)"

for any z,€ H,, and this implies that («,) converges uniformly in H,.
Thus %, = lim w,(x,) exists for every «,€ H,, and x, — u,, is continuous
in H,. It immediately follows that u, € B and X(x., %,,) = u,, for every
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x,€ H,. Clearly, u,, is unique. If w would be another solution of (1)
in V, satisfying [|w]|| =r and Pw() = %, then v=w —u,, is a
solution of the linear equation (3) with b = feg, — feg,, such that
Py(t) = 0 and I'(v) = 0. Since, by Lemma 1, there is only one such
solution, we conclude that v = ¢(0, b), and this implies by (6)

(10) lw = ll = V[IFogu — Fogu,ll = kvilw—u,ll .

Hence w = u,, because kv < 1, which completes the proof.

These theorems are, in a sense, concrete versions adapted to our
setting, of the two very general theorems in [9] which are used
there for a completely different purpose.

We can say more when y e Y and B is a topological direct summand
of C. For in this case, there exists a continuous projection 7 of C
with z7%0) = B and, for every be C, and unique h,€ C such that
fog, — hye B. Obviously, h, = t(fog,) so that ||k, || = |||l | f° gl
and {|fog, — M| = 2||7l|||fogs]]l. Thus, even if fo g, does not be-
long to B for any be V, the linear equation

(1) w = At + f(E, b(8)) — hy(?)

still admits, for each x,¢ X,, a unique solution v € ¥V for which Pv(t,)=x,.
This yields immediately the following result.

COROLLARY 1. Suppose X has finite dimension, ye Y and B is
a topological direct summand of C. Let T be a continuous projection
of C with 77'(0) = B and let a =0, » >0, o> 0 be constants such
that aa + Bllyll + 2ve ||| = r. If ||fog,l| = p for every be V with
I1b]] < r, then there exists, for each x,€ H,, at least one differentiable
mapping we V with ||ul|l < r for which Pu(t) = x, and

(12) w(t) = ADu®) + f(t, ) — h.(b)

at every tc K.
It follows that w will be a solution of (1) in V if and only if
h, = 0. Of course, h,(t) = 0 is the familiar bifurcation equation.
Theorem 2 admits a similar corollary; we leave its precise formu-
lation to the reader because we will state a special case of it presently.

4. We conclude by illustrating our foregoing considerations on an
important example which we discussed in [1] without giving details.
It has been treated by various other methods of different generality
(See, e.g., [2]_'[6]7 [8]’ [10])-

Suppose X is the real normed space R”, K the compact interval
[0, T'], and let us inquire into the existence of a ‘‘periodic’’ solution u
of (1) in K such that u(0) = w(T).
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Here I is simply the mapping ¢ — ¢(0) — ¢(T') of C into R” and
hence V¥V is the Banach space of ‘‘periodic’”’ mappings ce C for which
¢(0) — ¢(T) = 0. If we choose ¢, = 0 and denote by U the particular
solution of the homogeneous matrix equation associated with (3), which
equals the identity matrix I at ¢ = 0, then we may write the mappings
¥: R"— C and ¢: C — C explicitly in the form

(13) @)t — U)e , o(b): t — U(t)E:U"l(s)b(s)ds :

Thus, X, is the null space, and Y the range, of the mapping I — U(T).

The mapping I’ o ¢ o 4y is immediately computed to be the bijection
x— —TU(T)x, and so the assumptions of Lemma 2 are satisfied.

The set B of mappings be C for which the linear differential
equation (3) has at least one ‘‘periodic’’ solution ve V is a topological
direct summand of C.

A topological supplement to B may be constructed by choosing @
(in the proof of Lemma 2), for example, as the projection of R” onto
the null space Y, of the adjoint of I — U(T'), which is a (orthogonal)
supplement to the range of I — U(T). Then B is the null space of
the continuous projection 7 = ¥ o Q o @ where @: C — R" is the mapping

(14) b— U(T )STU—l(s)b(s)ds
and ¥: R* — C the mapping such that
(15) U(w): t — —;- Uty U-(T)z .

It follows that B is precisely the set of those be C for which Qy, = 0
where

(16) vy = —%U(T)S:U“‘(s)b(s)ds .

This reduces to the well-known statements concerning the mean values
of b when the matrix A(¢) in (1) is a constant matrix of the form
diag (0, C) and C has no characteristic multipliers equal to 1.

From Theorem 2 and its proof we deduce the following result.

COROLLARY 2, Let a = 0 and positive constants k, r, o be chosen
such that aa + vo = r, (ky < 1), kr < p. 1If f is lipschitzian in K x H
for the constant k/(2{/ ) and |[f(t, 0| = (0 —kr)/2]T]]) at any
te K, there exists, for each z,€ H,, a unique continuously differ-
entiable mapping w, € V with ||, || < r for which Pu,(0) = x, and

17 W () = At (1) + S(E, Uef (1)) — Do, (B)
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at every te K, Moreover, the mapping ,— U,, 18 continuous in H,

A sequence (v,) of successive approximations to u,, is easily deter-
mined by putting v, = 0 and defining each v,, # = 1, to be the unique
solution of (3) with b = fog,  — h,,_, such that v,e V and Pv,(0) = ..

The successive approximations which are used, for example, in [3]
and [8] for proving results similar to Corollary 2 are chosen so as to
belong to both B and V. Though perhaps less convenient, such a
choice is possible because (3) has for every be B a unique solution in
BN V. This results at once, in our setting, from the following more
general fact.

The projection z(v) of any solution ve V of (3) with be B is the
solution of the homogeneous equation associated with (8) whose value
at t =T is

(18) v = Q[ w(0) — %U(T)S:U"l(s)b(s)sds] )

Conversely, each z;€ Y, determines for every be B one and only one
solution v € V¥ of (3) for which z(») has the value 2, at ¢ = T. Hence
ve V is uniquely determined by either x,¢ X, or € Y,; in particular,
%y = 0 implies ve BN V.
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