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A THEOREM ON LATTICE ORDERED GROUPS, RESULTS
OF PTAK, NAMIOKA AND BANACH, AND A FRONT-

ENDED PROOF OF LEBESGUES THEOREM

S. SIMONS

The main theorem in this paper is on (not necessarily
commutative) lattice ordered groups, and is a generalization
of a result on finitely additive set functions due to Namioka.
Our result can be used to prove Ptak's combinatorial theorem
on convex means, to give a short non measure-theoretic proof
of Lebesgue's dominated convergence theorem for a sequence
of continuous functions on a countably compact topological
space, and to give a short proof of Banach's criteria for the
weak convergence of a sequence in the Banach space of all
bounded, real functions on an abstract set.

We shall prove the following result.

THEOREM 1. If L is a lattice ordered group, {gu g2, •••} is a

sequence of positive elements in L, and φ is an order-preserving

homomorphism of L into the real numbers such that the sequence

φ(9iV VgP)(p = 1, 2, •) is bounded above and Urn supp φ(gp) > 0

then there exist integers 0 < r(l) < r(2) < such that, for each s,

) > 0.

The idea for this stems from the following result of Namioka.

Namioka's Theorem* If X is a nonvoid set, S is a field of subsets
of X, {Au A2, •} is a sequence in S and μ is a positive, finitely additive
function on S such that lim sup^ μ(Ap) > 0 then there exist integers
0 < r(l) < r(2) < . • • such that, for each s, μ(Ar{1) Π - - - Γ\Ar(s)) > 0.

Namioka's Theorem can be found in [2, 17.9, p. 157] and [4,

Lemma 2, p. 714] —it can clearly be deduced from our result by tak-

ing L to be the set of all S-simple functions and φ( ) = l dμ.

Namioka's theorem was proved in order to give a proof of Krein's

Theorem on weak compactness that avoids measure theory. This has

also been done, in a superficially very different way, by Ptak, using

his combinatorial theorem on the existence of convex means, which

appears in print in [3, §24, No. 6, p. 331], [5, 1.3, p. 439] and [6].

Ptak shows that Namioka's theorem can be deduced from his ([5,

5.9, p. 447] — Ptak proves a slightly weaker form in which the con-

clusion "μ(Ar{1) Π n4 r ( 8 ) ) > 0" is replaced by "Ar{1) Π Γ\Ar{s) Φ φ").
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Ptak's Theorem, We suppose that K is an infinite set and that
X is a nonvoid family of subsets of K. We write P{K) for the col-
lection of all positive, real valued functions λ on K such that {k:
ke K, \(k) > 0} is finite and Σ*e*M&) = 1; for x a K we write λ(a ) =

0

then there exist xu x2, e X and distinct kly k2, e K such that,
for each s, {kl9 , ks} c #β.

We shall show that Ptak's Theorem can be deduced from Theorem 1
in a natural way and that the "convexity" is a consequence of the
result that weak and the norm closures of a convex subset of a normed
linear space coincide.

If X is a nonvoid set we write B(X) for the set of all bounded,
real functions on X. B(X) is a Banach space under the norm 11 /11 =
supxes \f(χ) I- We shall show that Theorem 1 can be used to give
criteria for the weak convergence of a sequence in B(X).

Finally, we shall show how Theorem 1 can be used to give a
short non measure-theoretic proof of Lebesgue's dominated convergence
theorem for a sequence of continuous functions on a countably com-
pact topological space.

Theorem 1 was first proved in a different context. I would like
to thank Professor K. Fan for reading the manuscript and suggesting
the possibility of an application to Lebesgue's theorem.

2- Proof of Theorem 1, Using the identities f—fV9+gS
/ Λ g and (f V g) A h(= (f A h) V (g A h)) Sf Ah + g A h, valid for
any positive /, g, and h in L, we see that, if q, p are integers and
0 < q < p,

P) + φ(θi V V gq) S φ{{gι V V gq) V gP)

+ # i V ••• V gq)Λgp)

^ φ(9i V V gP) + Σ φ(^r Λ sfp).

Letting p —• oo 9

lim sup^ (p(^) + φ{gx V V gq) ^ limp ^ ( ^ V V gp)

+ Σ l i m S U P P ψ(gr A gP).

Lett ing q —• oo ^

lim supp φ(gp) + limff φ{gx V V gq) ^ limp φ(g1 V V gp)

+ 2 lim supj, φ(gr A gp).

By hypothesis, limp φ(g1 V V gq) = limp φ{g1 V V gp) < °° and
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lim supp φ(gp) > 0. Hence

0 < X lim supp φ(gr A gP)

and thus there exists r(l) such that lim sup^ φ(grU) A gp) > 0 — and,
from this, φ(gril)) > 0.

Performing a similar argument on the elements grU) A gra)+u
#r(D Λ grω+2, we can show that there exists r(2) > r(l) such that
lim suppφ((grU) A &.<2)) A (grω A gp)) > 0, i.e.,

lim sup,, φ(grω A gr{2i A gp) > 0 - and, from this φ(gr{1) A grw) > 0 .

Continuing this process inductively, we complete the proof of the
theorem.

3* Application of Theorem 1 to Ptak's theorem* If ψ is a
bounded linear functional on B(X) then there exists a positive linear
functional ψ on B(X) such that, for all fe B(X), \ ψ(f) \ ̂  φ(\f\). (If
/ ^ 0 we define φ(f) to be 8wp]g]^fψ(g) and extend φ to the whole of
B{X) by linearity).

COROLLARY 2. Let X be a nonvoίd set and Y a bounded subset of
B(X). Let Z be the convex extension of Y in B(X). Then (a) im-
plies (b) and (b) implies (c).

(a) I n f , e , | | s | | > 0 .
(b) There exists a positive linear functional φ on B{X) such

that infyeγφ(\y\) > 0.
(c) For each sequence {yu y2, •••} in Y there exist integers

0 < r(l) < r(2) < and xu xz, e X such that yrU)(^s) Φ 0 whenever
0 <t ^ s.

Proof of Corollary 2. If (a) is true then 0 g norm-closure of Z.
Thus, since Z is convex, 0 0 weak-closure of Z, hence 0 £ weak-closure
of Y. Thus there exists a bounded linear functional ψ on B(X) such
that infyer | ψ(y) | > 0. If the positive linear functional φ on B(X)
is chosen as in the remarks preceding this Corollary then (b) is satis-
fied.

If (b) is true, φ is as in (b) and yu y2, e Y then lim supp

φ(\yp\)>0. We apply Theorem 1 to L = B(X) and gp=\yp\ and
find that there exist integers 0 < r(l) < r(2) < such that, for
each s, φ{\ yr{1) \ A Λ 12/r(β) |) > 0. It follows from this that (c) is
satisfied.

REMARK. It can easily be seen that, if X, Y and Z are as above
and φ is a positive linear functional on B(X) then
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inΐyeγφ(y) ^ φ(ΐ) infzez \\z\\

and so, if all the functions in Y are positive, condition (b) of the
Corollary implies condition (a). This is, essentially, the proof used in
[5, 5.9, p. 447].

Proof of Ptak's Theorem. If K is any nonvoid set and X is
any nonvoid family of subsets of K then, for each ke K, we define
yk e B(X) b y yk(x) = 0 if kgx a n d yk(x) = 1 if k e x. W e a p p l y

Corollary 2 ((a) implies (c)) to F — {yk:keK} and obtain: if

infλep(m supβ 6 x X(x) > 0

then, for all ku k2, e K, there exist integers 0 < r(l) < r(2) <
and xί9 x2, e l such that, for each s, {fcr(1), , &r(s)} c a?β. This is
formally stronger than, though in fact equivalent to, Ptak's Theorem.

4* Application of Theorem 1 to Lebesgue's theorem of
dominated convergence*

DEFINITION 3. Let X be a nonvoid set and fu f2, e B(X). We
shall say that {flf /2, } is a Dini sequence if | /x | Λ Λ | fs | —> 0
uniformly on X as s —> oo.

COROLLARY 4. Le£ X be a nonvoid set, {fuf2, •••} 5β a sequence

in B(X) with the property that all its subsequences are Dini sequ-

ences and φ be a positive linear functional on B(X) such that the

sequence φ(\f\ V ••• V | / p | ) (p = 1, 2, •••) is bounded above. Then

φ(fn) —*0 a s n —* °°

Proof. Let ε > 0 be given. For each p we write gp — {\fp\ — εl)
V 0. If 0 < r(l) < r(2) < are integers then, by hypothesis, for
all sufficiently large s, gr{1) Λ Λ ^r(S; = 0 hence

φ(QrU) Λ Λ ^r(s)) = 0 .

Thus, from Theorem 1, lim sup^ φ(gp) = 0.
Since |/ p | — εl <: gp, it follows that lim supp ^ ( | / p | — εl) ^ 0 and

hence that lim suppφ(\fp\) ^ eφ(l). Since ε is arbitrary, this implies
that lim s\φpφ{\fp |) = 0. The required result follows since | φ(fn) \ ^

If X is a countably compact topological space we write C(X) for
the set of all real, continuous functions on X. Corollary 4 is, in
fact, true with "B(X)" replaced everywhere by "C(X)"—the proof is
identical. In fact any positive linear functional on C(X) can be ex-
tended by the Hahn-Banach Theorem to one on B(X) and so the result
for C(X) can also be deduced from the result for B(X).) If / l f/2,
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e C(X) and fn —* 0 pointwise as n —> co then, from Dini's Theorem,
every subsequence of {fuf2, •••} is a Dini sequence. The following
result is then immediate from the "C(X)" version of Corollary 4.

Lebesgue's Theorem. If X is a countably compact topological
space, /i,/ 2, ••• eC(X), /«—*0 pointwise as n—• co, and φ is a posi-
tive linear functional on C(X) such that the sequence <p(|/i| V •••
V \fp \)(p = 1, 2, •) is bounded above, then <p(/J —* 0 as %->oo,

Our final result is a slightly expanded form of a theorem due to
Banach. (See [1, Annexe, §2, Theorem 5, p. 219] and [5, 5.4, p. 445].)

Banach's Theorem. Let X be a nonvoid set and /x, /2, be a
bounded sequence in B(X). Then the conditions (a) —(d) are equival-
ent.

(a) If xu x2, € X then limΛ lim inf ζ \ fn{x^) | = 0.
(b) Every subsequence of {flyfi9 •••} is a Dini sequence.
(c) <p(|/Λ|)—*0 for every positive linear functional £> on B(X).
(d) Λ ^ O weakly in B{X).

Proof. If follows from the definition of a Dini sequence that
(a) implies (b), from Corollary 4 that (b) implies (c), and from the
remarks preceding Corollary 2 that (c) implies (d).

If (a) is false and xu x2, •••el are such that

lim sup% lim inf i \ fn{x{) | > ε > 0

then there exist integers 0 < n(l) < n(2) < such that, for each k,
lim infi\fnik)(Xi)\ > ε. By the diagonal process we can find integers
0 < ί(l) < ί(2) < such that, for each ky lim^ (Λ ( f c ))(^ ( i )) exists and
has absolute value greater than ε. From the Hahn-Banach Theorem,
there exists a positive linear functional φ on B(X) such that φ{f) =
limy f(xnd)) whenever feB(X) is such that the limit exists. For this
value of φ, φ(fn) -+* 0. Thus (d) implies (α).
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