A CONVEXITY PROPERTY

Raymond W. Freese

There exist a variety of conditions yielding convexity of a set, dependent upon the nature of the underlying space. It is the purpose here to define a particular restriction involving n-tuples (the n-isosceles property) on subsets of a straight line space and study the effect of this restriction in establishing convexity. By a straight line space is meant a finitely compact, convex, externally convex metric space in which the linearity of two triples of a quadruple implies the linearity of the remaining two. The principal theorem states that the n-isosceles property is a sufficient condition for a closed and arcwise connected subset of a straight line space to be convex if and only if n is two or three.

In such a space S we use two of the definitions stated by Marr and Stamey (4).

Definition 1. If p, q, r are distinct points of S such that at least two of the distances $p q, p r, q r$ are equal, then the points p, q, r are said to form an isosceles triple in S.

Definition 2. A subset M of S is said to have the double-isosceles three-point property if two connecting segments of each of its isosceles triples belong to M.

A proof of (2) together with (4) shows that if M is a closed connected subset of S and possesses the double isosceles property, then M is convex.

Definition 3. A subset M of S is said to have the n-isosceles property ($n \geqq 2$) provided for every ($n+1$)-tuple $p_{1}, p_{2}, \cdots, p_{n+1}$ of distinct points of M such that $p_{i} p_{i+1}=p_{i+1} p_{i+2}, i=1,2, \cdots, n-1$, at least n of the connecting segments lie in M.

A comparison of the double isosceles property and n-isosceles property shows that in S the two are equivalent for $n=2$. For n greater than 2, the double isosceles property clearly implies the n isosceles property but it is not immediately evident whether the two are equivalent. The question may be raised concerning the conditions under which the n-isosceles property is sufficient to replace the doubleisosceles property in the above-mentioned theorem yielding convexity.

This question is answered in part by the following theorem.
Theorem 1. Let M be a closed subset of S such that every pair of points of M can be joined by a rectifiable arc in M. If M has the three-isosceles property, then M is convex.

Proof. Let p, q be any two points of M and let A denote a rectifiable arc in M with endpoints p, q. Then there exists a shortest arc in M joining p, q, say A^{γ}. Let r, s be points of A^{γ} such that $p r=r s=s q$. Then since M possesses the three-isosceles property and A^{γ} is a geodesic arc in M, consideration of the cases reveals $S(p, q) \subset M$ or A^{γ} is the union of a finite number of noncollinear metric segments, or all three connecting segments of triples p, r, s or q, r, s are contained in M.

We shall suppose $S(p, q) \not \subset M$. If A^{γ} is the union of a finite number of noncollinear metric segments, then by the metric transitivities of the space, r or s is noncollinear with p, q. Hence for at least one of the points r, s say r, that point is the terminal and initial point, respectively, [when traversing A^{γ} from p to q] of metric segments. $S_{1} \subset M \cap A^{\gamma}, S_{2} \subset M \cap A^{\gamma}$, which in turn contain point pairs u_{1}, u_{2} and v_{1}, v_{2}, respectively, such that $u_{1} u_{2}=u_{2} v_{1}=v_{1} v_{2}$ while $u_{2} v_{1}$ is strictly less than $u_{2} r+r v_{1}$. Applying the three-isosceles property to the points $u_{1}, u_{2}, v_{1}, v_{2}$, it follows that $S\left(u_{i}, v_{j}\right) \subset M$ for some $i, j=1,2$ which violates the shortest are hypothesis for A^{γ}.

Now suppose all three connecting segments of a triple (say p, r, s) are contained in M. If $p s$ is less than $p r+r s$ and p, r, s are met in this or reverse order, a contradiction is encountered. A similar argument holds if the order is p, s, r. We may then assume the labeling such that p, r, s are encountered in this order and $p s=p r+r s$. Consider the longest segment containing $S(p, s)$ with one endpoint p and contained within M and denote its remaining terminal point by s '. Considering the subarc $A^{\prime}\left(s^{\prime}, q\right)$, it follows as above that it consists of a finite number of metric segments (and hence A^{γ}, which was discussed previously) or else there exists a metric segment contained in $A^{\prime} \cap M$ with either s^{\prime} or q as endpoint.

Repeating this latest procedure at most once, it follows that either A^{γ} consists of a finite number of metric segments or there exist two noncollinear metric segments contained in $A^{\gamma} \cap M$ with a common endpoint. Applying the three-isosceles condition to the appropriate four points of these two segments results again in a contradiction.

We conclude M is convex.
The following sequence of lemmas will lead to a strengthening of
the above theorem. In each of these lemmas, S is assumed to be a straight line space and M to be a closed, arcwise connected subset of S possessing the three-isosceles property.

Lemma 1. Let A denote an arc in M with endpoints p, q. If p, q are not joined by a rectifiable arc, then one of the two points (to be termed 'exceptional') has the property that every arc joining it to other points is nonrectifiable.

Proof. Let a, b be points of A such that $p a=a b=b q$. Then since M possesses the three-isosceles property, the existence of three of the six segments within M implies that either there exists an arc with endpoints p, q consisting of one, two, or three segments each contained within M (and hence there exists a rectifiable arc with endpoints p, q) or all three connecting segments of some triple (say $a, b, q)$ of the quadruple are contained within M.

In the latter case, given a positive ε less than $a b / 4$, by the method of proof of Lemma 23.1 (1), there exists a finite sequence $p_{1}, p_{2}, \cdots, p_{n}$ of distinct points of the arc such that $p_{i} p_{i+1}=\varepsilon, p_{i} p_{j} \geqq \varepsilon$ for $i \neq j, p=$ p_{1}, and $0<p_{n} a \leqq \varepsilon$ for $i, j=1,2,3, \cdots, n$, where p_{n+1} is defined as follows. If none of the $p_{i}, i=1,2, \cdots, n$ are elements of $S(a, b)$ let p_{n+1}, p_{n+2} be two points of $S(a, b)$ such that $p_{n} p_{n+1}=p_{n+1} p_{n+2}=\varepsilon$.

Applying the three-isosceles property to $p_{n-1}, p_{n}, p_{n+1}, p_{n+2}$, it follows that at least one other connecting segment of the quadruple must form with $S\left(p_{n+1}, p_{n+2}\right)$ a connected set and be contained within M. Hence there exists a rectifiable arc from b to p_{n-1} or p_{n} contained within M and consisting of a finite union of metric segments. Suppose p_{n} [or p_{n-1}] is the endpoint of this arc. Then there exists a point, which may be denoted by $r_{n}\left[s_{n-1}\right]$ such that $p_{n} r_{n}=\varepsilon$ and $S\left(p_{n}, r_{n}\right) \subset M$. [$p_{n-1} s_{n-1}=\varepsilon$ and $\left.S\left(p_{n-1}, s_{n-1}\right) \subset M\right]$. Then applying the three-isosceles condition to the appropriate quadruple, it follows that there exists a rectifiable arc from b to p_{n-1} or p_{n-2}. Repeating this process a finite number of times shows the existence of a rectifiable polygonal arc contained in M with one endpoint b and the other endpoint p_{1} or p_{0} where p_{0} is any point of M with $p_{0} p_{1}=\varepsilon$. Hence the lemma is valid, for in the contrary case, if p_{1} and some point u are the endpoints of a rectifiable arc $A\left(p_{1}, u\right)$, then, given that all segments of a, b, q are contained in M, the above method of proof can be followed for a positive δ less than $\min [a b / 4, u p]$ and hence there exists a rectifiable arc $A\left(p_{1}, t\right)$ where t is in $A\left(p_{1}, u\right)$ such that $p_{1} t=\delta$. Then by the preceding it is not possible for t to be p_{i} for any $i=1,2, \cdots, n+2$ for then there exists a rectifiable arc with endpoints b, p_{1}, whereas if t is distinct from these points we may set $t=p_{0}$ and observe that there exists a
rectifiable arc with endpoints p_{1}, b which implies the existence of a rectifiable arc contained in M and joining p, q, contrary to hypothesis.

If $S(a, b) \cap\left\{p_{i}\right\}$ is not null, let p_{j} denote the point with minimum index and delete the members of the sequence with higher index. Then relabel as p_{j+1} a point of $S(a, b)$ such that $p_{j} p_{j+1}+\varepsilon$, and in the above proof replace n by $j-1$.

Lemma 2. There exists at most one 'exceptional' point.
Proof. Suppose the contrary, and let x, y denote two such points. The method of proof of the preceding lemma involving p, q and now applied to x, y shows that there exists a rectifiable arc $A\left(x, y_{0}\right) \subset M$ where $x \neq y_{0}$ or a rectifiable arc $A\left(y, x_{0}\right) \subset M$, where $y \neq x_{0}$, which violates our supposition.

Lemma 3. The set of points of M that is not 'exceptional' is convex.

Proof. Denote by x the 'exceptional' point of M if such exists. Given any two points p, q of $M-\{x\}, p \neq q$, it follows from Lemma 2 that neither p nor q is 'exceptional' and hence by Lemma 1 they are the endpoints of a rectifiable arc in M. As in Theorem 1, considering M as a finitely compact metric space it follows that there exists in M a geodesic arc A joining p, q. Since x is an 'exceptional' point, x is not in A. Again as in Theorem 1, there exist two points of A which, with p, q, form a quadruple to which the three-isosceles condition can be applied. Again x is not a point of any of the connecting segments in M whose existence is determined since it is 'exceptional'. Hence the proof proceeds as in Theorem 1, yielding a contradiction unless the segment joining p, q is contained in $M-\{x\}$.

Lemma 4. The set M is convex.
Proof. In view of Lemma 3, it suffices to show that if x denotes the 'exceptional' point and p is a point of $M-\{x\}$, there exists a point of M between p and x.

Since M is connected, let $\left\{x_{n}\right\}$ denote a sequence of points of $M-\{x\}$ such that $\lim x_{n}=x$. Denote by m_{n} the midpoint of y, x_{n} for $n=1,2, \cdots$. Since M is finitely compact, there exists a point m of M such that m is the limit of a subsequence $\left\{m_{i_{n}}\right\}$ of $\left\{m_{n}\right\}$. Hence $\lim x_{i_{n}}=x$ and $p m_{i_{n}}+m_{i_{n}} x_{i_{n}}=p x_{i_{n}}$ for all n implies $p m+m x=$ $p x$.

From these lemmas, it follows that the theorem below is valid.

Theorem 2. Let M be a closed arcwise connected subset of a straight line space S. If M has the three-isosceles property, then M is convex.

The above theorem is not valid when the condition that M possess the three-isosceles property is replaced by the demand that M possess the n-isosceles property with $n \geqq 4$. This may be observed by considering any nonlinear isosceles triple q, r, s of the euclidean plane. Let M_{0} be the union of the equal segments $S(q, r), S(r, s)$. Since M_{0} clearly is not convex, it suffices to show that M_{0} possesses the n-isosceles property for all n greater than three.

Let $p_{1}, p_{2}, \cdots, p_{n+1}$ be any $n+1$ distinct points of M_{0} such that $p_{i} p_{i+1}=p_{i+1} p_{i+2}, i=1,2, \cdots, n-1$. If n is even the minimum number of segments lying entirely within M_{0} will occur when $n / 2$ points lie on one of the two segments comprising M_{0} and $(n+2) / 2$ points on the other segment. Hence there always exist at least $n(n-2) / 8+n(n+2) / 8$ connecting segments contained within M_{0} which is greater than or equal to n for $n \geqq 4$. If n is odd, the minimum number of segments lying entirely within M_{0} will occur when $(n+1) / 2$ points lie on each segment. Hence since $\left(n^{2}-1\right) / 8+\left(n^{2}-1\right) / 8 \geqq n$ for $n \geqq 5$, it follows that M_{0} has the n-isosceles property for $n \geqq 4$.

References

1. L.M. Blumenthal, Theory and applications of distance geometry, Oxford, 1953.
2. R.W. Freese, A three-point property in straight line spaces, Amer. Math. Monthly 71 (1964), 529-530.
3. V. Klee, Convex set in linear spaces, Duke Math. J. 18, No. 2 (1951), 443-466.
4. J.M. Marr and W.L. Stamey, A three-point property, Amer. Math. Monthly 69 (1962), 22-25.
5. F.A. Valentine, A three-point convexity property, Pacific J. Math. 7 (1957), 12271235.

Received April 21, 1965.
St. Louis University

