A THEOREM ON LATTICE ORDERED GROUPS, RESULTS OF PTAK, NAMIOKA AND BANACH, AND A FRONT-ENDED PROOF OF LEBESGUES THEOREM

S. SIMONS

The main theorem in this paper is on (not necessarily commutative) lattice ordered groups, and is a generalization of a result on finitely additive set functions due to Namioka. Our result can be used to prove Ptak's combinatorial theorem on convex means, to give a short non measure-theoretic proof of Lebesgue's dominated convergence theorem for a sequence of continuous functions on a countably compact topological space, and to give a short proof of Banach's criteria for the weak convergence of a sequence in the Banach space of all bounded, real functions on an abstract set.

We shall prove the following result.

Theorem 1. If L is a lattice ordered group, $\{g_1, g_2, \cdots\}$ is a sequence of positive elements in L, and φ is an order-preserving homomorphism of L into the real numbers such that the sequence $\varphi(g_1 \vee \cdots \vee g_p)(p=1, 2, \cdots)$ is bounded above and $\limsup_p \varphi(g_p) > 0$ then there exist integers $0 < r(1) < r(2) < \cdots$ such that, for each s, $\varphi(g_{r(1)} \wedge \cdots \wedge g_{r(s)}) > 0$.

The idea for this stems from the following result of Namioka.

Namioka's Theorem. If X is a nonvoid set, S is a field of subsets of X, $\{A_1, A_2, \cdots\}$ is a sequence in S and μ is a positive, finitely additive function on S such that $\limsup_p \mu(A_p) > 0$ then there exist integers $0 < r(1) < r(2) < \cdots$ such that, for each s, $\mu(A_{r(1)} \cap \cdots \cap A_{r(s)}) > 0$.

Namioka's Theorem can be found in [2, 17.9, p. 157] and [4, Lemma 2, p. 714]—it can clearly be deduced from our result by taking L to be the set of all S-simple functions and $\varphi(\cdot) = \int \cdot d\mu$. Namioka's theorem was proved in order to give a proof of Krein's Theorem on weak compactness that avoids measure theory. This has also been done, in a superficially very different way, by Ptak, using his combinatorial theorem on the existence of convex means, which appears in print in [3, §24, No. 6, p. 331], [5, 1.3, p. 439] and [6]. Ptak shows that Namioka's theorem can be deduced from his ([5, 5.9, p. 447]—Ptak proves a slightly weaker form in which the conclusion " $\mu(A_{r(1)} \cap \cdots \cap A_{r(s)}) > 0$ " is replaced by " $A_{r(1)} \cap \cdots \cap A_{r(s)} \neq \phi$ ").

150 S. SIMONS

Ptak's Theorem. We suppose that K is an infinite set and that X is a nonvoid family of subsets of K. We write P(K) for the collection of all positive, real valued functions λ on K such that $\{k: k \in K, \lambda(k) > 0\}$ is finite and $\sum_{k \in K} \lambda(k) = 1$; for $x \subset K$ we write $\lambda(x) = \sum_{k \in x} \lambda(k)$. If

$$\inf_{\lambda \in P(K)} \sup_{x \in X} \lambda(x) > 0$$

then there exist $x_1, x_2, \dots \in X$ and distinct $k_1, k_2, \dots \in K$ such that, for each $s, \{k_1, \dots, k_s\} \subset x_s$.

We shall show that Ptak's Theorem can be deduced from Theorem 1 in a natural way and that the "convexity" is a consequence of the result that weak and the norm closures of a convex subset of a normed linear space coincide.

If X is a nonvoid set we write B(X) for the set of all bounded, real functions on X. B(X) is a Banach space under the norm $||f|| = \sup_{x \in S} |f(x)|$. We shall show that Theorem 1 can be used to give criteria for the weak convergence of a sequence in B(X).

Finally, we shall show how Theorem 1 can be used to give a short non measure-theoretic proof of Lebesgue's dominated convergence theorem for a sequence of *continuous* functions on a countably compact topological space.

Theorem 1 was first proved in a different context. I would like to thank Professor K. Fan for reading the manuscript and suggesting the possibility of an application to Lebesgue's theorem.

2. Proof of Theorem 1. Using the identities $f - f \lor g + g \le f \land g$ and $(f \lor g) \land h (= (f \land h) \lor (g \land h)) \le f \land h + g \land h$, valid for any positive f, g, and h in L, we see that, if q, p are integers and 0 < q < p,

$$\begin{split} \varphi(g_{\mathfrak{p}}) + \varphi(g_{\scriptscriptstyle 1} \vee \cdots \vee g_{\scriptscriptstyle q}) & \leq \varphi((g_{\scriptscriptstyle 1} \vee \cdots \vee g_{\scriptscriptstyle q}) \vee g_{\scriptscriptstyle p}) \\ + \varphi((g_{\scriptscriptstyle 1} \vee \cdots \vee g_{\scriptscriptstyle q}) \wedge g_{\scriptscriptstyle p}) \\ & \leq \varphi(g_{\scriptscriptstyle 1} \vee \cdots \vee g_{\scriptscriptstyle p}) + \sum\limits_{1 \leq r \leq q} \varphi(g_{\scriptscriptstyle r} \wedge g_{\scriptscriptstyle p}). \end{split}$$

Letting $p \to \infty$,

$$\begin{split} \lim\sup_{p}\varphi(g_{p}) + \varphi(g_{1}\vee \cdots \vee g_{q}) & \leq \lim_{p}\varphi(g_{1}\vee \cdots \vee g_{p}) \\ & + \sum_{1\leq r\leq q} \lim\sup_{p}\varphi(g_{r}\wedge g_{p}). \end{split}$$

Letting $q \to \infty$,

$$\begin{array}{l} \lim \ \sup_{p} \varphi(g_{p}) + \lim_{q} \varphi(g_{1} \vee \cdots \vee g_{q}) \leq \lim_{p} \varphi(g_{1} \vee \cdots \vee g_{p}) \\ + \sum\limits_{r \geq 1} \lim \ \sup_{p} \varphi(g_{r} \wedge g_{p}). \end{array}$$

By hypothesis, $\lim_{p} \varphi(g_1 \vee \cdots \vee g_q) = \lim_{p} \varphi(g_1 \vee \cdots \vee g_p) < \infty$ and

 $\lim \sup_{p} \varphi(g_p) > 0$. Hence

$$0 < \sum\limits_{r \geq 1} \lim \ \sup_p arphi(g_r \wedge \ g_p)$$

and thus there exists r(1) such that $\limsup_{p} \varphi(g_{r(1)} \wedge g_p) > 0$ — and, from this, $\varphi(g_{r(1)}) > 0$.

Performing a similar argument on the elements $g_{r(1)} \wedge g_{r(1)+1}$, $g_{r(1)} \wedge g_{r(1)+2}$, \cdots we can show that there exists r(2) > r(1) such that $\limsup_{p} \varphi((g_{r(1)} \wedge g_{r(2)}) \wedge (g_{r(1)} \wedge g_{p})) > 0$, i.e.,

 $\limsup_{p} \varphi(g_{r^{(1)}} \wedge g_{r^{(2)}} \wedge g_p) > 0$ and, from this $\varphi(g_{r^{(1)}} \wedge g_{r^{(2)}}) > 0$.

Continuing this process inductively, we complete the proof of the theorem.

3. Application of Theorem 1 to Ptak's theorem. If ψ is a bounded linear functional on B(X) then there exists a positive linear functional φ on B(X) such that, for all $f \in B(X)$, $|\psi(f)| \leq \varphi(|f|)$. (If $f \geq 0$ we define $\varphi(f)$ to be $\sup_{|g| \leq f} \psi(g)$ and extend φ to the whole of B(X) by linearity).

COROLLARY 2. Let X be a nonvoid set and Y a bounded subset of B(X). Let Z be the convex extension of Y in B(X). Then (a) implies (b) and (b) implies (c).

- (a) $\operatorname{Inf}_{z \in \mathbb{Z}} ||z|| > 0$.
- (b) There exists a positive linear functional φ on B(X) such that $\inf_{y\in Y} \varphi(|y|) > 0$.
- (c) For each sequence $\{y_1,\ y_2,\ \cdots\}$ in Y there exist integers $0 < r(1) < r(2) < \cdots$ and $x_1,\ x_2,\ \cdots \in X$ such that $y_{r(t)}(x_s) \neq 0$ whenever $0 < t \leq s$.

Proof of Corollary 2. If (a) is true then $0 \notin \text{norm-closure}$ of Z. Thus, since Z is convex, $0 \notin \text{weak-closure}$ of Z, hence $0 \notin \text{weak-closure}$ of Y. Thus there exists a bounded linear functional ψ on B(X) such that $\inf_{y \in Y} |\psi(y)| > 0$. If the positive linear functional φ on B(X) is chosen as in the remarks preceding this Corollary then (b) is satisfied.

If (b) is true, φ is as in (b) and $y_1, y_2, \dots \in Y$ then $\limsup_p \varphi(|y_p|) > 0$. We apply Theorem 1 to L = B(X) and $g_p = |y_p|$ and find that there exist integers $0 < r(1) < r(2) < \dots$ such that, for each s, $\varphi(|y_{r(1)}| \wedge \dots \wedge |y_{r(s)}|) > 0$. It follows from this that (c) is satisfied.

REMARK. It can easily be seen that, if X, Y and Z are as above and φ is a positive linear functional on B(X) then

152 S. SIMONS

$$\inf_{y \in Y} \varphi(y) \leq \varphi(1) \inf_{z \in z} ||z||$$

and so, if all the functions in Y are positive, condition (b) of the Corollary implies condition (a). This is, essentially, the proof used in [5, 5.9, p. 447].

Proof of Ptak's Theorem. If K is any nonvoid set and X is any nonvoid family of subsets of K then, for each $k \in K$, we define $y_k \in B(X)$ by $y_k(x) = 0$ if $k \notin x$ and $y_k(x) = 1$ if $k \in x$. We apply Corollary 2 ((a) implies (c)) to $Y = \{y_k : k \in K\}$ and obtain: if

$$\inf_{\lambda \in P(K)} \sup_{x \in X} \lambda(x) > 0$$

then, for all $k_1, k_2, \dots \in K$, there exist integers $0 < r(1) < r(2) < \dots$ and $x_1, x_2, \dots \in X$ such that, for each $s, \{k_{r(1)}, \dots, k_{r(s)}\} \subset x_s$. This is formally stronger than, though in fact equivalent to, Ptak's Theorem.

4. Application of Theorem 1 to Lebesgue's theorem of dominated convergence.

DEFINITION 3. Let X be a nonvoid set and $f_1, f_2, \dots \in B(X)$. We shall say that $\{f_1, f_2, \dots\}$ is a Dini sequence if $|f_1| \wedge \dots \wedge |f_s| \to 0$ uniformly on X as $s \to \infty$.

COROLLARY 4. Let X be a nonvoid set, $\{f_1, f_2, \dots\}$ be a sequence in B(X) with the property that all its subsequences are Dini sequences and φ be a positive linear functional on B(X) such that the sequence $\varphi(|f_1| \vee \dots \vee |f_p|)$ $(p=1, 2, \dots)$ is bounded above. Then $\varphi(f_n) \to 0$ as $n \to \infty$.

Proof. Let $\varepsilon > 0$ be given. For each p we write $g_p = (|f_p| - \varepsilon 1) \vee 0$. If $0 < r(1) < r(2) < \cdots$ are integers then, by hypothesis, for all sufficiently large $s, g_{r(1)} \wedge \cdots \wedge g_{r(s)} = 0$ hence

$$\varphi(g_{r(1)} \wedge \cdots \wedge g_{r(s)}) = 0$$
.

Thus, from Theorem 1, $\limsup_{p} \varphi(g_p) = 0$.

Since $|f_p| - \varepsilon 1 \leq g_p$, it follows that $\limsup_p \varphi(|f_p| - \varepsilon 1) \leq 0$ and hence that $\limsup_p \varphi(|f_p|) \leq \varepsilon \varphi(1)$. Since ε is arbitrary, this implies that $\limsup_p \varphi(|f_p|) = 0$. The required result follows since $|\varphi(f_n)| \leq \varphi(|f_n|)$.

If X is a countably compact topological space we write C(X) for the set of all real, continuous functions on X. Corollary 4 is, in fact, true with "B(X)" replaced everywhere by "C(X)"—the proof is identical. In fact any positive linear functional on C(X) can be extended by the Hahn-Banach Theorem to one on B(X) and so the result for C(X) can also be *deduced* from the result for B(X).) If f_1, f_2, \cdots

 $\in C(X)$ and $f_n \to 0$ pointwise as $n \to \infty$ then, from Dini's Theorem, every subsequence of $\{f_1, f_2, \dots\}$ is a Dini sequence. The following result is then immediate from the "C(X)" version of Corollary 4.

Lebesgue's Theorem. If X is a countably compact topological space, $f_1, f_2, \dots \in C(X)$, $f_n \to 0$ pointwise as $n \to \infty$, and φ is a positive linear functional on C(X) such that the sequence $\varphi(|f_1| \vee \dots \vee |f_p|)(p=1, 2, \dots)$ is bounded above, then $\varphi(f_n) \to 0$ as $n \to \infty$.

Our final result is a slightly expanded form of a theorem due to Banach. (See [1, Annexe, §2, Theorem 5, p. 219] and [5, 5.4, p. 445].)

Banach's Theorem. Let X be a nonvoid set and f_1, f_2, \cdots be a bounded sequence in B(X). Then the conditions (a)—(d) are equivalent.

- (a) If $x_1, x_2, \dots \in X$ then $\lim_n \lim \inf_i |f_n(x_1)| = 0$.
- (b) Every subsequence of $\{f_1, f_2, \dots\}$ is a Dini sequence.
- (c) $\varphi(|f_n|) \to 0$ for every positive linear functional φ on B(X).
- (d) $f_n \rightarrow 0$ weakly in B(X).

Proof. If follows from the definition of a Dini sequence that (a) implies (b), from Corollary 4 that (b) implies (c), and from the remarks preceding Corollary 2 that (c) implies (d).

If (a) is false and $x_1, x_2, \dots \in X$ are such that

$$\lim \sup_{n} \lim \inf_{i} |f_n(x_i)| > \varepsilon > 0$$

then there exist integers $0 < n(1) < n(2) < \cdots$ such that, for each k, $\lim\inf_i |f_{n(k)}(x_i)| > \varepsilon$. By the diagonal process we can find integers $0 < i(1) < i(2) < \cdots$ such that, for each k, $\lim_i (f_{n(k)})(x_{i(j)})$ exists and has absolute value greater than ε . From the Hahn-Banach Theorem, there exists a positive linear functional φ on B(X) such that $\varphi(f) = \lim_i f(x_{i(j)})$ whenever $f \in B(X)$ is such that the limit exists. For this value of φ , $\varphi(f_n) \to 0$. Thus (d) implies (a).

REFERENCES

- 1. S. Banach, Theorie Des operations Lineaire, Warsaw, 1932.
- 2. J. L. Kelley, I. Namioka, and co-authors, Linear topological spaces, Van Nostrand, 1963.
- 3. G. Köthe, Topologische Lineare Räume, Springer-Verlag, Berlin, 1960.
- 4. I. Namioka, A substitute for Lebesgue's bounded convergence theorem, Proc. Amer. Math. Soc. 12 (1961), 713-716.
- 5. V. Ptak, A combinatorial lemma on the existence of convex means and its application to weak compactness, Amer. Math. Soc. Proceedings on the Symposium on Pure Mathematics, 7 (1963), 437-450.
- 6. ——, A combinatorial lemma on systems of inequalities and its application to analysis, Czech. Math. J. 84 (1959), 629-630.

Received November 19, 1965.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA