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QUASI DIMENSION TYPE. I. TYPES IN
THE REAL LINE

JACK SEGAL

Fréchet defined the concept of dimension type in attempt-
ing to obtain a reasonable way of comparing two abstract
topological spaces. The Fréchet dimension type of a topolo-
gical space X is said to be less than or equal to the Fréchet
dimension type of the topological space Y if and only if there
is a homeomorphism between X and a subset of Y. In this
case we write dX < dY, Notice that the statement, dX =<
dY, is equivalent to the statement, X can be (topologically)
embedded in Y,

Fréchet dimension type also is a more delicate way of
comparing two spaces (when it applies) than covering dimension
(denoted by dim). One difficulty is that many spaces are not
comparable with respect to Fréchet dimension type because
of the strong restriction of requiring that one be embeddable
in the other. In this paper we will relax this restriction
somewhat to obtain a new dimension type called quasi di-
mension type. Under quasi dimension type many more spaces
are comparable and yet many of the properties of Fréchet
dimension type are retained. Kuratowski showed that there
are 2° Fréchet dimension types represented by subsets of the
real line. We will show that there are only denumerably
many quasi dimension types represented by subsets of the
real line. Furthermore, we completely determine the partial
ordering of these types and give a topological characterization
of the linear sets having a given type.

For two topological spaces X and Y, we will say X is quasi
embeddable in Y, if, for each covering a of X, there is a closed «a-
map, f,, of X into Y, (Recall that a continuous function f: X—Y
is an a-map if there is a covering B of Y such that f~ B8] > «, i.e.,
7B refines «, and f is closed if it takes closed subsets of X into
closed subsets of Y.) We use “covering” to mean “open covering”.

Furthermore, we will say that the quasi dimension type of a
topological space X is less than or equal to the quast dimension type of
a topological space Y if and only if X is quasi embeddable in Y, If
this case we write ¢ X < qY. We say ¢X <qY if ¢X=<qY but it
is false that ¢ Y < ¢X. Further if ¢X <qY and ¢qY < ¢X then ¢X =
qY. So for two spaces X and Y, one and only one of the following
conditions holds: (1) ¢X < qY, (2) ¢Y < ¢X, 8) ¢X=qY and (4) X
and Y are not comparable with respect to quasi dimension type.
Clearly, if ¢X =qY and qY < qZ then ¢X < qZ. Note also that
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quasi dimension type is a topological invariant of ¥ and is monotone
on closed subsets, (i.e., if X is a closed subset of Y then ¢X < qY).

1. Preliminaries. All spaces considered in the remainder of this
paper are metric. The diameter of A will be denoted by d6(A4).

DEFINITION 1.1. A mapping f: X—Y is a strong e-map if there
is an > 0 such that: if AcCY and 6(4) <7, then d(f'[4]) <e. A
mapping f: X— Y is an e-map provided that, for each y € Y, we have

o(fT(y) <e.

DEFINITION 1.2. A space X is strongly c-embeddable in a space
Y provided that, for each ¢ > 0, there is a closed strong e-map of X
into Y. If this is the case we write sX = sY.

REMARK. Note that X and Y may be homeomorphic without
sX =sY being true (see Example 1.1), In general, neither quasi
embeddability nor strong c-embeddability implies the other (see Examples
1.1 and 1.2). However, we do have (1) if Y is compact, then ¢X < qY
implies sX =<sY and (2) if X is compact, then sX =< sY implies
gX =qY. If X and Y are compact then the following statements
are equivalent: (3) ¢X = qY, (4) sX <sY and (5) there are e-maps
of X into Y for all e > 0. If ¢X =< qY, then (6) if for each «, and
for each a-map of X into Y, f,, we have that f,[X] is compact
(connected), then X is compact (connected) and (7) dim X < dimY
(see [8] and [9] for more details on these mappings). It should be pointed
out that in contrast to (7) that the existence of e-maps of X into Y
for all € > 0 does not, in general, imply that dim X < dim Y (see [12]).

DEFINITION AND NoTATION 1.3. If o = {4,} is a collection of sets
and X is a set, then an X ={4, N X|4,ea, 4, N X+ D}, A set A
is countable if and only if card A < W,. A set A is denumerable if and
only if card A = W,. A set is dense in itself if each of its points
is a limit point of it. We define the sets (where R' denotes the real
(Euclidean) line):

Q = {xe R'|x is rational} ,

J, = @ = empty set

J ={xeR'|x is a positive integer} ,
J,={zeJ|l == n},

C = Cantor discontinuum on [0, 1] ,
D={xeR'|x=0o0r 1/n for n =1,2, -.-},
I=1[-1/2,0],
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J* = U, v+ 1/2]|ved},

L* = U{l1/(n + 1), 1/n) [n = 1, 8,5, - - -} U {0},
M* = U{A/(n +1),1/n)|n =1,3,5, ---} U {0},
L, =U{(-2j — 1/2, —25]|je .},

Lo =UA{(-2j - 1/2, =2j][jed}, Ly = O

M, =U{(-2/+1/2, =25+ 1)|jed.},

M. =U{(-2/+1/2, —2§ + ) |jed}, M, = O

ExAMPLE 1.1. (¢X = qY does not imply sX < sY.) Let X =,
Y = D — {0} and « be any cover of X. Then a* = {{i}|¢ e J} refines
a and f: X—Y defined by f(¢) =1/t is a closed map. Let 8=
{{1/i}|ieJ}. Then f~[B] > a* > o and so f is an aw-map. Thus we
have ¢X < qY. Now we will assume sX < sY and show it leads to
a contradiction. Let g be a closed (1/2)-map of X and Y., Then, for
any 7 > 0, there are distinct positive integers ¢ and j such that
|(/e) — (1/5)| <7 and 1/i,1/jeg[X]. But é(¢~"[{1/7}U{L/5}]) =1 > 1/2.
Thus sX =< sY must be false.

ExamPLE 1.2. (sX = sY does not imply ¢X =qY). Let X =
D — {0} and Y = D. Then, for any ¢ > 0, there is a closed strong
e-map, f.: X — Y, defined by

0,0 < 1/i < ¢/2

fe(1/7) = 1/2,¢/2=<1/i =1 ’

Let 1 = ¢/2 and suppose ACY and 6(4) <. Then if 0c A we have
AcC[0,7) and so o(f'[A]) <e. If 0¢A4 we have d(f'[4]) <y <e.
Hence sX = sY. Now we will assume that ¢X < qY and show it
leads to a contradiction. The image under each closed a-map of X
is closed in Y and hence compact. This implies that X is compact
which is a contradiction.

ExamPLE 1.3, It is possible for X to admit closed e-mappings
into Y, for all ¢ > 0, and yet not admit s-mappings onto a fixed subset
of Y for all ¢ >0, For example, let X =D and Y =J. Just defined
S by

() \(1, for 0 =2 <1/n and xe¢ X
W) = .
1+ Q/x), for I/n =2 =1and e X
Then f, is a (1/n)-mapping of X onto J,,,CY, (ie., ¢D = qJ).

Suppose that there is a subset Y, of Y such that X admits e-mappings
onto Y, for all ¢ > 0. Since X is compact so is Y,. But the only
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compact subsets of Y are finite. Obviously X cannot be e-mapped
onto a finite set for all ¢ > 0.

ExamPLE 1.4. Now while two spaces of the same Fréchet di-
mension type have the same cardinality, this may not be the case for
two spaces of the same quasi dimension type. For example, consider
the spaces C and D. It is clear that ¢D < qC and we wish to show
that qC = qD. Recall that C is obtained by first dividing [0, 1] into
three equal subintervals and deleting the interior of the middle one.
Then each of the two remaining intervals is divided into three equal
intervals and the interiors of the middle ones are deleted. Then
each of the remaining four intervals is treated similarly and so on
indefinitely. The set of points remaining after this process is C. Now
consider the 2" disjoint closed intervals, {K;|7 =1, ..., 2"}, remaining
after the nth step in this construction of C. Define f,:C— D by
fHLIKiNnCl=1/i,i=1, ...,2" Then f, is an (1/2")-mapping since

o= { el
n 1) = .
0, i>2

and 6(K;) = 1/3" < 1/2", Thus we have that qC < ¢D since C and D
are compact. Hence we may conclude that qC = ¢D.

Throughout this paper a compact connected space of more than
one point will be called a continuum. A chain is a finite collection
of open sets U, ---, U, such that U, intersects U; if and only if
1=4—1,7, or j+ 1. If the links of a chain are of diameter less
than ¢, the chain is called an e-ckain. A continuum is called snake-
like if for each € > 0 it can be covered by an e-chain (see [1]).

ExampPLE 1.5. Let X be a snake-like continuum and Y an are.
Then X admits e-mappings onto Y for all ¢ > 0 (see [5, p. 229] or
[2, Lemma 1.6]). So ¢X = qY. If we specialize X further to be a
snake-like continuum which does not contain an arc then qY = ¢X is
false. So in this we have ¢X < qY. However, X and Y are not
comparable with respect to Fréchet dimension type.

We now give some general results which will be of use in the
next section.

THEOREM 1.1. If ¢X <qY and Y is compact (totally discon-
nected), then X is compact (totally discommected).

COROLLARY 1.1, If qX =< qY and each component of Y is com-
pact, then each component of X is compact.
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THEOREM 1.2. If (1) X is the unmion of two disjoint closed sets
X, and X,, (2) Y is the union of two disjoint closed sets Y, and Y,
and (3) ¢X; = qY,, for i =1,2, then ¢X = qY.

Proof. Let a be a covering of X, Then o, = a N X, and a, =
an X, are coverings of X, and X,, respectively. Let f; be a closed
a,-mapping of X; into Y, for + = 1,2, Then, for 7 = 1, 2, there is a
covering B; of Y; such that f7'[B;] > «; and since Y, is open in Y, so
is each element of B;,. Therefore, 8 = B, U B, is a covering of Y and
the mapping which is f; on X, and f, on X, is a closed a-mapping of
X into Y.

REMARK. Theorem 1.2 is not true with “=” replaced everywhere
by “<”. To see this let X, =1, X,=J,Y,=IUJ and Y,=
{ +3/M4lze(IUJ)}. Then ¢X; < qY,;,7=1,2, but ¢X =qY.

2. Quasi dimension type in the real line. We show in
this section that there are only denumerably many quasi dimension
types represented by subsets of R!. This is in contradistinction to
Kuratowski’s result [6] that there are 2° Frechet dimension types
represented by subsets of R'. Furthermore, we obtain a representative
of each type, determine completely the ordering of these types and
give a topological characterization of the linear sets having a given
type. For the remainder of the paper all sets considered are subsets
of R'.

TaHEOREM 2.1. [10] If A and B are denuwmerable sets, each
dense in itself, then A and B are homeomorphic.

COROLLARY 2.1. If X is a countable closed set then ¢X =< qQ.

Proof. The set X UQ is dense in itself and denumerable so
(X UQ) =qQ. Since X is a closed set it is also a closed subset of
X UQ. Thus we have ¢X = ¢(X U Q) = qQ.

REMARK. So ¢J;, ¢D and ¢J are all =q@. Using previous ex-
amples we have

qJ; < qD = qC < qJ = q(D — {0}) = ¢Q .
THEOREM 2.2. ¢X =< qJ if and only tf X is totally disconnected.

Proof. We first assume that X is totally disconnected. If « is
a covering of X, then, since dim X < 0, there is a covering, ', of X
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which refines « and is such that no two elements &’ meet. Then by
Lindelof’s theorem there is a countable subeollection a” of a’ which
covers X. Let f: X—J be defined by f[4;] =1 for A;ea”. Then f
is a closed a-map since any subset of J is closed and B8 = {{¢}|ie J}
is such that fB] > &’ > a > a. Thus we have ¢X = ¢qJ. The
converse follows from Theorem 1.1.

THEOREM 2.3. ¢X = qC if and only if X is compact and totally
disconnected. A space X s imfinite (finite), compact and totally
disconnected +f and only if qX = qC (qJ;, for some mnonnegative
integer 1).

Proof. Any compact, totally disconnected, metric space X is
homeomorphic to a closed subset of C. So ¢X =< ¢qC. If X is infinite
then it contains a copy of D. So ¢D = ¢X and it follows that ¢X =
qC. The converses are obvious from Theorem 1.1,

COROLLARY 2.2. ¢X = qJ if and only if X s totally discon-
nected and mot compact.

Proof. Suppose X is totally disconnected and not compact. By
Theorem 2.2 we have ¢X <¢qJ. If «a is any covering of J, then
o' = {{i} |1 e J} refines it. There is a sequence of points x,, ,, --- of
X such that no subsequence converges to a point of X. Define
f:J— K by f(@) =z, Then f is a closed map since each subset of
{x;]1edJ} is closed in X. There is a covering B of X, each set of
which contains at most one point z,, Then f~8] > & > a and so
qJ =< ¢qX. Thus we have qJ = ¢X. The converse follows immediately
from the two previous theorems.

We state as a separate corollary some of the information embodied
in the proof of Corollary 2.2,

COROLLARY 2.3. If X is mot compact, then X has a closed subset
7 such that qJ < qZ.

DEFINITION 2.1. We say qA immediately preceeds qB, written
qA € qB, if qA < ¢B and there is no set X such that ¢4 < ¢X < ¢B.,

REMARK. For totally disconnected sets we have the following
ordering:

9/, €9, € ¢, € -+ K q; K ¢, £ -+ <qC L gJ .
Note that ¢qC is the least upper bound of the ¢J;s. This follows from
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Theorem 2.3. That qC K ¢qJ follows from Theorems 2.2 and 2.3 and
Corollary 2.2. Moreover, if X is a compact (noncompact) infinite totally
disconnected set then ¢X = qC(qJ). Thus there are only denumerably
many quasi dimension types of totally disconnected subsets of R:,

THEOREM 2.4, qX = ql +f and only if X is compact and not
totally disconnected.

Proof. Assume X is compact and not totally disconnected. Since
X contains a nondegenerate component, K, which is closed (in X) and
hence compact we have K = [a,b]. So qI = q|a,b] = ¢X. Now X
being compact is homeomorphic to a closed subset of I, so ¢X = ql.
The converse follows from Theorem 1.1.

THEOREM 2.5. qJ =< q¢X if and only if X contains a closed subset
homeomorphic to oJ.

Proof. One implication follows from the definition of quasi
dimension type. To show the converse we proceed as in the proof of
Theorem 2.3. Let a = {{t}|7eJ} denote the finest covering of J.
Then there is a closed a-map f:J — X. Since f is closed, one-to-one
and continuous it is a homeomorphism.

THEOREM 2.6. The space J and any compact, not totally discon-
nected space X are not comparable. In particular, J and I are not
comparable.

Proof. Theorem 1.1 implies ¢X £ qJ (since X is not totally
disconnected) and ¢qJ £ ¢X (since J is not compact).

THEOREM 2.7, qC < ql.

Proof. Since C is homeomorphic to a closed subset of I and
qI £ qC we have qC < qI. Suppose there is a set X such that
qC < qX < qI. Then by Theorem 1.1 we have that X is compact.
Case 1: X is not totally disconnected; then ¢X = qI which is a
contradiction, Case 2: X is totally disconnected. Then ¢X = qC
which again is a contradiction. Thus we may conclude that qC < ql.

THEOREM 2.8. ¢qJ € q¢(IU J).

Proof. Since J is a closed subset of ITUJ and (I UJ) £ qJ
we have qJ < q(I UJ). Suppose that there is a set X such that
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gJ < qgX <qIUJ). Then X is not compact. Case 1: X is not
totally disconnected. Then X contains nondegenerate arc components,
If one of these, K, is not compact, then ¢(I/UJ) = qK =< qX (this
last inequality is due to the fact that K is closed in X), This is a
contradiction. If, on the otherhand, K is compact, then we take a
closed, totally disconnected, noncompact subset Z of X — K (which is
possible because X is not compact) and have ¢q(IUJ)=q(KUZ) =< ¢X.
Again this is a contradiction, Case 2: X is totally disconnected.
Then ¢X = ¢qJ which is a contradiction.

THEOREM 2.9. qI < q(I U J).

Proof. Since I is closed in TUJ and (I UJ) £ ql we have
gI<q(IUJ). Suppose that there is a set X such that ¢ <¢X <q(IUJ).
Then X must be noncompact. If X is totally disconnected, then ¢X = qJ
which is impossible. Hence X contains nondegenerate arc components.
If one of these (K) is not compact, K has a closed subset homeomorphic
to TUJ, so q(IUJ) =< qK =< qX. This is impossible. If, on the other
hand, K is compact, then we get a contradiction as before.

NoTATION. Let Y be a subset of X. We use N(Y) to denote the
closure (in X) of the union of the nondegenerate components of Y.

LEmMA 2.1. If qX =q(IUJ), then qN(X) = ql.

Proof. If N(X) is compact we are done by Theorem 2.4, Suppose
N(X) is not compact. Then, since each component of N(X) is compact
(Corollary 1.1), there is a sequence K, K,, - -+ of closed intervals which
are components of N(X), such that (1) K = U, K; is a closed subset
of N(X), (2) each K; is open in K, and (3) no subsequence of the K,’s
converges to a point of X, Now any cover 8 of K can be refined by
a cover « of K such that for each K;, aN K, is a chain, each link of
which is a proper subset of K;. Since K is a closed subset of N(X),
gK < gN(X) < qIUJ); so there is a closed a-map f, of K into IUJ.
But f, [K]NnJ = @, for otherwise f, would map some K; into a point
ped and so, contrary to our assumption, f, would not be an a-map
(since, for any open set U about p, f;[U] would contain K; and
therefore would not be contained in any element of a.). So f. is a
closed a-map of K into I. This implies that K is compact which is a
contradiction,

THEOREM 2.10. If each component of X 1is compact, then
qX = qJ*.
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Proof. If X is totally disconnected, then ¢ X =< qJ < q¢J * and we are
done. So assume otherwise and write 7 = X — [J2, C; where the C; are
the nondegenerate components of X and n < «. Let v be any covering
of X. Since dim X =1, v has a refinement v, of order =2 (i.e., no 3
elements of v, meet); say v, consists of sets W N X where W is open
in R'. Let the components of the W’s be denoted by A;; they are
open intervals, there is countably many of them, and no point of X
belongs to any 3 of them., The covering 8 =a N X, where a =
{4;]ieJ}, refines v. Denote a« N C; by a;. Let 4 be a denumerable
dense subset of R' — X and let

U={a,b)|a,bed,C,c(a,b)c U{A4;|A;ea,;} for some i (1 =1 = n)}
U{(a,b)|a,bed,xec(a,b)c A; for some xc T and A;ca}.

Then since 4 is denumerable so is U and we may write U = {U;|i¢e J}.
Note that U N X covers X.

Now we define the following:

(1) 0,=U0,0,=U,-U{U;|i=1,-++,i—1)} for i =2,3,.-,

(2) U={U:\U0 = 2,ied},

(8) V ={K|K is a component of some U; e U}.

Note that the elements of V are disjoint intervals (open, closed or
half-open) having their end points in 4. So that V=V N X is a
countable collection of disjoint, open and closed subsets of X which
covers X. Actually the elements of V are strongly disjoint, i.e., if
K, K,c V, then (glb K, lub K)) N (glb K,, lub K,) = @.

We now index the elements of V as follows: even positive integers
are used to index the totally disconnected elements of V and odd
positive integers are used to index the elements of V' which are not
totally disconnected. For any element K; of V, there are a,, b; € 4,
such that K; = (a;, ;) N X. We now define a closed S-mapping, fs,
of X into J* as follows:

(1) if ¢ is even, f3 [K;] =1,

(2) if 7 is odd, (fs|K;) is an order preserving homeomorphism
of C; =[¢;, d;] (some nondegenerate component of X contained in K)
onto [7, ¢ + 1/2]; fp [(as, ¢) N X | =13, fa [(d;, b)N X] =7 + 1/2.

To show that f; is a S-mapping let:

0= U ALKl i=1,35},
A= {60+ 12110 N (8, @ + 1)2] = O},
A= {felB; N KB, NK,eBNK,; and i =1,3,5,---}.
Then N =X UN, is a covering of J*. If [7,7 4+ 1/2]en, then

fe'lli, © 4+ 1/2]] = K; (or @) and K; is totally disconnected. By con-
struction, K, is a subset of some U, € U, and either
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C.cU,cU{4;| A; meets C,}

for some C,, or xc U,C 4; for some xc T and A;ea. In the latter
case, K; is contained in a single A,;. But this also follows in the other
case, since otherwise some point of X will belong to 3 distinct sets 4;.
Thus K;,c A;NnXepB. If fi[B;NK;]eN, then fi'[fslB;NK;]]CB;€B.
Hence fz'[n] > B, i.e., f is a B-mapping. Since B > v we have that
fs is also a v-mapping.

To show that f; is closed let Z be a closed subset of X. Note
that a set is closed in J* if and only if its intersection with each
component of J* is closed. Since distinct K,;’s are mapped into
distinct components of J*, it will suffice to prove that each f4[Z N K;]
is closed. If 7 is even, fs[Z N K;| has at most one point, so we need
only consider the case when 7 is odd. Since

ZNK,=(ZnCy)U(Zn(K;—Cy)

(where C; is the nondegenerate component of K; used in defining f3),
we can write

felZ N K] = folZ N C;]l U fol Z N (K; — C))] .

Then, since Z N C, is closed in X and f; is a homeomorphism on C,,
we have that f5[Z NC,] is a closed subset of [7, ¢ + 1/2]. Furthermore,
folZ N (K; — C))] c{i} U {t + 1/2} and hence is also closed. Therefore,
we may conclude that fo[Z N K;] is a closed subset of [7, 7 + 1/2]
when ¢ is odd. So that fi[Z] N[z, ¢+ + 1/2] is closed, for each i e J,
and hence f3[Z] is a closed subset of J*.

Thus, for each covering v of X, we have shown the existence of
a closed v-mapping of X into J*. Therefore, we have the desired
result, i.e., ¢X =< qJ*.

THEOREM 2.11. q(IUJ) K qJ *.

Proof. Let a be a covering of TUJ. Then a map which is a
homeomorphism of I onto [1, 3/2] and takes jeJ into j + 1 is a closed
a-map of IUJ into J*. So qIUJ) = qJ*. Now suppose qJ* =
q(IUJ). Then Lemma 2.1 implies that ¢J* =< qI. But this is im-
possible by Theorem 1.1. So (I U J) < qJ*.

Suppose there is a set X such that (/U J) < ¢X < qJ*. Then
by Theorem 1.1 X is not compact and not totally disconnected. In
addition, each component of X is compact (by Corollary 1.1). Suppose
N(X) is not compact. Then there is a sequence K,, K,, --- of closed
intervals which are components of N(X), such that (1) K = U, K;
is a closed subset of N(X), (2) each K; is open in K, and (3) no
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subsequence of the K,;’s converges to a point of X. Since there is a
homeomorphism of J* onto K (just send [, (¢ 4+ 1)/2] homeomorphically
onto K;, for each 1eJ) and K is closed it X, it follows that ¢J* <
qX. This contradicts our assumption that ¢X < qJ*.

Now suppose N(X) is compact. Let v be any covering of X,
Proceeding as in the proof of Theorem 2,10 one obtains a closed A-
map fs of X into J* (where 8 > v). Under this mapping the image
of N(X) is the union of a finite number of closed intervals which are
components of J*, We follow f; by a homeomorphism g, of f5[X] onto
a closed subset of TUJ. The homeomorphism g; can be defined as one
which takes f3[N(X)] homeomorphically into I and fe[X] — fol N(X)]
homeomorphically into J. Consequently, ¢X < q(I U J) which contra-
dicts our assumption that q(JU J) < ¢X. So this together with the
previous paragraph imply that q(IU J) € qJ *.

LEmMMA 2.2, If X s mot compact and not totally disconmected,
then q(IUJ) = qX.

Proof. If X contains a component K which is an open or half-
open interval, then ¢(IJUJ) = ¢gK < ¢X and we are done, Assume
now that the components of X are compact and that K is one such
nondegenerate component. Since X is not compact, it has a closed
subset Z which is homeomorphic to J and disjoint from K. Now we
claim that the hypotheses of Theorem 1.2 are satisfied, for (1) ¢l =
qK, (2) qJ = qZ, (3) I and J are disjoint closed subsets of TU J; (4)
K and Z are disjoint closed subsets of KU Z. So applying Theorem
1.2 we conclude that (U J) = q¢(K U Z) = qX.

THEOREM 2.12. ¢X =q(IUJ) (X = qJ*) if and only ©f (1) X s
not compact, (2) not totally disconmected, (3) each of its components
is compact, and (4) N(X) ts (is not) compact.

Proof. Assume that conditions (1)-(4) hold. As consequences of
Theorem 2.10 and Lemma 2.2 we have ¢q(JUJ) < q¢X = ¢J*. So since
q(I U J) immediately precedes ¢J* we have that ¢X equals one or the
other. Now if N(X) is compact, it follows from Theorem 1.1 that
gJ* £ qX. Hence in this case we have that ¢X = q(IUJ). Now
consider the other case, i.e., when N(X) is not compact. Suppose
gX =q(IUJ). Then as a result of Lemma 2.1 we have that
gN(X) = qI. However, this imlpies that N(X) is compact contrary
to our assumption. Hence in this case ¢X = ¢J*.

Now assume that ¢ X = q(JUJ) or ¢X = qJ*. Then in both cases
by Theorem 1.1 and Corollary 1.1, we have that: (1) X is not compact,



512 J. SEGAL

(2) not totally disconnected and (3) each component of X is compact.
In the former case, as a result of Lemma 2.1 we have that ¢N(X) <
gl and hence N(X) is compact. In the latter case, suppose N(X) is
compact. Then, by the first part of this proof ¢X = ¢(IUJ). But
gIUJ) < qJ* so we have a contradiction. Thus in this case N(X)
is not compact.

THEOREM 2.13. ¢qJ* < qL,.

Proof. First, gJ* < qL, since the function f defined by f(x) =
(1 — 5x)/2x¢ is a homeomorphism of J* onto a closed subset of L,.
Since L, is connected and not compact, Corollary 1.1 implies that
qL, £ ¢J* and therefore ¢J* < qL,., Now suppose there is a set
X such that ¢J* < ¢X < qL,., Then X is not compact and some
component of X is not compact (a consequence of Theorem 2.,10).
Let K denote such a component. Then ¢L, < ¢K < ¢qX which is a
contradiction and so qJ* £ qL,.

LEemMmA 2.3, If qX =qY, then X does not have more components
than Y which are open inmtervals.

Proof. First we will show that qM, £ qL,. Suppose not, i.e.,
gM, < qL,. Then, for any covering « of M,, there exists a closed a-
mapping, f,, of M, into L,. Let S =(-3/2, —11/8], T =[-9/8, —1)
and .&7 be the collection of coverings of 1M, with the property that
none of their elements intersects both S and 7. (Note that .o is
cofinal in the collection of all coverings of M,.) For any sufficiently
fine a € .7 there are points y,, ¥. € L, such that £,[S] = (—5/2,v,] and
fdT]1 = (—5/2,¥,]. This is the case since each image set is closed
in L,, connected and not compact (for a sufficiently fine). But this
implies f;'(min (y,, ¥,)) intersects both S and 7' which contradicts the
fact that f, is an @-mapping. Therefore, ¢M, £ qL..

We now show, for any sufficiently fine ae.%, that a closed a-
mapping, f,, of M, into itself actually takes M, onto itself. Suppose
not, i.e., for e <&, a cofinal subset of .7, f,[M,] is a proper subset
of M,. Then, for a sufficiently fine, f.[M] = (—38/2,%.] or [¥., —1)
where y, € M,, since f,[M,] is closed in M;, connected and not compact.
We consider only the first of the two cases since they are similar,
Let g, be a homeomorphism of (—3/2,y,] onto L,. Then, for any
e P, 9.f. is a closed a-mapping of M, into L,. But this is impossi-
ble since ¢M; £ gqL,. Hence, for sufficiently fine ac . f,[M,] = M,.

We now prove that if X has at least #n components which are
open intervals, then so does Y, for neJ. Let 9% denote the col-
lection of components of X which are open intervals. Let a be any
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covering of X such that:

(1) if K;e 2] then an K, is a covering of K; corresponding to
a covering of M, in .o/, under the obvious linear homeomorphism of
K; onto M,

(2) if Aea, then A intersects at most one K;€ 2. Then, for
a sufficiently fine and a closed a-mapping, f,, we have that (1) implies
fJK;] = C;, a component of ¥ which is an open interval. This is
the case since f,[K;] is not contained in a component of Y which is a
half-open interval (otherwise ¢M, = qL,), nor in one which is a closed
interval (otherwise K; is compact) and so f,[K;] must be contained in
one which is an open interval. But we have already shown in this
situation that (f.|K;) maps K; onto this open interval (for a suf-
ficiently fine). Furthermore, since (2) implies C;NC; = @, for 7 =+ J,
Y has at least » components which are open intervals.

LEMMA 24, If gX = q(L,UJ*), then X has at most one com-
ponent which is a half-open interval.

Proof. Suppose X has two components which are half-open inter-
vals, say K, and K,. Let a be a covering of X in which no element
intersects both K, and K,. Since ¢(K,UK,) < q¢X = q(L,UJ*) there is
a closed B-mapping fs of K, UK, into L, UJ* (where 8 = aN(K,UK,)).
It follows from the fact that f3[K,] and f4[K,] are closed, connected
and not compact (for sufficiently fine 8), that fs|K,U K,]C L,. Further-
more, there are points y;,y, of L, such that f4K,] = (—5/2,y,] and
JeolK:] = (—5/2,y,] since each image set is closed in L, connected
and not compact (for B sufficiently fine). But this implies that
S5 (min (y,, v,)) intersects both K, and K, which contradicts the fact
that f, is a B-map. Therefore, X does not have two components
which are half-open intervals.

Lemma 2.5, If qL, = qX = (L, U J*), then X has exactly one
component which ts a half-open interval and none which is an open
interval.

Proof. By Lemma 2.3 X does not have a component which is
an open interval. Suppose each component of X is compact. Then
Theorem 2,10 implies that ¢X < ¢J*. But ¢J* < qL, and we have a
contradiction. So X has at least one component which is not compact
and none which is an open interval. Hence there is at least one
component of X which is a half-open interval. Finally, Lemma 2.4
implies that X has exactly one component which is a half-open interval.

THEOREM 2.14. qX = qL, if and only +f (1) exactly one of the
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components of X is a half-open interval, (2) this component, say K,
has the property that the closure (in X) of X — K is compact.

Proof. We first assume that ¢X = qL,. Then X can not be
compact, nor totally disconnected. By Lemma 2.5 X has exactly one
component, say K, which is a half-open interval and none which is
an open interval. Let ¥ = Cl(X — K) (we assume Y = @) and let B
be any covering of Y. Then 8 can be extended to a covering a of
X (i.e.,anNY = B and « is a covering of X). Since ¢X =< qL, there is
a closed a-map, f,, of X into L,. Moreover, since f,[K] is closed in L,,
connected and not compact (for a sufficiently fine), f,|K] must be of
the form (—5/2, ¢] where —5/2<c¢ = —2. Let gs=(f.|Y) and consider
B to be fine enough so that d = glb (gg[ Y]) > —5/2. Then g, is a closed
B-map of Y into L, — (—5/2, d), a compact set. Thus, for any sufficiently
fine covering B, we have g4 Y] is compact and so Y is compact.

We now consider the converse. Since X has a component K
which is a half-open interval, we have that qL, = ¢K < ¢X. Now
assume X — K # @. Then there are disjoint closed subsets X, and X,
of X such that X = X, U X,, X, D K, X, is homeomorphic to a closed
subset of (—5/2, —9/4] and X, is homeomorphic to a compact subset
of (—9/4, —2]. Hence by Theorem 1.2 we have that ¢X = qL,.

THEOREM 2.15. qL, < q(L, U J).

Proof. Since L, is closed in L, UJ we have qL, < q(L,UJ).
As a consequence of Theorem 2,14 we have ¢q(L, U J) # qL, and so
qL,<q(L,UJ). Suppose there is a set X such that qL, < ¢X < q(L,UJ).
Then X cannot be compact nor totally disconnected. Moreover, Lemma,
2.5 implies that X has exactly one component, say K, which is a half-
open interval and none which is an open interval. So Cl(X — K) is
not compact (otherwise qL, = ¢X). Since Cl1(X — K) is not compact it
contains a closed subset Z homeomorphic to J. Therefore ¢(L,UJ) =
(KU Z) < ¢X. This is a contradiction,

LEMMA 2.6, q(L,UJ) < q(L, UJ*).

Proof. Since ¢qJ = gJ*, by Theorem 1.2 we have that ¢(L,UJ) =
q(L, UJ*). Suppose q(L,UJ*) =< q(L,UJ). Any cover 8 of L,UJ*
can be refined by a subcover a such that, for each component K of
L,UJ*, anK is a chain, each link of which is a proper subset of K.
By assumption, there is a closed a-map f, of L,UJ* into L,UJ.
But fJJL,UJ*INJ = @, for otherwise f, would map some component
K of L,UJJ* into a point peJ and so, contrary to our assumption,
f. would not be an a-map (since, for any open set U about p, f;[U]
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would contain K and therefore would not be contained in any element
of ). So f., is a closed a-map of L,UJ* into L,, which implies
(L, UJ*) = qL,., But then ¢(L,UJ*)=qL, and this contradicts
Theorem 2.14, Therefore, ¢(L, UJ *) L q(L, U J) and we have ¢(L,UJ)<
(L, U J¥).

Lemma 2.7, If X contains exactly one component K which is a
half-open imterval, none which is an open interval, and N(X — K)
18 not compact, then q(L, U J*) = qX.

Proof. Since N(X — K) is not compact, it contains a sequence
K, K,, --- of nondegenerate components of X which are closed inter-
vals and no subsequence of K,, K., --- converges to a point-of X,
Therefore, |J, K; is a closed subset of X which is homeomorphic to
J*. As K is also closed in X, KU (U, K;) is a closed subset of X
homeomorphiec to L, U J*. Hence q(L,UJ*) = qX.

THEOREM 2.16. qX = q(L,UJ) if and only if (1) exactly one of
the components of X ts a half-open interval, (2) this component, say
K, has property that the closure (in X) of X — K 1is mot compact,
and (3) N(X — K) is compact.

Proof. Assume that X satisfies conditions (1), (2) and (3). First
we will show that ¢(L,UJ) = ¢X. Since Cl(X — K) (in X) is not
compact, it contains a closed subset Z which is homeomorphic to J.
Thus each subset of Z is closed in Z and, since Z is closed in X,
each subset of Z is closed in X. Furthermore, Cl(X— K)=X— K or
(X — K)U {p}, where p is the end point of K which is in K. Therefore,
Y=Z—-pisclosed in X, YC X — K and Y is homeomorphic to J.
As K is also closed in X, KU Y is a closed subset of X homeomorphic
to L, UJ. Therefore we have q(L, U J) < ¢X.

Now we show that ¢X = ¢(L,UJ). Let v be any covering of X
and K = (¢,d]. Then v can be refined by a covering 8 =an X,
where @ = {4;|jeJ} is a collection of open intervals such that: (1)
U 4,0X, (2)if A;ea,=ankK, then c¢ 4; and (3) there is exactly
one A;e«, such that de A;. Let B = (¢, b) where

be[(R'— X)n(U{d;[4;ea})].

Then W = BN X is open and closed in X, and Kc Wc J{4,|4;¢ca,}.
So W and Y= X — W are closed disjoint subsets of X whose union
is X. Moreover, a mapping f, which is a homeomorphism of K onto
(—5/2, —9/4] and takes W — K into the point —9/4, is a closed
(8 N W)-mapping of W into (—5/2, —9/4]. Furthermore, since 8 > v
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we have that f is also a (v N W)-mapping of W into (—5/2, —9/4].

Now we consider Y. Case 1: Y is compact or totally disconnected,
Then qY < q(IUJ). Case 2: Y is neither compact nor totally discon-
nected. Then it follows from condition (3) of our hypothesis that
N(Y) and each comporent of Y are compact. Therefore, Theorem 2.12
applies and we have that ¢Y < (U J). So, in both cases, we have
qY = qUIUJ) =q([—17/8, —2]U J). Thus there is a closed (v N Y)-
mapping, g, of Y into [—17/8, —2]UJ. Therefore, the mapping which
is fon W and g on Y is a closed v-mapping of X into L, UJ. Thus
qX = q(L, U J) and since we already have shown ¢(L,UJ) = ¢X it
follows that ¢ X = q(L, U J).

Now we assume that ¢ X = q(L,UJ). Then X is not compact nor
totally -disconnected. By Lemma 2.6 we have that ¢(L,UJ) = (L, UJ*).
So Lemma 2.5 applies and X has exactly one component, say K, which
is a half-open interval and none which is an open interval. So all
components of X, other than K, are compact. As a consequence of
Theorems 2.14 and 2.15 we have that Cl (X — K) is not compact and
so neither is X — K., Now N(X — K) is compact, otherwise by
Lemma 2.7 q(L, U J*) < ¢X which is impossible by Lemma 2.6.

THEOREM 2.17. q(L, U J) < q(L, U J*).

Proof. By Lemma 2.6 we have that ¢(L,UJ) < q(L,UJ*). Now
suppose there is a set X such that q(L,UJ) < ¢X < q¢(L,UJ*). Then
by Lemma 2,5 X has exactly one component, say K, which is a half-
open interval and none which is an open interval. Now N(X — K) is
not compact, otherwise Theorems 2.14 and 2.16 would imply ¢X =
q(L, U J). But then Lemma 2.7 implies that q(L, U J*) =< qX which
is a contradiction,

THEOREM 2.18. ¢qX = q(L, U J*) of and only tf (1) exactly one
of the components of X, say K, is a half-open interval, (2) no com-
ponent of X is an open interval, and (3) N(X — K) is not compact.

Proof. Assume X satisfies conditions (1), (2) and (3). Then by
Lemma 2.7 we have q(L,UJ*) =< q9X. Next we show that ¢X =
q(L,UJ*). Let v be any covering of X and K = (¢,d]. Then, as
in the proof of Theorem 2.16, we have X = WU Y, where W, Y are
closed disjoint subsets of X and W< K. Moreover, there is a closed
(v N W)-mapping, f, of W into L,, and ¢Y = ¢J * (since each component
of Y is compact and Theorem 2.10 applies). Thus there is a closed
(v N Y)-mapping, ¢, of Y into J*. So the mapping which is f on W
and g on Y is a closed v-mapping of X into L, U J*. Therefore, we
have ¢X = (L, UJ*) and so ¢X = (L, U J*).
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Assume now that ¢X = q(L,UJ*). Then Lemma 2.5 implies that
X has exactly one component, say K, which is a half-open interval
and none which is an open interval. If Cl(X — K) is compact, then
Theorem 2.14 implies ¢X = ¢L,. This is a contradiction to our as-
sumption that ¢X = q(L, U J*) since qL, < q(L, UJ*). So we now
assume that Cl (X — K) is not compact. Then, if N(X — K) is com-
pact, Theorem 2.16 implies that ¢X = q(L, U J). This is impossible
so N(X — K) is not compact.

LEMMA 2.8, If qY = qX and X does mnot have a component
which ts an open interval, them Y does mot have more components
than X which are half-open intervals.

Proof. We prove that if Y has at least n components which are
half-open intervals, then so does X, for each neJ. Let K, K,,---, K,
denote # of these components in Y. Suppose X has only m <mn
components which are half-open intervals, say C,, ---,C,. For any
covering « of Y, let f, be a closed a-mapping of Y into X. Since
the components of X, other than the C;, are compact, it follows that
fdUn: K] Ur, C;, for a sufficiently fine. Therefore, some two K;,
say K, and K,, are such that f,[K,UK,] is contained in some one C,.
This implies that qL, =< gL, which contradicts Lemma 2.4, Hence, X
has at least » components which are half-open intervals.

THEOREM 2.19. q(L, U J*) £ qL,.

Proof. It follows from Theorem 1.2 that ¢(L,U J*) = qL, and
from Lemma 2.4 that qL, £ q(L, U J*). Thus (L, U J*) < qL.. Now
suppose there is a set X such that q(L, U J*) < ¢X < qL,. Then, by
Lemma 2.3, X does not have a component which is an open interval.
Applying Lemma 2.8 to q(L, UJ*) < ¢X we conclude that X has at
least one component which is a half-open interval. On the other
hand, X has fewer than two such components (otherwise qL, < ¢X).
Therefore, X has exactly one component which is a half-open interval.
So X satisfies the conditions of Theorem 2.14, 2.16 or 2.18 and we may
conclude that ¢X = qL;, ¢ X < q(L,UJ) or ¢X = q(L,UJ*). Hence,
we have that ¢X =< q(L, UJ*). But this is a contradiction and we
have that q(L, UJ*) € qL,.

THEOREM 2.20. ¢qX = qL,(ned) if and only if X has exactly n
components which are half-open intervals, say K, ---, K,, and the

closure (1n X) of X — Ui, K; is compact.

Proof. We first assume that ¢X = qL,. Then, by Lemma 2.3, X
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does not have a component which is an open interval. So Lemma 2.8
applies (twice) and X has exactly » components which are half-open
intervals, say K,,---, K,. Let K= U, K;, Y = Cl1(X — K) (we assume
Y+~ @) and let B be any covering of ¥, Then B can be extended to
a covering « of X (i.e.,, «aNX =B and « is a covering of X). Since
¢X = qL, there is a closed w-mapping, f,, of X into L,. Moreover,
since f,[K] is closed in L, and, for a sufficiently fine, each of its
components is not compact, fJK]=U{(—25 — 1/2,¢,]|7€J,, where
—27 —1/2 < ¢; = —27}. Let gg = (f.|Y) and consider B to be fine
enough so that d; = glb (g Y] N (—275 — 1/2, —24]) > —25 — 1/2, for
jed,. Then gz is a closed B-mapping of Y into

L, —U{(=5/2,d))jel.},

a compact set, Thus, for any sufficiently fine covering 5, we have
gl Y] is compact and so Y is compact.

Now consider the converse, So X has » components, K,,.--, K,,
which are half-open intervals, Let K = |J2,K;. Then we have
gL, =qK = q¢X. Now assume X — K == . Then there are disjoint
closed subsets, X, and X, of X such that X = X, U X,, X, D K, X, is
homeomorphic to a closed subset of |J{(—25 —1/2, —25 — 1/4]|jeJ,}
and X, is homeomorphic to a compact subset of

Ui(—25 —1/4, —25][5eJ.}.
Hence, by Theorem 1.2 we have ¢X =< ¢L,.

THEOREM 2.21. qL, < q(L,UJ),ned.

Proof. Since L, is closed in L,UJ we have ¢qL, = (L,UJ).
As a consequence of Theorem 2.20 we have q(L, UJ) # gL, and so
qL, < q(L, U J). Suppose there is a set X such that

qL, < ¢X < (L, U J) .

Then Lemma 2.3 implies X does not have a component which is an
open interval. So Lemma 2.8 can be applied (twice) to get that X has
exactly n components, say K, ---, K,, which are half-open intervals.
Let K =2, K;. Then Cl(X — K) is not compact (otherwise qL, =
¢X). Therefore Cl (X — K) contains a closed subset Z homeomorphic
to J and so ¢(L,UJ) < q(KUZ) < qX. This is a contradiction.

The next four theorems have proofs similar to those of Theorems
2.16-2.19 and therefore omitted.

THEOREM 2.22. ¢X = q(L,UJ) (ned) if and only if (1) X has
exactly m components which are half-open intervals, say K, -+, K,,
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(2) the closure (in X) of X — UL, K; is mot compact and (3)
N(X — U, K,) is compact.

THEOREM 2.23. q(L,UJ) K q(L,UJ*), ned.

THEOREM 2.24. qX = q(L,UJ*) (ned) tf and only if (1) X has
exactly n components which are half-open intervals, say K,, -+, K,,
(2) no component of X is an open interval and (3) N(X — U, K))
18 not compact.

THEOREM 2.25. q(L,UJ*) L qL,.,ned.

THEOREM 2.26. qL, < qX < qL,.,(ned) if and only if X has
exactly n components which are half-open interval and none which
18 an open itnterval,

Proof. Assume qL, < qX < qL,,,. Then, by Theorems 2.21, 2.23,
and 2.25, we have ¢X = qL,, ¢X = q(L, U J) or ¢X = q(L, UJ*). So,
by Theorem 2.20, 2.22 and 2.24, we have X has exactly n components
which are half-open intervals and none which is an open interval,

Now assume that X has exactly n components which are half-open
intervals and none which is an open interval. By Theorems 2,20, 2.22
and 2.24 we have that ¢X =qL,, ¢X = q(L, UJ) or ¢X = q(L, U J*).
Hence, by Theorems 2.21, 2.23 and 2.25 we have qL, < q¢X < qL,_,.

THEOREM 2.27. qL* L qL...

Proof. Any covering a of L* can be refined by a covering B =
{B;]3 =0,1,2, ---} such that:

(1) B,=10,1/@2m + 1)) N L* for some med,

(2) B,NnB; =@ for B;eB and j = 0.
Since B = B, is open and closed in L* so is Y = U, B,. Moreover,
Y and B are disjoint, L* = Y U B and

Y= U{[l/('b—l—-l), 1/7’)17/:1’3, ”'72m_1}'

We now define a closed S-mapping, fs, of L* into L, (a closed subset
of L.). Let fs| B]= —4m and (f,|[1/(¢ + ), 1/7)) be a homeomorphism of
[1/(¢ + 1), 1/2) onto (—2¢ — 1/2, —2i], for + =1,83,---,2m — 1. Since
B> a we have that f, is a closed a-mapping of L* into L..
Therefore, we may conclude that ¢L* < qL..

Now suppose that ¢L. < gL*. Then, for any covering a of L.,
there is a closed a-mapping, f, of L. into L*. We can write each
component of L. as the union of at least two distinect subsets which
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are open in L, Let « be any covering of L. of this type. Now
Lemma 2.8 implies that f, takes distinct components of L., into distinct
components of L*, for a sufficiently fine. So f,[L.] must contain a
sequence of distinet components of L*, Since 0 is a limit point of
any such sequence and f,[L.] is closed, it follows that 0¢€ f.[L.].
Therefore, some component of L. must be mapped into 0. This con-
tradicts the fact that f, is an a-mapping. Thus we may conclude
that ¢L* < qL...

Now suppose there is a set X such that ¢qL* < ¢X < gqL.. Then
X has denumerably many components, H,, H,, ---, which are half-open
intervals and no components which are open intervals, from Lemmas
2.3 and 2.8. moreover, every sequence of distinct H,’s contains a
convergent subsequence (see [13, Theorem 7.1, p. 11]) which con-
verges to some point of X (otherwise qL. < ¢X). Furthermore,
S =limsup{H;|ieJ} is a totally disconnected subset of X and we
will show that S is compact. Suppose S is not compact. Then S
has a closed subset Z which is homeomorphic to J. For each point
p; of Z, we have that infinitely many H,’s are in each neighborhood
of p;. Let N, N,, --- be a collection of disjoint open intervals such
that 6(N;) < 1/j and p;e N;,jed. Choose an H; in each N; and let
H be the union of these H;, Then H is a closed subset of X which
is homeomorphic to L.. So qL. < qH < qX which is a contradiction.
Therefore, S is compact.

Let v be any covering of X. We proceed as in the proof of
Theorem 2.10, except for taking 4 to be a denumerable dense subset
of R'— X which contains the excluded end points of the half-open
intervals which are components of X, With this modification we
obtain as in the proof of Theorem 2,10:

(1) a covering B8 of X which refines v, and

(2) a collection V = {K,} covering X whose elements are open,
closed, disjoint and K; = (a;, b;) N X where a;, b; € 4.

Since S is compact and the elements of V are disjoint, finitely
many elements of ¥V meet S, say K, ---, K,. Let K= i, K; and
Y =X - K. Now K contains all but a finite number of the com-
ponents of X which are half-open intervals. Therefore, Y contains
m(< o) components of X which are half-open intervals. Applying
Theorem 2,26 we get that ¢Y < qL,., and, since L,,., is homeomorphic
to Ane, = Uri {[1/2, 1/2i — 1)}, Y = q 4y,

Now we will show that ¢K < q(L* — 4,4,). For =1, ... 7,
each K; = (a;, ;)N X, a;, b; € 4, contains some C;;,, a half-open interval
which is a component of X. Let u,=1/@2m + 2¢ +2) and v, =
1/2m + 27 + 1) for ¢ =1,..., 7. Then we define a closed S-mapping
Je of K, onto [u;,v;) as follows: (fs|Cjs) is a homeomorphism of
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C;u) onto [u;, v;) and fo[K; — C;;)] = w;, for ¢ =1,---, 7. The proof
that f; is a closed B-mapping is analogous to the proof given for the
same purpose in Theorem 2.10. But 8 > v so f, is also a y-mapping.
Therefore, ¢K < q(L* — A4,,,,) and this together with the previously
obtained relation, qY < q 4,,,, imply that ¢X < qL* (by Theorem 1.2).
This is a contradiction of our original assumption that ¢L* < ¢X < qL.,,
so we may conclude that qL* € qL..

THEOREM 2.28. ¢qX = qL* if and only if (1) mo component of
X is an open interval, (2) precisely denumerable many components
of X are half-open intervals, say H,, H,, --- and (3) every sequence
of distinct H,;’s contains a subsequence which converges to some
point of X.

Proof. Assume ¢X = gL*. Then, by Lemma 2.3, X does not
have a component which is an open interval. By Lemma 2.8 (used
twice), X has precisely denumerably many components which are
half-open intervals., Now suppose some sequence of distinct H,’s does
not contain a subsequence which converges to a point of X, Then X
contains a closed subset homeomorphic to L.. Therefore, ¢L.. < q¢X =
qL* which contradicts Theorem 2,27. Hence every sequence of distinct
Hs contains a subsequence which converges to a point of X,

Now assume that conditions (1), (2) and (3) hold. Let Y = HU {p}
where H is the union of a sequence of distinct H,’s which converges
to p. Then Y is homeomorphic to L*. Hence qL* < ¢X.

Now let v be any covering of X. Since S = limsup{H;|ieJ}
is compact (by (3)), totally disconnected subset of X we can proceed
as in the latter part of the proof of Theorem 2.27 to obtain the re-
lation ¢ X < qL*., This together with the previously obtained relation
qL* < ¢X imply that ¢X = qL*,

THEOREM 2.29. ¢qX = qL. if and only if (1) no component of
X 1s an open interval, (2) precisely denumerably many components
of X are half-open intervals, say H,, H,, --+, and (3) some sequence
of distimct H,;'s does mot contain « subsequence which converges to a
point of X.

Proof., Assume ¢X = ¢qL.. Then conditions (1) and (2) hold just
as in the proof of Theorem 2,28, If condition (3) is not true, then by
Theorem 2.28 and we have ¢X = qL*. But this contradicts Theorem
2.27 and so condition (3) must hold.

Now assume that conditions (1), (2) and (3) hold. Condition (3)
implies that X contains a closed subset homeomorphic to L.,.. Therefore,
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qL. < qX. Let v be any covering of X, We proceed as in the proof
of Theorem 2.10, except for taking 4 to be a denumerable dense subset
of R* — X which contains the excluded end points of the half-open
intervals which are components of X. With this modification we
obtain as in the proof of Theorem 2.10: (1) a covering B of X which
refines v, (2) a collection V = {K,} covering X whose elements are
open, closed, disjoint and K; = (a;, b;) N X where a,, b; € 4.

We index the elements of V as follows: even positive integers are
used to index the totally disconnected elements of V and odd positive
integers are used to index the elements of V which are not totally
disconnected. We define a closed B-mapping, fs, of X into L. as
follows:

(1) if 4 is even, fi[Ki] = 2i,

(2) if 7 is odd and K; contains a half-open interval C;, say
C; = [¢;, d;) which is a component of X,

(fe|C;) is a homeomorphism of C; onto (—2¢ — 1/2, —27]

and folK; — C;] = —21,

(3) if 7 is odd and K, contains no such half-open interval, then
K, contains a closed interval C; = [¢;, d;], which is a component of
X and we define (fz|K;) as an order preserving homeomorphism of
C; onto

[—2i — 1/4, —2i]; fel(a;, ¢)) N X] = —2i — 1/4, feld;, b)) N X] = —2i .

The proof that f, is a closed BS-mapping is analogous to the proof
given for the same purpose in Theorem 2.10. But 8 > 7 so f; is also
~v-mapping of X into L.. Therefore, ¢X < qL., and so ¢X = qL..

THEOREM 2.30. If X does mot have a component which is an
open interval, then q¢X < qL...

Proof. If X has exactly n(< o) components which are half-open
intervals, then by Theorem 2.26 we have ¢X < qL,,,, If X has
precisely denumerably many components which are half-open intervals,
then either Theorem 2.28 or Theorem 2,29 applies. Therefore, we have
qX < qL* or ¢X < qL.. But from any one of these three inequalities
involving ¢X it follows that ¢X < qL...

DEFINITION 2.2. Then n-chains &,. We call the following ordering
of quasi dimension types the 0-chain .&4 (since there are no open inter-
vals which are components of any of the sets in it). The sets inside
the brackets are not comparable. (We call the spaces occuring here
the standard 0-spaces.)
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ql
& qu<<qu<<qJ2<<-~<<qu<<qu+1<<---<qc<<{qJ}

LqIUJ) L qJ* K qL, € (L, UJ) € q(L, U J*) < qL,
LQL.UJ) K L. UJ*) € qL; L +++ L qL; < ¢(L; U J)
<<Q(LiUJ*)<<qL»;+1<<"'<qL*<<qu.

The #n-chain &, for n =1,2,8, ..., is obtained from .54 by

replacing each standard 0-space by its union with M,. (We call these
the standard n-spaces.) So we have the following chain for &,

S M, L M, U J) L qM,Ud,) K-+ L qM, U )

oM, U TI)
q(MnuJ)}
LM, UIUud) <L qM,UJ*) L qM,U L)
KqM,U L, Ud) L qM, U L UJ*) L q(M, U L)
LqM,U L, UJ) < qM,U L, UJ*) < q(M, U L)
Lo L qM, U L)L qM, U L; UJ) L qM, U L; U J*)
L qM, UL, )L+ <qM,UL*) < qM,U L) .

Finally we define .97 :qM* € ¢M.. (We call M*, M., and the standard
n-spaces, n = 0,1,2, --., the standard spaces.)

REMARK. Note that it follows from the previous theorems that
every linear set with no components which are open intervals has the
same quasi dimension type as some standard 0-space.

THEOREM 2.3. The n-chains, for n=0,1,2 .-+, have the ordering
indrcated vn Definition 2.2 (where q(M, U C) and (M, U L*) are each the
least upper bounds of their predecessors).

Proof. The previous results of §2 are proof of the case n = 0.
So we may consider » > 0. Since M, is open and closed in its union
with any standard 0-space we can use Theorem 1.2 to get: if X, Y
are standard 0-spaces and ¢X < qY, then ¢(M,UX) =< q(M,UY). We
wish to show that this last inequality is, in fact, a strict inequality.
Suppose not, i.e., ¢(M, U Y)<q(M, U X). Then, for each covering «
of M,UY, there is a closed a-mapping, f,, of M,UY into M, U X.
By the proof of Lemma 2.3 we have f,|M,|D> M,, for a sufficiently
fine, Therefore, f,|Y]< X — M,, for a sufficiently fine, from which
it follows that qY < (X — M,). Since X — M, is a closed subset of
X we may conclude that qY < ¢X. This, however, is a contradiction
and so we have q(M, U X) < q¢(#M,UY). A similar argument shows
that: if X, Y are standard 0-spaces which are not comparable, then
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M,U X and M, U Y are not comparable.

Now we wish to show the following: if X, Y are standard
0-spaces and ¢X < qY, then q(M,UX) € ¢(M, U Y). By the previous
paragraph we need only show that there is no set Z such that
M, U X) < qZ < q(M,UY). Suppose not i.e., there is such a set Z.
Then, by Lemma 2.3, Z contains exactly #» components W, ..., W,
which are open intervals, Hence Z = i, W, U Z’ where qZ’' = qW
for some standard 0-space T and so ¢Z = q(M,UT). Now since
qX +qT + qY we have qT < qX, qY < qT or T is not comparable
to X or Y (but not both by the construction of .&4). All there
alternatives clearly lead to contradictions. Hence the n-chain .&, has
the ordering indication in Definition 2.2.

THEOREM 2.32. %%, has the ordering indicated in Definition 2.2
(i.e., ¢M* < qM..).

Proof. Any covering « of M* can be refined by a covering 5 =
{B;]17=0,1,2, ...} such that:

(2) B,=10,1/2m + 1)) N M* for some meJ,

(2) B,NB;= for B;eB and j = 0.
Since B = B, is open and closed in M* so is ¥ = U7, B;, Moreover,
Y and B are disjoint, M* = Y U B and

Y=U{/¢+1D,1i)]i=1,3,--+,2m — 1} .

We now define a closed S-mapping, fs, of M* into M,, (a closed
subset of M..). Let fo[B] = —4m + 3/4 and (fs|(1/(® + 1), 1/7)) be a
homeomorphism of (1/(7 + 1,1/¢) onto (—2¢ + 1/2, —2¢ + 1), for ¢ =
1,3,.--,2m — 1. Since 8> a we have that f; is a closed a-mapping
of M* into M.. Therefore, we may conclude that ¢M* < qM..

Now suppose that ¢M,. < ¢M*. Then, for any covering « of M.,
there is a closed a-mapping, f., of M. into M*. Each component of
M., con be written as the union of at least two distinct subsets which
are open in M.. Let a be any covering of M, of this type. Now f,
takes distinct components of M., into distinct components of M*, for
a sufficiently fine (this follows from the proof of Lemma 2.3). So
f«[M.] must contain a sequence of distinct components of M*, Since 0
is a limit point of any such sequence and f,[M..] is closed, it follows
that 0e f,[M.]. Therefore, some component of M. must be mapped
into 0. This contradicts the fact that f, is an a-mapping. Thus we
may conclude that ¢M* < qM...

Now suppose there is a set X such that ¢M* < ¢X < ¢M,. Then
X has denumerably many components, W,, W,, ---, which are open
intervals. Moreover, every sequence of distinet W,’s contains a con-
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vergent subsequence which converges to some point of X (otherwise
qM., < qX). Furthermore, S = limsup{W;|ieJ} is a totally discon-
nected subset of X which is compact (see the proof of Theorem 2.27).

Let v be any covering of X. We proceed as in the proof of
Theorem 2,10, except for taking 4 to be a denumerable dense subset
of R' — X which contains the excluded end points of the open or half-
open intervals which are components of X. With this modification we
obtain as in the proof of Theorem 2.10:

(1) a covering 8 of X which refines v, and

(2) a collection V = {K,} covering X whose elements are open,
closed, disjoint and K; = (a;, b;) N X where a;, b; € 4.

Since S is compact and the elements of V are disjoint, finitely
many elements of V meet S, say K,, ---, K,. Let K=, K; and
Y =X — K. Now K contains all but a finite number of the components
of X which are open intervals. So Y has only m(< ) components
which are open intervals. Applying Theorem 2.31 we get that qY <
q(M, U L,) and since

qM,, U L.) < qM* — 2,)

(where 2, = Ui, {(1/27, 1/20—1)}) we have qY < q(M* — 2,).

Now we will show that ¢K < q2, by defining a closed S-mapping,
fs, of K into 2, as follows:

(1) if K; contains a half-open interval C;, say C; = [¢,, d,),
which is a component of X, then (fs|K;) is a homeomorphism of C;
onto [2/(4¢ — 1), 1/(2¢ — 1)) and fR|K; — C,] = 2/(47 — 1),

(2) if K, contains no such half-open interval, then K; contains
a closed interval C; = [¢;, d;] which is a component of X and we
define f; to be an order preserving homeomorphism of C; onto

[2/(4i — 1), 4/(81 — D)I; fol X N (as, ¢;)]
= 2/(40 — 1), f X N (d;, b)] = 4/(81 — 1) .

The proof that f, is a closed B-mapping is analogous to the proof
given for that purpose in Theorem 2.,10. But 8>~ so f; is also a
v-mapping of K into 2, and, therefore, ¢K < q2.. This together with
the relation qY < q(M* — 2,) imply ¢X < ¢M*. However, this is a
contradiction so we may conclude that ¢qM* < qM...

THEOREM 2.33. qX = qgM* if and only if (1) X has precisely
denumerably many components which are open intervals say W,
W,, +«+ and (2) every sequence of distinet W.'s contains a subse-
quence which converges to some point of X.

Proof. First assume that ¢X = ¢M*. Then Lemma 2.3 implies
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that X has precisely denumerably many components which are open
intervals, say W, W,,---. Now suppose some sequence of distinct
W.’s does not contain a subsequence which converges to a point of X,
Then X contains a closed subset homeomorphic to M.. Therefore,
qM. < qX = ¢M* which contradicts the previous theorem. Hence (2)
holds.

Now assume (1) and (2) hold. Let Y = W U {p} where W is the
union of a sequence of distinct W,’s which converges to pe X. Then
Y is homeomorphic to M*. Hence ¢M* < qX.

Now let v be any covering of X, Since S = limsup{W;|ieJ} is
compact (by (2)), totally disconnected subset of X we can proceed as
in the latter part of the proof of Theorem 2.32 to obtain the relation,
gX < qM*. This together with the previously obtained relation,
gM* < qX imply ¢X = qM*.

THEOREM 2.34, ¢X = gM., if and only if (1) X has precisely
denumerably many components which are open intervals, say W,
W,, -+ and (2) some sequence of distinct W.'s does mot contain a
subsequence which converges to a point of X.

Proof. Assume ¢X = qM.. The Lemma 2,3 implies that X has
precisely denumerably many components which are open intervals, say
W, W, ---. Now suppose condition (2) does not hold. Then by the
previous theorem we have ¢X = ¢qM*. But this contradicts Theorem
2.32 and so condition (2) must hold.

Now assume that conditions (1) and (2) hold. Condition (2) implies
that X contains a closed subset homeomorphic to M.. Therefore,
qM. < ¢X.

Now let v be any covering of X. We proceed as in the proof of
Theorem 2,10, except for taking 4 to be a denumerable dense subset
of R* — X which contains the excluded end points of the half-open
or open intervals which are components of X. With this modification
we obtain as in the proof of Theorem 2.10:

(1) a covering B8 which refines v,

(2) a collection V = {K,} covering X whose elements are open,
closed, disjoint and K; = (a;, b;) N X where a;, b, € 4.

We index the elements V' as follows even positive integers are
used to index the totally disconnected elements of V' and odd positive
integers are used to index the elements of V which are not totally
disconnected. We now define a closed S-mapping, fs, of X into M.
as follows:

(1) if ¢ is even, fi|K;] =— 2¢ + 3/4,

(2) if ¢ is odd and K, contains a half-open interval C, (say
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C; = [¢;, d;)) which is a component of X, (f3|C;) is a homeomorphism
onto [—27 + 3/4, —2i + 1) and f,[K; — C;] = —27 + 3/4,

(3) if 7 is odd and K; contains a closed interval C; = [¢;, d;]
which is a component of X, but no half-open interval which is a
component of X, then we define (fs;|K;) as an order preserving
homeomorphism of C; onto [—2¢ + 3/8, —2i + 5/8]; fel(as, ¢;) N X] =
—21 + 3/8, ful(d;, b)) N X| = —2¢ + 5/8,

(4) is 7 is odd and K, contains an open interval C; = (¢;, d;)
which is a component of X, but no half-open or closed interval which
is a component of X, then we define (f5| K;) as an order preserving
homeomorphism of C; onto (—2i + 1/2, —2¢ + 1); if ¢; # a;, then
Sfel(a;,e;) N X] is a point of fo[B,NC,;] where B, is a link of B
meeting C; with end point a;; if d; = b;, then fg[(d;, b;) N X] is a point
of fo|B,N C;] where B, is a link of 8 meeting C; with end point b;.

The proof that f; is a closed S-mapping is analogous to the proof
given for the same purpose in Theorem 2.10. Since B > v we have
that f; is also a y-mapping of X into M.. Therefore, ¢X < gM.. and
so qX = qM...

We next prove a theorem which determines all the order relation-
ships between the n-chains. Together with the above theorem this
determines completely the partial ordering of the quasi dimension
types of subsets of R'.

LEmMMA 2.9, If qY < qX and X has exactly n components which
are open intervals, then the number of components of Y which are
half-open intervals is at most 2n more than the corresponding
number for X. (Thtis generalizes Lemma 2.8.)

Proof. First note that gL, L qM, since, for any sufficiently fine
cover o of L, the images of the components of L, under a closed
a-map would be mutually disjoint (each being a subinterval of M, of
the form (—3/2,y] or [y, —1)). Continuing in this manner we can
show that qL,,., £ qM, for any necJ. Let 4 be the number of
components of Y which are half-open intervals and let & be the
corresponding number for X.

Suppose the lemma is false, i.e., © = k + 2n + 1. Now for any
covering « of Y there is a closed a-map f,: Y — X. Then at most 2n
of the components of ¥ which are half-open intervals map under f,
into W (the union of the components of X which are open intervals)
for a sufficiently fine. So the other components of ¥ which are half-
open intervals (of which there is at least k¥ + 1) map under f, into
X — W for «a sufficiently fine. It follows that ¢L,,, < ¢(X — W) =
q(L, U J*) which is a contradiction of Theorem 2,25,
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LemmA 2,10, If 1) X and M, are separated, (2) Y and M, and
separated and (3) ¢(M,UY) < q(M, U X), then qY < qX.

Proof. By (3) there is a closed a-map f,:(M,UY)— (M, U X)
for every covering a of M,U Y. As in the proof of Lemma 2.3 we
have f,[M,]D> M,, for « sufficiently fine. Therefore, f,[Y]c X, for
« sufficiently fine. Since X is a closed subset of M, U X and Y is a
closed subset of M, U Y, it follows that ¢Y < ¢X.

LEMMA 2,11, The spaces L., and M* are not comparable.

Proof. By the proof of Lemma 2.3 we have that ¢M* £ qL..
Suppose that qL.. < qM*. Then, for any covering « of L., there is a
closed a-mapping, f,, of L.. into M*. Now, since qL, £ ¢M, (Lemma
2.9), at most two of the components of L. go into a single component
of M* under f,, for a sufficiently fine. Therefore, f,[L.] contains
denumerably many components of M* and so 0 is a limit point of
SolLs]. Since f,[L.] is closed (in M*) we have 0¢f,[L.]. This
implies that a component of L., is mapped into 0 which is a contraction
of the fact that f, is an a-mapping (for « sufficiently fine). Therefore,
we have qL.. £ ¢gM* and so L., and M* are not comparable.

THEOREM 2.35. FEwvery linear set has the quast dimension type
of some (unique) standard space.

Proof. Suppose we are given a linear set X and exactly n(< )
of its components are open intervals W, ..., W, and (<) are half-
open intervals H,, ..., H,. Let W= ., W, and H = ., H; where
if the upper limit is zero the union is understood to be the empty
set. If m =1, then Z = X — W is such that ¢Z = qY where
L,uJ*, if Cl1(Z — H) and N(Z — H) are not compact
L,Ud, if C1(Z — H) is not compact and N(Z — H) is
compact

L,, if C1(Z — H) is compact

If m =0, then ¢Z = qY where

J*, if Z and N(Z) are not compact

Iy J, if Z is noncompact, not totally disconnected,
and N(Z) is compact

Y = <J, if Z is noncompact and totally disconnected -

I, if Z is compact and not totally disconnected

Y =

C, if Z is compact, totally disconnected and infinite
J;, if Z is finite and card Z = 1
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So ¢X = q(M,UY) where Y is given above.

Now we consider the cases when m or # is infinite., If n <
and m = o (i.e., X has infinitely many components, H,, H,,---, which
are half-open intervals), then ¢X = q¢(M, U Y) where

L*, if every sequence of distinct H;’s contains a )

v subsequence which converges to some point of X
N L., if some sequence of distinct H,’s does not contain

a subsequence which converges to a point of X

If n = o (i.e., X has infinitely many components, W, W,, ..., which
are open intervals), then

gM*, if every sequence of distinct W.’s contains a

X subsequence which converges to some point of X
4= gM.,, if some sequence of distinct W,’s does not contain

a subsequence which converges to a point of X

REMARK. It follows from Theorem 2.35 that for any linear set
X, ¢X = qM...

THEOREM 2.36. The only order relations between sets in different
s are those implied by the following. For 1= 2,34, .-+ and
7 = [9/2] (the largest integer =< 1/2), we have

(I) qLi<<Q(M1ULi—2)<<Q(M2ULi—4)<<"'<<q(MjUL7:—2j)y
(I1) oL, U)K M, UL; ,UJ) L qM,U L;_, U J)
Lo LQqM;UL; ,;Ud)
(III) q(L; UJ*) € q(M, U L;_, U J*) L q(M, U L;_, U J*)
Lo L qM; UL, UJ*),
(IV) qL* < q(M,U L*) € q(M, U L*) £ +++ L q(M, U L*)
L qMy, UL¥) L -v e < qgM™
(V) qL.< q(M,U L.) € ¢(M,U L) € +++ L q(M, U L)
LqM,; ULy L+ < qM., .

Proof. In each case we have at least “<”. Applying Lemma
2.3 we have “<” in each case. Consider the first inequality in (I).
Suppose there is a set X such that qL; < ¢X < q(M,UL,_,). Then, by
Lemma 2.3, X has at most one component which is an open interval
and so ¢Xe.%, or ¢Xe. . The first alternative and Theorem 2.31
imply that ¢X < q¢(M, U L;,_; U J*). By assumption, qL; < ¢X so we
have qL; < q(M, U L;_, U J*). But this contradicts Lemma 2.9. The
second alternative and Theorem 2.31 imply that q(L; U J*) < ¢X. By
assumption ¢X < q¢(M, U L,_;) so we have q(L;U J*) < q(M, U L;_,).
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Then, for any cover a of L;UJ*, there is a closed a-map
St (L; U J*) - (Ml U L;_,)

of L;UJ* into M,U L,_,. Since qL, , £ qL; ., fa'[M,] contains at
least two components of L, for « sufficiently fine. Since qL, £ qM,,
[ M,] contains at most two components of L; for a sufficiently fine.
So, for « sufficiently fine, f;'[M,] contains exactly two components of
L;. It follows that q(L; ,UJ*) < qL,_, which contradicts Theorem 2.31.
Hence qL; € (M, U L;_;). The other inequalities of (I)—(III) can be
obtained in a similar manner.

Consider the first inequality of (IV). Suppose there is a set X
such that ¢qL* < ¢X < q(M, U L*). Now if X does not contain a
component which is an open interval, then by Theorem 2.30 ¢X < qL..
and ¢X = qL.. However, it follows from Lemma 2,11 that ¢L. £
q(M, U L*) and so X contains at least one component which is an
open interval. Lemma 2.3 implies X has exactly one such component.
Since qL* £ (M, U L,) for any neJ, we have that X must contain
denumerably many components which are half-open intervals. Hence,
q(M, U L*) < ¢X which is a contradiction. Therefore, we may conclude
that qL* € q(M, U L*). The other inequalities of (IV), except the
last one, can be obtained in a similar manner. We now treat the last
inequality of (IV). Suppose there is a set X such that

q(M, U L*) < qX < qM*

for all neJ. Then X must have denumerably many components which
are open intervals by Lemma 2.3. Therefore, either Theorem 2.33 or
Theorem 2.34 applies and so ¢M* < ¢X. This is a contradiction and
so the last inequality of (IV) is valid.

Now consider the first inequality of (V). Suppose there is a set
X such that qL. < q¢X < q(M,U L,). Theorem 2,30 and Lemma 2.3
imply that X has exactly one component, W, which is an open interval.
Since qL, £ qW, it follows that qL.. < ¢(X — W). The Theorem 1.2
applies and we have ¢(M, U L.) < ¢X. This is a contradiction and so
we may conclude that qL. < ¢(M, U L.). The other inequalities of
(V), except the last one, can be obtained in a similar manner.

We now treat the last inequality of (V). Suppose there is a set
X such that ¢(M,U L.) < ¢X < qM, for all neJ. Then X has
denumerably many components which are open intervals. Therefore,
gX = gM* or ¢X = gM... The latter is contrary to our assumption
so we have ¢X = qM*. However, it follows from Lemma 2.11 that
(M, U L.) £ gM*, and so we have a contradiction. Thus we may
conclude that the last inequality of (V) is valid.

We now wish to show that: if ¢Y < ¢X,¢Xe.%%, and qY e .7,
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0 <m<n< oo, then ¢Y < ¢X can be obtained from (I)-(V), together
with the orderings of the individual &%’s. If ¢Y < q(M, U L)), then
using (I) we get

qY < Q(Mm U Lz(n—m)) << Q(Mm+1 U Lé(n——m)—-z)
<< q(Mm+2 U Lz(n—-m)—-li) << A << an g qX .

Now assume that ¢(M, U L)) < qY. Then, either
(1) ¢X =q(M,U L, U X,) where n, k < oo}
X, =dy, J, or J*,
(2) qX = q(M, U L*) where n < o,
(3) ¢X = q(M,U L.) where n < ,
(4) ¢X = qM*,

or
(5) ¢X =qM.,;
and either
(6) qY =q(M,, UL, UY,) where m < oo, 1 <19 < oo}
Y, =J, J or J*,
(7) qY = q(M, U L*) where m < oo,
(8) qY = q(M, U L,) where m < oo,
or

(9) qY = qM*,

Since qY < ¢X none of the following pairs can hold together:

(1)-(7), (1)=(8), (1)-(9),

(2)-(8), (2)-(9),

(3)-(9),

(4)-(8), (4)-(9).
The pair (5)-(9) does not apply since ¢M* and qM.. are in the same
chain: Let » =4 — 2 (n — m) and let 7 = [¢/2]. Then we proceed to
consider the remaining cases.

Case 1. (1) and (6) hold. Then since qY < ¢X, it follows from
Lemmas 2.9 and 2.10 that » < k. We have the following five subcases.
Case 1.1, Y, =J, If r <0, then m + j < n so using (I) we have

qY = q(M, U L) € (M U L) € ¢(Mypie U L;_)
Lo K qMyi; U Ly yy) = ¢(M,1; U Ly)
=qM, = ¢X.

On the other hand, if » = 0, then using (I) we have

qY = Q(Mm U L@) << q(Mm+1 U Li—-) << q(Mm+2 U Li-—4)
<<"'<<Q(Mnqu) éq(MnULk) éqX'

Case 1.2, Y,=Jand X, =J,. If » <0, then m + j <n so using
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(II) and the fact that q(L, U J) < ¢M, we have

Y =qM, UL, UJ) K+ L qM,+; U L;_,; UJ)
éq(MnH-JULlUJ) é an .

On the otherhand, if » > 0, then » +1 <k. Otherwise, since
r <k we would have » =k and so (M, U L, UJ) < q(M, U L,). This
by Lemma 2.10 implies ¢(L; U J) < ¢(M,_,, U L,) from which it follows
that ¢L;,, < qM,_, U L,). Applying Lemma 2,9 to the last relation
we get 1 +1 <7+ 2(n —m), so that ¢+ + 1 < 4. This is impossible
so we have » +1 < k. Then, using (II) we have

L KqgM,UL,UJ)
<qM,U L,;;) =qM,U L) = qX.
Case 1.3, Y, =J and X, =J or J*. If r <0 we can proceed

just as in the first part of Case 1.2, If » = 0, then using (II) and
the fact that » < k& we have

qY =qM,UL; UJ) L q(M,+, UL;_,UJ)
L+ KLqM,UL,UJ)
SqM,UL,UJ)=q¢X.
Case 1.4, Y, =J* and X, = J, or J. This case is analogous to
Case 1.2 except that (III) is used instead of (II).
Case 1.5, Y, =J* and X, =J*. If »r <0 we can proceed just

as in the first part of Case 1.2, If » = 0 then using (III) and the
fact that » < k we have

qY =q(M, U L, UJ*) K ¢(M,+ U L, U J¥)
L+ <L9M,U L, UJ¥)
SqM,UL,UJ*) =¢qX.
Therefore, if (1) and (6) hold, we have that qY < ¢X is implied by
(D-(111).

Case 2. (2) and (6) hold. If r < 0, then we can proceed just as
in the first part of Case 1.2 except that (III) is used instead of (II).
If » = 0 then using (III) we have

Y = qM, UL, UJ*) K ¢(Mpi, U Lie UJT) <=+ L q(M, U L)
<qM,U L") =q¢X.

Case 3. (2) and (7) hold. Then, using (IV) we have
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Case 4. (3) and (6) hold. If » < 0, then we can proceed as in
the first part of Case 1.2 except that (III) is used instead of (II). If
r = 0, then using (III) we have

qY =M, UL;UJ*) K q(Mss UL, UJ*) Lo ee
L qM,UL,UJ*) < qM,U L) = qX .
Case 5. (3) and (7) hold. Then, using (IV) we have
qY = q(M, U L*) € ¢(My 4, U L*) L+«
< qM,U L*) < qM,U L.) = ¢X .

Case 6. (3) and (8) hold. Then, using (V) we have

qY =qM, U L.) € q(M,4; U Ls) L +++ L qM,U L) = ¢X .
Case 7. (4) and (6) hold. Proceed as in Case 4 and use (IV).

Case 8. (4) and (7) hold. Then, using (IV) we have
QY = qM,, U L*) < gM* = qX .

Case 9. (5) and (6) hold. Proceed as in Case 4 and use (V).

Case 10. (5) and (7) hold. Then, using (IV) we have
qY = q(M,, U L*) < ¢M* < qM.. = ¢X .

Case 11, (5) and (8) hold. Then, using (V) we have
qY =q(M, U L.) < ¢M.. = ¢X .
Therefore, in all cases, ¢Y < ¢X is implied by (I)-(V).

REMARK. We can characterize the class of linear sets with quasi
dimension type ¢(M, U Y), for n =0,1,2, .-+, where Y is a standard
0-space. For, if X is a member of this class exactly n of the
components of X are open intervals. Let W denote the union of these
n components, Then, since ¢(X — W) = ¢Y €.% and we have already
characterized such sets, we can obtain our desired topological charac-
terization of linear sets of given quasi dimension type. Furthermore,
if a linear set has quasi dimension type ¢M* or ¢M., then Theorem
2.33 and 2,34 give its topological characterization.
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