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CERTAIN ISOMORPHISMS BETWEEN QUOTIENTS
OF A GROUP ALGEBRA

0 . CARRUTH MCGEHEE

Let T be the circle group, considered as the additive group
of the real numbers modulo 2π. Let A = A(T)9 the Banach
algebra of functions on T which have absolutely convergent
Fourier series, with the norm of / in A equal to Σn I f(jι) \.
If E is a closed subset of T, we denote by A(E) the quotient
algebra A/I(E), where I(E) is the closed ideal consisting of
those functions in A which vanish on E. This paper presents
a procedure for constructing perfect sets E and F, which are
not Helson sets, and a map φ: F —> E inducing an isomorphism
of A{E) into A{F). Thereby we shall obtain cases of an
isomorphism of norm one, where φ is the restriction to F of
a discontinuous character of T, composed with a rotation. In
general, our ψ will be such a restriction at least on a dense
subset of F9 with the norm of the isomorphism not necessarily
equal to one.

In the course of this construction we impose a condition
of "arithmetic thinness" on the set F. As we shall prove,
this condition is sufficient to imply that F is a set of
uniqueness.

Beurling and Helson [2] established that every automorphism of
the algebra A arises from a rigid motion of the circle—the composition
of a rotation, x —>x + x0, and a reflection, x-*x or x —*— x. One
may consider the problem of characterizing the cases in which a
homeomorphism φ of one closed set F onto another, E, induces an
isomorphism of A(E) into A(F). The methods of [2] may be modified
to show that if E and F are intervals, then φ(x) = rx + x0, where r
and x0 are real; but these methods do not solve the problem for more
general sets. DeLeeuw and Katznelson [4] showed that whenever the
norm of an isomorphism of A(E) into A(F) is equal to one, it must
arise from a map φ: F —* E which is the restriction to F of a character
(an additive function of T into T) composed with a rotation; and that
if F is "thick" in one of several senses, then this character must be
a continuous one: φ(x) — nx + xOy where x0 is real and n is an integer.

Let us call the map φ: F —> E trivial if, near each point of F,
it is equal to the restriction of a function rx + xOf where r and x0

are real. What we shall show, in this terminology, is that there
exist cases of a nontrivial φ inducing an isomorphism of A(E) into
A(F), where E and F are not Helson sets. Still, no such case is known
in which F is a set of multiplicity.
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2* Notation and definitions* The dual group of T is T~ — Z,
the group of integers; and A is the GePfand representation of L\Z)
(cf. [11], Ch. 1 and [7], App. I-IV). For feA, we let

f(n) = -^
2

so that f(x) = Σnf(n)einx and the A-norm is | | / | L - ΣTO \f(n) |. The
dual of the Banach space A = //(ZΓ is Pilf = ZΛCZΓ; each functional
SePM is called a pseudomeasure. Letting (f(x),S) or (/, S) denote
the value of S at /, we set

(/, S) =
n

The pseudomeasure norm is || S \\PM — supw | S(n) |.
Let C = C(T), the Banach space of the continuous functions on

the circle, with the usual norm; || / \\Ό S \\f\\Λiΐ / e A. The dual space
of C is M = M(T), the space of the finite, regular, complex-valued
measures μ, with the value of μ at / given by

and norm \\μ\\M equal to the total mass. The Fourier-Stieltjes trans-
form of μ e Λf is the function on Z

β(n) - ^
2π

Now /i G PM, with || μ UP* ^ || μ | |* and

The inclusions A c C and ikf c PM are proper.
Two closed subspaces of PM are of special interest. One is the

space of pseudofunctίons

PF PM: lim S(n) - θl

note that the dual of P F is A. The other is AP = AP(Z)~, consisting
of the pseudomeasures S whose transforms S are almost periodic
functions on the integers. AP(Z) is the closed space generated by the
characters {einx: xe T} of Z. For each xe T, einx is a character on Z
and is the Fourier-Stieltjes transform of the measure dx which places
mass 1 at x. Thus AP contains all the measures with countable support
in T.
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Sets of uniqueness and sets of multiplicity. (Cf. [7], App. I-IV
and Ch. V; and [13], Ch. IX.) For an arbitrary SePM, consider the
two series

Si(s) - Σ S(n)z*, S2 = - X S(n)zn .

The first represents a holomorphic function for Dx = {\ z \ < 1}, the
second for D2 — {| z | > 1}. A point x e T is called a regular point of S if
βίa; has a plane neighborhood C7 on which there is a holomorphic function
agreeing with S± on Dx Π J7 and with S2 on D2 n U. The set of regular
points of S, an open set, is called the null set of S. Its complement
is the support of £; any set containing the support of S is said to
support, or carry S.

For a closed set E a T, let

{SePM: # carries S} ,

= Λf n PM(#) ,

PF(E) = PF Γ) PM(E) .

If PF(E) Φ {0}, £7 is called a set of multiplicity', otherwise, a
set of uniqueness. If P i 7 Π 714̂ (̂ 7) Φ {0}, i? is a set of multiplicity in
the strict sense; otherwise a set of uniqueness in the broad sense.
A set of uniqueness in the broad sense may be also a set of multiplicity;
for a proof see [10], sections 1 and 3, or [9].

For S G PF, a point x e T is a regular point if and only if the
series X"=_oβ S(n)einx converges to zero throughout a neighborhood of
x. Thus a closed set E is a set of uniqueness if and only if there
exists no nonzero pseudofunction S such that y^=-~ S(n)eίnx converges
to zero everywhere in the complement of E.

Quotient algebras. (Cf. [7], Ch. IX, X, XI.) Let £ be a closed
subset of T and let I(E) be the closed ideal in A consisting of the
functions which vanish on E. Let A(E) denote the quotient algebra
A/I(E), with the usual quotient norm:

(2.1) \\f\\Λ{E) = mt{\\f+g\\Λ:geI(E)}.

We may consider A(E) as the algebra of restrictions to E of functions
in A, the restriction algebra of E.

The Banach space dual of A(E) is

N(E) = {SePM:(f, S) - 0 if fel(E)}.

The norm of SeN(E) = A{E)* is precisely the pseudomeasure norm

of S:
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ll<S||par for SeN(E).

Similarly, let C(E) be the algebra of restrictions to E of functions
in C;

E) = max{\f(x)\:xeE} for feC(E).

The Banach space dual of C(E) is M(E);

\\μ\\Mw = ll"l|jf for μeM(E).

In general,

A(E)dC(E);\\f\\oiE)^\\f\\ME) if fsA(E);

M(E)cN(E);\\μ\\PM£\\μ\\M if μeM(E).

The set £7 is called a Helson set if A(£7) = Cίί/), that is, if every
continuous function on E is the restriction to E of a function in A.
A set E is a Helson set if and only if there is a constant c > 0 such
that

WμWn ^c\\μ\\PM for μeM(E).

The set £7 is a set of synthesis if I(i7) is the only closed ideal
whose hull is E; or, equivalently, if N(E) = PM(E). This equality
does not always hold.

3* A sketch of the procedure* Let Φ denote an isomorphic
mapping of A(E) into A(F). We then have

l |0/IL,>^l|0| |ll/IL<*> for feA(E).

If, as we assume, the functions in the image of A(E) separate points
in F and do not all vanish at any point of F, then the mapping Φ
must arise from a homeomorphism φ\ F'—• E by the rule

(3.1) Φf(x)=f(φ(x)) f o r x e F

(cf. [8], p. 76). It is evident from (2.1) and (2.2) that for every
integer n, the function eίnx on E has A(E)-noγm 1. Therefore its
image eίnφ{x) in A(F) has A(i^)-norm no greater than \\Φ\\. Conversely,
for every homeomorphism φ of F onto E which is in A(F), such that
II einφ{x) \\MF) is bounded uniformly in n, the rule (3.1) defines an
isomorphism

Φ: A(F) — A(E)

with norm || Φ \\ = supw || e ^ \\ΛiF).

The adjoint map of Φ,

Φ*:N(F)-+N(E) ,
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is defined by the condition:

(f,Φ*S) = (Φf,S) for feA(E).

Our plan is as follows. We shall describe two sets E and F in
[0, 2τr) and a bicontinuous map φ taking F onto E. The set F will
be the intersection n ~ = i ^ \ where Fk is the union of J(k) closed
intervals; Fk will denote the set of left-hand endpoints of these
intervals: Fk = {slf , sJ(Λ)}. For E, the sets Ek and 2£Λ = {rlf , rJ(fc)}
will be defined similarly. For each k, the map φ will take Fk onto
2£fc: φ(Sj) = r, for i = 1, , J(k). We shall require that φ preserve
arithmetic relations on Fk; that is, whenever wx, , uJik) are integers
such that Y/ό

{kι uόsό = 0 modulo 2π, then also Σi=*i UJTJ — 0 modulo 2ττ.
We shall place on F an "arithmetic thinness" condition, requiring

in particular that it be so "close" to its finite subsets Fk that every
SePM(F) is the limit—in the A, or weak*, topology of PM—oί a
sequence {μk} of measures supported by the finite sets Fk. The con-
dition will imply that F is a set of uniqueness.

We shall also place on E a relatively mild thinness condition.
Since φ is continuous, the map Φ takes C(E) onto C(F)f and its

adjoint Φ* takes M(F) onto M(E)—both isometrically. But as we
shall show, the conditions placed on φ, F, and E imply that Φ* extends
to a continuous map of N(F) into N(E), that <peA(F), and that the
norms \\ einφ{x) \\MF) are bounded uniformly in n. Consequently Φ maps
A(E) isomorphically into A(F).

4* Lemmas about finitely supported measures* In the present
section we consider the case of a finite set .Po = {Sji j = 1, , J} of
J distinct points, and the measures μ e M(FQ). Let μ assign mass a3-
to the point sά. The Fourier-Stieltjes transform of μ is

(4.1) μ(n) = 2 a5 exp ( — insά) .
3=1

Its supremum is the pseudomeasure norm | | ^ | | P M of μ.
Every function on a finite set FQ is the restriction to FQ of a

function in A, which is to say, a finite set is a Helson set; the C(FQ)
and A(F0) norms are equivalent, as of course are the M(F0) and N(F0)
norms. The constant of this equivalence depends on the set. For an
arithmetic sequence {a + jb: j — 1, , J} (b Φ 0), the constant is of
the order of J1'2 (cf. [7], Lemma 2, p. 134, or [13], V. 4.7). As we
are about to show, it is never greater than J1 / 2.

DEFINITION. Let B(su , Sj) be the smallest constant B such
that
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ii\an\ = \\μ\\M^B\\μ\\PM for every μeM(FQ)

LEMMA 1. In every case, B(sly , Sj) ^ J 1 / 2 .

Proof.

^ J J

I f - Σ Σ <*>&* exp [in(s5 - s{)]
i = l i=l

= Σ I aor Γ + Σ ° ^ exp [m(s,. - ŝ )]

= sup I μ(n) |2 ^ lim (2JV + I)- 1 Σ I β(n) P

the last line by the Cauchy inequality. The lemma is proved.
In general, β(sx, , sσ) depends upon the nature of the arithmetic

relations among the s/s; a relation is an equation

where the u/s are integers and ||a;|| denotes the distance from the
real number x to the nearest integral multiple of 2ττ. If there are no
relations among the s/s, that is, if they are independent modulo 2π
over the rationals, then B(su , Sj) = 1, by Kronecker's Theorem (cf.
[7], App. V).

The transform (4.1) is an almost periodic function on the integers:
for every ε > 0, the integers p such that

(4.2) I β(m + p) — β(m) | ^ e || μ \\PM for every m

are relatively dense; that is, there is an N such that every set of 2N
consecutive integers contains such a p. In particular,

max I μ(n) | ^ (1 — ε) || μ \\PM for every m .

The definition of almost periodicity is customarily stated with just
"ε" on the right-hand side of (4.2). Our version has the feature that
the N depends on ε and the set FQ but not on μ. For let m and p
be integers;

I μ(m + p) - μ(m) \ = α y [exp (— i (m + p)Sj) — exp (— i

= (,Σι I a j \ ) m a χ 11— e χ p
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The solutions p to t h e system of inequalities

are relatively dense, and the system does not involve μ, so that N
may be selected as claimed. In particular, we have proved:

LEMMA 2. Given ε > 0, there is a number N — N(su , sy, ε)
such that for every μeM(FQ),

max I μ(n) | ^ (1 - ε) || μ \\PM for every m .

Note. There is no bound for N depending on J and ε alone; the
set of points {sl9

 9 ,Sj} is critical.

Any two finite sets with the same number of points have isomor-

phic restriction algebras. Let

Fo = {Sj: i = 1, • •, J } , E2 = {r,: j = 1, . . . , J} ,

φ(sό) = Tj .

Then φ maps Fo onto Eo and induces an isomorphism Φ of A(EQ) onto
A(F0) as in (3.1). For μeM(F0) let /i* denote Φ*μ, which is the
measure on Eo such that

The norm of Φ* is the supremum of the ratio \\ μ* \\PMI\\ μ\\pM for
μ € Λf(F0). We know that this ratio is bounded by J 1 / 2, because

by the definition of μ*, and || μ \\M g J1'2 \\ μ \\PM by Lemma 1.

LEMMA 3. If φ preserves arithmetic relations on the set

{su , Sj}, so that

for all integral (uu , Uj), then the range of β is dense in that of
β*. In particular,

\\μ*\\PM£ \\μ\\PM for μeM(F0) .

Proof. By Kronecker's Theorem (cf. [3], p. 53 or p. 99) we know
that the condition (4.3) insures that for every ε and m, the inequalities

\\nsj - mrά\\ < ε , j = 1, •••, J
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can always be solved simultaneously for n. Since

I β(n) - β*(m) | = 11 Σ μ(8s)[exj? {-insό) - exp {imrά)\ 11

^ || μ ||

the lemma follows.

REMARK. We should prefer a weaker, but still convenient, hy-
pothesis in Lemma 3, giving the weaker conclusion that for some

(4.4) \\μ*\\PM<Lc\\μ\\PM for μeM(F0)

—where both the hypothesis and the constant c are independent of J .
For example, perhaps it is true that if (4.3) is required to hold only
for those integral (ul9 •• ,/^J) with \uj\ 5* 2 (or some other bound),
then (4.4) follows for some c. We also should like to have estimates
of the function N, in Lemma 2, better than those provided by the
methods of Diophantine approximation theory. But we leave these
questions unanswered.

5* Construction of E, F, and φ. We shall now give in detail
our conventions for describing the sets E and F and the map <p: F —> E
which were discussed in § 3. We shall describe closed perfect subsets
E and F of the interval [0, 2π), and a homeomorphism φ mapping F
onto E.

Let F — ΠΓ=i Fk, where Fk is the union of J(k) pair wise disjoint
closed intervals, each with length dk > 0. We assume once and for
all that

(5.1) lim J(k) = oo , \im J(k)dk = 0 .

Let Fk denote the set of the left-hand endpoints sy of the intervals
making up Fk:

Fk = {sl9 •• ,sJ(fc)} .

Thus Fk is determined by the selection of the set Fk and the number
dk. In making this selection, we require that

Si < s2 < < sjω

and that for k ^ 2,
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i<V_i aFk — {su , sJ{k_1)9 , sJik)}

Sj(k~D+ι < < Sj(ft)

and
Fk c Fk~x .

Thus every point sό in F* but not in Fk^ {J{k — 1) < j ^ J(fc)) lies in
the interval [s,, S; + dk_x — ώ*.] for some s{ e Fk^ (1 5Ξ ί ^ J(fc — 1)).

We further require that for every k, the points of Fk are at least
2dk apart, modulo 2π. Thus not only are the intervals of Fk disjoint;
but also, each of the intervals contiguous to Fk in [0, 2π] has length
no less than dk.

Now let E be a set constructed in the same manner, except with
different choices of the numbers dk and the sets of endpoints, and
with different notation, as follows: E = ΠΓ=i FJh, where Ek is the union
of J(k) intervals with length dk and left-hand endpoints r/, Ek =
0"i, , ̂ j(&)}. We will again have

(5.2) lim J(k)d'k = 0 .

We shall place the points of Ek in correspondence with those of Fky

in the following sense: for k ^ 2, we select the points r5 for
J(k — 1) < j S J(k) in such a way that, for each i = 1, , /(& — 1),
the number of these r/s placed in the interval [r{i r t + dj.^! — d'k]
equals the number of s/s (with J(A: — 1) < j ^ /(^)) appearing in the
interval [sif st + dk^ — dk].

For each k, let φk be the continuous increasing function which
maps [0, 2π] onto itself such that

φk(0) — 0 , <Pk(Sj) = Tj (1 ^ j ^ ^ ( ^ ) ) , <pyt(2ττ) = 2τr

and which is linear on each interval contiguous to the set {0, su •••,
sJik), 2π}. By (5.1) and (5.2), the sequences {φk} and {φ^1} converge
uniformly as k —> oo to functions φ and φ-1 respectively; which then
must be continuous, each the inverse of the other. Therefore φ maps
F homeomorphically onto E.

6. Approximating pseudomeasures by finitely supported

measures*

LEMMA 4. Let F be the set constructed in § 5. By a method to
be explained below, it is possible to associate with each S e PM(F) a
sequence of measures μk e M(Fk), such that

(6.1) I S(n) - μk(n) \£\n \(J{k)dk)^ \\S\\PM for all k, n .

In particular, by (5.1),
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(6.2) lim μk(n) = S(n) for all n .

Proof. We shall follow Kahane and Salem ([7], p. 126). For each
k, Fk is the union of J{k) closed intervals. Let us give them names
and enumerate from left to right:

A> A> * > J-j(k)

Without loss of generality we may assume 0 to be the left-hand end-
point of A. Then the interval [0, 2π] is the union of the sets

A> A j A> A i * ' ' i A•J(k)i -Ljίk)

where A', •••, ΓJ{k) are the intervals contiguous to Fk in [0, 2ττ], listed
from left to right.

Let S e PM(F) with S(0) = 0. The formal integral of S is the
L2 function

n^o in

with norm

(6.3) lkl|2

The function σ(x) will be constant on each interval T5. Let σk(x) be
the step function which on Iό U I] has the same constant value that
σ(x) has on JΓ . In § 5 we stipulated that each I\ must have length
no less than the length of Io, which is dk. Therefore

( h I σk(x) \ = \ \σ(x + d k ) \ ,

and hence both the quantities I I σk(x) I and I I σ(x) I are major-
)Fk

ι }Fk

ized by (J(k)dk)
112 \\σ\\2. The measure μk = dσk is supported by t h e finite

set Fk, and

S(n) - βk(n) = ̂ L [\σ(x) - σk(x)]e^xdx .
2π Jo

Since the integrand is zero on the complement of Fk, we have

I S(n) - βk(n) I ̂  - M Q ^ i a(x) | + j ^ | σk(x)

π

which with (6.3) implies (6.1).
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If S(0) Φ 0, let x be a point in F± (and hence in every Fk), and
consider T = S - S(0)8x instead of S. Then f(n) = S(n) - S(0)e~ίnx,
f(0) = 0. Associate μk with Γ by the above process; (6.1) will then
hold for S if we take μk = /4 + S(0)δx. The proof of Lemma 4 is
complete.

7* A thinness condition for the set F. We shall now make
use of Lemma 4 to study the implications of a certain thinness
requirement, which we call

Condition I.

lim (J(k)dky'*N(8u , sJ{k); a) = 0 ,

where 0 < a < 1, and where N is the function of Lemma 2. Condition
I may be enforced in the construction of the set F without restricting
the quantity of arithmetic relations among the points {sj}, since at
each step, dk may be chosen after Nk is evaluated. Let us illustrate
that Condition I does not imply that F is a HeLson set. Let {pk} be
a positive sequence, 2Γ=i Pk < 1, and consider the set consisting of the
sums ΈΓ=i £kPk' $k — 0 or 1}. Such a set is called a symmetric set.
By replacing {^J with a subsequence tending to zero fast enough, we
obtain a set satisfying Condition I. But no symmetric set can be a
Helson set (cf. [7], Ch. XI, Th. VIII).

THEOREM 1. Let F be a set constructed as in § 5, obeying Con-
dition I. If Se PM(F) and {μk} is the sequence associated with S
as in Lemma 4, then

(7.1) lim sup || μk \\PM ^ (1 -ay1 \\ S \\PX .

Also,

(7.2) lim sup | S(n) \ ^ (1 - a) \\ S \\PX for every S e PM(F) .

Proof. For convenience let us write

Nk = N(su -- ,sJ{k);a)

ek = Nk(J(k)dkyι>.

Then by (6.1),

(7.3) I S(n) - μk(n) \Sεk\n\ N^ \\ S\\PM for all k, n

and by Condition I, lim^^Sk = 0. By the definition of Nk, there is
an n0 such that \no\ S Nk and
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II μ k \\PM ( 1 - oc) £ I β k ( n 0 ) I <£ I S(n0) \ + €k\\ S\\PM

(7.1) follows.

Let η > 0 and pick m 0 such t h a t | S(m0) | Ξ> || S \\PM (1 — η). Let A;

be large enough so t h a t \mo\ ^ Nk. There is an -% (cf. Lemma 2)

between, say, 7 ^ and 9JV* such t h a t \μk(nk) | ^ (1 — a) \\ μk \\PM. So:

\S{nk)\^\μk{nk)\-<dεk\\S\\PM 1

but

/ ^ (1 - α) || μk \\PM ^ (1 - α) | ft

^ (1 - α)(| S(m0) I

^ (1 - α) |[

So

I S(nk) I > || S \\PM[(1 - a)(l - η - εk) - 9ε,] .

Since nk ^ 7iVfc we know l i m ^ ^ nk = co. Therefore

lim sup I S(n) \^\\S \\PM(1 - α) ( l - 77) ,

where η is arbitrary; (7.2) follows, and the theorem is proved.
By Theorem 1, Condition I has several important consequences for

the set F, which we now list as corollaries.

COROLLARY 1. For each SePM(F), the associated sequence {μk}
converges to S in the A topology of PM.

Proof. This result is evident from (6.2) and (7.1).

COROLLARY 2. The set F is a set of synthesis.

Proof. We need to show that PM(F) - N(F). Let S e PM(F).
Each μk is in N(F), that is, (f,μk) = O for every fel(F). But
(/, S) = limfc_*eo(/, μk) for every feA, by Corollary 1. Therefore
(/, S) = 0 for every fe I(F), so SeN(F).

COROLLARY 3. The set F is a set of uniqueness.

Proof. The result (7.2) easily implies that

lim sup I S(n) | > 0 for every S e PM(F) .

COROLLARY 4. If the sequence {B(sly , 8J(fc)): k = 1, 2, •},
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where B is the function of Lemma 1, is bounded, then F is a Helson
set.

Proof. In this case (7.1) implies that the sequence {||^IU} is
bounded. This fact, together with (6.2) or Corollary 1 proves that
{μk} converges in the C topology of M. It must converge to some
μ e M, and μ = S; thus PM(F) = M(F) and F is a Helson set. This
result is due to Kahane and Salem ([7], p. 126).

COROLLARY 5. // Condition I holds for every a > 0, then

\im\\μk\\PM=\\S\\PM;

lim sup I S(n) \ = \\S\\PM for every S e PM(F) .
M->oo

Proof. Statements (7.1) and (7.2) hold for every a > 0.

REMARK. Let B be a Banach space, B* the dual space, Γ a
subspace of B*; and for feB define

11 /11, = sup {-ψψ^- :geΓ,gΦθ\.

If this norm is equivalent to the B norm in B, then of course Γ is
jB-dense in B*, but as Dixmier [5] pointed out, the converse is false.
An illustration of this fact is provided by the set F constructed by
Rudin ([12], or [7], p. 103), which is not a Helson set but which has
II μ \\M — II μ 11** for all those μ e M(F) which have finite support. The
space Γ consisting of these measures is A(F)-dense in N(F) (as it is
for arbitrary F), but the A(F) norm is not equivalent to the norm
||/Hi, which in this case equals the C(F) norm.

In the case of the set F of Theorem 1, however, the finitely
supported measures are A(F)-sequentially dense in N(F) and

l l/l l i^l l/IIWl-αO for feA(F).

Even these conditions do not reflect the full strength of the approxi-
mation of S e N(F) by the sequence {μk}; for we have the further
fact that S is well approximated by βk throughout an almost-period
of βk.

8. An isomorphism of A(E) into A(F). To establish the
isomorphism, we shall place the following three requirements on the
set F, the set E, and the mapping φ, respectively:

Condition I.
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lim (J(k)dkyι*N(su , sJW; a) = 0 ,

where 0 < a < 1, and where N is the function of Lemma 2;

Condition II.

where I? is the function of Lemma 1; and

Condition III.

J(fc) II I I J(k)

Z \ \ 0 \ \ Z

for all integers uu , %J(fc, and for every fc.
Condition II is a relatively mild requirement. By Lemma 1, it

holds if

Σ d'kJ(k + if* < oo .
k=l

It is satisfied, for example, by a symmetric set of constant ratio
ξ < 1/2:

{(1 - ί)^-1 Σ ekξ
k: ek = 0 or 1 for each k\ .

To describe this set we may take J(k) = 2fe, d'k = ίA.

THEOREM 2. Lβί ίAβ seίs î 7 αtid E and the mapping φ, constructed
as in §5, obey Conditions I, II, and III, respectively. Then by the
rule (3.1), the mapping φ induces the isomorphism Φ of A(E) into
A(F), with the norm no greater than (1 — a)~\ If Condition I holds
for every a > 0, the isomorphism is norm-decreasing.

Proof. Using (3.1) for feC(E), we see that the homeomorphism
φ of F onto E induces the isometric isomorphisms

Φ
{ ' } Φ*:M(F)-+M(E) .

By Lemma 3, Condition III implies that the restrictions of Φ* to
measures on the sets of endpoints,

Φ*:M(Fk)~>M(Ek) , A; = 1 , 2 , . . . ,

are continuous with respect to the pseudomeasure norms; in fact
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(8.2) for μeM{Fk), k = 1, 2,

where μ* denotes Φ*μ. We shall now show that if SeN(F), and {μk}
is the sequence associated with S by Lemma 4, then Condition II
implies that the sequence {μ\{m):k = 1,2, •••} is a Cauchy sequence
for every m; and we shall then define S* = Φ*S by the conditions
S*(n) = limk^μl(n). Let

f o r 1 ^

8i) , for U i g

Similarly, let

Then

since

= Σ Σ {&; e χ P (-i
J(/c)

= Σ
— exp(

J(Λ)

- /iί(w) + Σ
- exp(—ΐmr,-)]: r< -

% = Σ {δ*: n - dk]

by the definition of μk and Therefore

- μl(m)\ ^ m\d'k}

, r J ( J b + 1 ))) as

because

Jik+l)

Σ I ^ B(rlt

and H^IIIPM - ^( | |S | |p j f) by (8.2) and (7.1). Therefore, Condition II
on the set E implies that {β&m): Jc = l, 2, •••} is a Cauchy sequence
for each m. Let S%m) be its limit. Then
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thus

lim μt(m)

Since S# = l i m ^ ^ f in the A topology of PM, we know S# e N(E).
The map S —» S* is an extension of (8.1) to a continuous map of N(F)
into N(E), with norm no greater than (1 — a)-1.

To show that φ induces an isomorphism of A(E) into A(F), it
suffices to show that eiφ e A(F). For then

(S, = lim = S*(m)

and hence

I (S, eίWίP) I ^ (1 - α ) " 1 1 | S ||pjf for all S G

so \\Λ{F)
^ (1 - for all m .

We already know that φ induces a continuous linear function G
on N(F):

/Q O\ C^ί ^\\ f̂̂ i \ liTΎΊ ί II /yi''ffl'Φ\

Since A(F) is total over N(F),GeA(F) if and only if G is continuous
in the A(F) topology of N(F) ([6], V. 3.11). But G is A(F)-continuous
if and only if it is continuous in the relative A(F) topology of the
ball {S: \\S\\PM ^ a} for every α > 0 ([6], V. 5.6). Therefore it
suffices to show that for arbitrary a and ε, there exist N and rj > 0
such that:

(8.4)
\S\\PM^a a n d \S(n)\<η f o r \n

=> I G(S) \<e.

If \\S\\PM^a9 then by (8.2) and the definition of Nk,

= I μ\{l)

N

^ \\μk\\PM

which by (7.3) is

^ (1 — ay1 max | βk(n) \ ,

max I S(n) \ + εka

so by (8.3),

I G(S) I ^ e/2 + (1 - α)- 1 max

for k large enough; and if N = Nk and -η <^ ε(l — ά)/2, then (8.4)
follows. The theorem is proved.
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REMARK. For the extension of Φ* to a continuous map on N(F),
it would suffice to have

(8.5) \\μ*\\PM^c\\μ\\PM for / i G l f t ) , A: = 1,2,. . . ,

for some c Ξ> 1. Condition III seems too strong, since it gives not only
(8.5) with c = 1, but much more, by Lemma 3. But we prefer to
state the theorem using Condition III, because it gives an explicit
sufficient condition on the selection of the points {τ3) and {sd}; and we
do not know of any essentially weaker condition that will yield (8.5).

9* Examples* To obtain an isomorphism of A(E) and A(F), we
apply Theorem 2 twice, requiring that the triple E, F, φ~\ as well
as F, E, φ, obey requirements analogous to Conditions I, II, and III,
respectively. Then φ~x will induce Φ~\ whose norm will not exceed
(1 — α')~S say. If Condition I holds on F and E for every positive
a and a\ respectively, then A(E) and A(F) will be isometrically
isomorphic.

Let us point out an example. For i = 1 and 2, let G{ be the
symmetric set {Σ~=ie*ffc): εk = 0 or 1}, where {ζ^} is a sequence
of numbers independent over the rationale. If ζ{

k

i] —* 0 fast enough,
then A{G^) and A(G2) are isomorphic. For instance {ξ^} could be a
sequence {ηtk)} of powers of a transcendental number ηi%

The arguments for Theorems 1 and 2 may be modified to deal
with many sets not of the simple, convenient type described in § 5. For
example, we may allow each Ek (and Fk) to be made up of intervals
of various lengths, with d'k (and dk, respectively) as a bound rather
than as the common value.

There exists a set E with the following properties: (1) except
for the variation just mentioned, E is of the type described in § 5,
with J(k) — 2k, such that (2) E satisfies Condition II; (3) the points
of E are linearly independent over the rationale; and (4) E is a set of
multiplicity in the strict sense (and hence not a Helson set—cf. [7],
Ch. XI, Theorem V). Rudin ([12]; cf. also [7], p. 103) constructed a
set with properties (3) and (4), and (1) and (2) are easily assured in
his procedure. Let F be contructed as in § 5, such that Condition I
is satisfied, J(k) = 2fc, and the sequence {sl9 s2, •} is independent over
the rationale. Then since B(sl9 , sJUe)) = 1 for every k, F is a Helson
set by Theorem 2, Corollary 4 (and hence a set of uniqueness in the
broad sense—(cf. [7], Ch. XI, Theorem V). Let E be the set of
Rudin just described, and define φ: F —> E in the manner of § 5, taking
φ(Sj) = Tj. Since both {Sj} and {r3} are independent, Condition III is
satisfied and by Theorem 1, φ is an isomorphism of A(E) into
A(F) = C(F). The map cannot be surjective, for then E would be a
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Helson set. The map Φ* maps N(F) ~ M{F) continuously into N(E),
and onto M(E). It is notable that Φ* thus must map some measures
which are not pseudofunctions into the nonempty class M(E) Π PF.

10* Some questions* We say that φeA(F) is trivial if near
each point of F, φ(x) = rx + xQ for some real r and x0. No example
is known of a nontrivial φβA(F), taking F into the circle, with
supw II einφ\\Λ{F) < oo, where F is a set of multiplicity.

Consider the sets

(10.1) E{tj} = { g xdt, : xά = 0 or

where tό —> 0 as j —> <>o. Perhaps it is the case that whenever ts —* 0
and ίJ —• 0 fast enough (in some sense that disregards arithmetic
properties of the sequences), then the sets E{t3) and E{t'3) have
isomorphic restriction algebras.

Consider the compact group X which is the complete direct sum
of a countably infinite number of copies of the group {091} under
addition modulo 2. The elements of X are the sequences

{(xux2, -•y.Xj = 0 or 1} .

Let Y be the dual group of X, and let A(X) be the Gel'fand represen-
tation of L\Y). When, if ever, is the restriction algebra of a set
(10.1) isomorphic to A(X)1

Added in proof: H. P. Rosen thai (cf. §1, Projections onto trans-
lation-invariant subspaces of LP(G), Memoirs of the A. M. S. No. 63,
1966) has shown that such an isomorphism never occurs.

Consider the quantity

= sup | 4 r π r ^ : μ e M(Eϊ' μ^o\.
*• II f1 \\PM '

If feA(E), of course, | | | / | | | ^ | |/ |U ( J E ). How can we characterize
the sets E which have the property that

(10.2) Ill/UK °°=>feA(E)

whenever fe C(E)1 Only recently, Katznelson constructed a set for
which this implication fails. We shall here establish a sufficient
condition for (10.2) to hold. The ideas are essentially those of the
de Leeuw and Katznelson [4] and Kreϊn ([1], §77); Kreϊn proved (10.2)
in the case when E is an interval. Let feC(E) and suppose | | | / | | | is
finite. Then / provides a bounded linear functional on M(E) taken as
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a subspace of PM. Let g e PM* be an extension of / with norm

\\g\\ = HI/ | | | . Then g may be decomposed, g = gt + g2 where gteA,

g2ePF\ and | | | / | | | - \\g\\ = | | Λ | | + ||<72||. Since g2ePF\ it has the

property that

| ( f t , S ) | ^ | | f t | | . l imsup| iS(i i) | for all S e PM.
|»|-»oo

Since clearly | | | δ i | | | g || Λ | | for % = 1 and 2, and | | | / | | | = | | | 9 l | | | + | | 021|,

it follows that HI&IH = | | | g21|| = IllZ-S'iill. To establish the implication

(10.2), it suffices to show that always g2 = 0. The situation is as

follows:

(/-&-&, JM) = 0 for μeM(E);

Ill/-Λlll = llftll;
(10.3) 1 (/-Λ f μ) I ̂  111 f-gx \ \ | lim sup | /ϊ(%) | for all μ e M(E) .

l«l-»oo

It follows that if every portion of the set E is a set of multiplicity
in the strict sense, and thus supports a nonzero, positive measure
μePF, then (10.2) holds. For if f-g^O, then (f-gu μ) would
have to be nonzero for some μ e M(E) Π PF— impossible, by (10.3).
More generally, if for some η > 0, M(E) contains enough measures μ
with

|| μ \\PM = 1 and lim sup | μ (n) \ ̂  1 — η
|n|-*oo

to insure that | | | / | | | equals the supremum of | (/, μ) \ over such μ,
then (10.3) gives a contradiction unless g2 = 0, so that (10.2) must
hold. It can be shown that this more general hypothesis is satisfied
by the Cantor set.

The author wishes to thank his adviser, Yitzhak Katznelson, for
his counsel and encouragement; and to acknowledge valuable conversa-
tions with Jean-Pierre Kahane, I. I. Hirshman, Jr., William G. Bade,
and Robert Schneider. The author is also grateful to a prompt and
helpful referee.
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