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A THEOREM ON LATTICE ORDERED GROUPS, RESULTS
OF PTAK, NAMIOKA AND BANACH, AND A FRONT-
ENDED PROOF OF LEBESGUES THEOREM

S. SIMONS

The main theorem in this paper is on (not necessarily
commutative) lattice ordered groups, and is a generalization
of a result on finitely additive set functions due to Namicka,
Our result can be used to prove Ptak’s combinatorial theorem
on convex means, to give a short non measure-theoretic proof
of Lebesgue’s dominated convergence theorem for a sequence
of continuous functions on a countably compact topological
space, and to give a short proof of Banach’s criteria for the
weak convergence of a sequence in the Banach space of all
bounded, real functions on an abstract set,

We shall prove the following result.

THEOREM 1. If L is a lattice ordered group, {9, gs,+++} 5 @
sequence of positive elements in L, and ¢ 1s an order-preserving
homomorphism of L wnto the real numbers such that the sequence
P(g V- Vg p =1,2, --+) is bounded above and lim sup, o(g,) >0
then there exist integers 0 < v(1) < r(2) < -+ such that, for each s,
P(Gry AN s ANGrisy) > 0.

The idea for this stems from the following result of Namioka.

Namioka’s Theorem. If X is a nonvoid set, S is a field of subsets
of X, {A,, 4, ---}is a sequence in S and ¢ is a positive, finitely additive
function on S such that lim sup, ¢(4,) > 0 then there exist integers
0 < r(l) < r(2) < --+ such that, for each s, u(4,,N---NA4,,) > 0.

Namioka’s Theorem can be found in [2,17.9, p. 157] and [4,
Lemma 2, p. T14]—it can clearly be deduced from our result by tak-

ing L to be the set of all S-simple functions and o(-) = |- dp.

Namioka’s theorem was proved in order to give a proof of Krein’s
Theorem on weak compactness that avoids measure theory. This has
also been done, in a superficially very different way, by Ptak, using
his combinatorial theorem on the existence of convex means, which
appears in print in [3, §24, No. 6, p. 331], [5, 1.3, p. 439] and [6].
Ptak shows that Namioka’s theorem can be deduced from his ([5,
5.9, p. 447]—Ptak proves a slightly weaker form in which the con-
clusion “p(A,; N+« NA,,) > 07 is replaced by “A, N -+ N4, # 67).
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Ptak’s Theorem. We suppose that K is an infinite set and that
X is a nonvoid family of subsets of K. We write P(K) for the col-
lection of all positive, real valued functions A on K such that {:
ke K, \Mk) > 0} is finite and >,exMk) = 1; for @ € K we write Mz) =
SweMk). If
infyepuSUPexM®) > 0

then there exist z, ., -.-¢ X and distinet &, k,, --- € K such that,
for each s, {k, -+, k,} C z,.

We shall show that Ptak’s Theorem can be deduced from Theorem 1
in a natural way and that the “convexity” is a consequence of the
result that weak and the norm closures of a convex subset of a normed
linear space coincide.

If X is a nonvoid set we write B(X) for the set of all bounded,
real functions on X. B(X) is a Banach space under the norm || f|| =
Sup,eg | f(2)|. We shall show that Theorem 1 can be used to give
criteria for the weak convergence of a sequence in B(X).

Finally, we shall show how Theorem 1 can be used to give a
short non measure-theoretic proof of Lebesgue’s dominated convergence
theorem for a sequence of contitnuous functions on a countably com-

pact topological space.
Theorem 1 was first proved in a different context. I would like

to thank Professor K. Fan for reading the manuscript and suggesting
the possibility of an application to Lebesgue’s theorem.

2. Proof of Theorem 1. Using the identities f —fV g+ g9 =
fAgand (f VO ANR(=(FARYNV(@AR)=FAh+gAh, valid for
any positive f, g, and & in L, we see that, if ¢, p are integers and

0<g <y,
@(gp)—l—@(gx\/ s V%)é@((%\/ s \/gq)\/gp)

+o((9. V <o+ V 9) N Gp)
Sp(g VoV Gy) +m§;q¢(gr A Gp).

Letting p — o,

lim sup, @(g,) + @(g: V +-+ V g,) = lim, @(g, V ++- V g,)
+ > lim sup, o(g, A g,).

157=q
Letting ¢ — o,
lim sup, @(g,) + lim, (g, vV «++ V g,) = lim, (9, V -+ \V g,)
+ 2 lim sup, @(g. A g,).

By hypothesis, lim, p(g, V -+ V g,) = lim, (g, V -+ V g,) < = and
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lim sup, ¢(g9,) > 0. Hence

0 < % lim sup, »(g9, A 9,)

and thus there exists »(1) such that lim sup, @(¢,:, A g,) > 0 — and,
from this, @(g,,) > 0.

Performing a similar argument on the elements ¢,. A ¢rwi1,
9riy A\ Grpasy <= - We can show that there exists »(2) > (1) such that
lim sup, o((9r0y A Grw) A (Grey N 95)) > 0, lLee.,

lim sup, (9,1 A grs, A 9p) > 0 — and, from this o(g,q A g,) > 0.

Continuing this process inductively, we complete the proof of the
theorem.

3. Application of Theorem 1 to Ptak’s theorem. If + is a
bounded linear functional on B(X) then there exists a positive linear
functional @ on B(X) such that, for all fe B(X), | (/)] = o(f]). If
f= 0 we define o(f) to be sup,<s(9) and extend ¢ to the whole of
B(X) by linearity).

COROLLARY 2. Let X be a nonvoid set and Y a bounded subset of
B(X). Let Z be the convex extension of Y in B(X). Then (a) im-
plies (b) and (b) implies (c).

(2) Infe |zl > 0.

(b) There exists a positive linear functional @ on B(X) such
that inf,er p((y|) > 0.

(¢) For each sequence {y,, Y. -+-} wn Y there exist integers
0<r) < r@) < -+ and x,, &,, -+ € X such that y,.(z,) = 0 whenever
0<t=s.

Proof of Corollary 2. If (a) is true then O ¢ norm-closure of Z.
Thus, since Z is convex, 0¢ weak-closure of Z, hence 0 ¢ weak-closure
of Y. Thus there exists a bounded linear functional + on B(X) such
that inf,cy, |4(y)| > 0. If the positive linear functional o on B(X)
is chosen as in the remarks preceding this Corollary then (b) is satis-
fied.

If (b) is true, @ is as in (b) and y, ¥, -+ €Y then lim sup,
o(ly,) >0. We apply Theorem 1 to L = B(X) and g,=|y,| and
find that there exist integers 0 < »(1) < »(2) < .-+ such that, for
each s, (¥, | A +++ A |¥rey]) > 0. It follows from this that (c) is
satisfied.

REMARK. It can easily be seen that, if X, Y and Z are as above
and ¢ is a positive linear functional on B(X) then
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infe;p(y) = p(1) inf.e, || 2]]

and so, if all the functions in Y are positive, condition (b) of the
Corollary implies condition (a). This is, essentially, the proof used in
[5, 5.9, p. 447].

Proof of Ptak’s Theorem. If K is any nonvoid set and X is
any nonvoid family of subsets of K then, for each k¢ K, we define
Y, €B(X) by y,(x) =0 if k¢x and y,(¢) =1 if kex. We apply
Corollary 2 ((a) implies (¢)) to Y = {y,: ke K} and obtain: if

infyepx) SUPex M) > 0

then, for all k,, k,, --- € K, there exist integers 0 < r(1) < #(2) < ---
and @, @, --- € X such that, for each s, {k,, ---, k.y} T @,. This is
formally stronger than, though in fact equivalent to, Ptak’s Theorem.

4. Application of Theorem 1 to Lebesgue’s theorem of
dominated convergence.

DerINITION 3. Let X be a nonvoid set and f}, f,, --+ ¢ B(X). We
shall say that {f}, f;, ---} is a Dini sequence if |fi| A\ -+ AN |f,|—0
uniformly on X as s— oo,

COROLLARY 4. Let X be a monvoid set, {f., f,, -+-} be a sequence
wn B(X) with the property that all its subsequences are Dini sequ-
ences and @ be a positive linear functional on B(X) such that the
sequence o(| fi|V -+ V| f]) ®=1,2, ---) is bounded above. Then
P(fa) — 0 as n— oo,

Proof. Let e >0 be given. For each p we write g, = (|f,| — &l)
Vo, If 0<rl) <r?@ < --- are integers then, by hypothesis, for
all sufficiently large s, g,y A <+ A 9,5, = 0 hence

@(gr(l) /\ e /\ gr(s)) - O .

Thus, from Theorem 1, lim sup, ¢(g,) = 0.

Since | f,| — €l = g,, it follows that lim sup, o(| f, | — ¢l) =< 0 and
hence that lim sup, o(| f,|) = ep(1). Since ¢ is arbitrary, this implies
that lim sup, (| f,|) = 0. The required result follows since |p(f,)| =
o1 ful)e

If X is a countably compact topological space we write C(X) for
the set of all real, continuous functions on X. Corollary 4 is, in
fact, true with “B(X)” replaced everywhere by “C(X)”—the proof is
identical. In fact any positive linear functional on C(X) can be ex-
tended by the Hahn-Banach Theorem to one on B(X) and so the result
for C(X) can also be deduced from the result for B(X).) If f,f,, ---
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e C(X) and f,— 0 pointwise as #— oo then, from Dini’s Theorem,
every subsequence of {f,f,, ---} is a Dini sequence. The following
result is then immediate from the “C(X)” version of Corollary 4.

Lebesgue’s Theorem. If X is a countably compact topological
space, fi, fi, -+ € C(X), f,— 0 pointwise as n — o, and ¢ is a posi-
tive linear functional on C(X) such that the sequence (| fi| V -+
VIfHDm=1,2 ---) is bounded above, then @(f,) — 0 as n— oo,

Our final result is a slightly expanded form of a theorem due to
Banach. (See [1, Annexe, §2, Theorem 5, p. 219] and [5, 5.4, p. 445].)

Banach’s Theorem. Let X be a nonvoid set and f,, f;, --- be a
bounded sequence in B(X). Then the conditions (a)—(d) are equival-
ent,

(a) If x, @, ---¢ X then lim, lim inf, | f.(z)]| = 0.

(b) Every subsequence of {f, f,, ---} is a Dini sequence.

(¢) o(f.])— 0 for every positive linear functional » on B(X).

(d) f.—0 weakly in B(X).

Proof. If follows from the definition of a Dini sequence that
(a) implies (b), from Corollary 4 that (b) implies (¢), and from the
remarks preceding Corollary 2 that (¢) implies (d).

If (a) is false and x, 2, --- € X are such that

lim sup, lim inf; |f,(2;)] >¢ >0

then there exist integers 0 < n(1) < n(2) < --- such that, for each £,
lim inf,; | £, ()| > €. By the diagonal process we can find integers
0 < (1) < ¥(2) < .-+ such that, for each %, lim; (f,u)(%;;) exists and
has absolute value greater than ¢. From the Hahn-Banach Theorem,
there exists a positive linear functional o on B(X) such that o(f) =
lim; f{x;;)) whenever fe B(X) is such that the limit exists. For this
value of @, o(f,) - 0. Thus (d) implies ().
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