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ON THE BIHARMONIC WAVE EQUATION

ERNEST L. ROETMAN

Under appropriate restrictions of material and motion the
equation of motion for a vibrating elastic bar is (8% + 0})u = 0.
Because of its mechanical importance, there is a large litera-
ture devoted to the eigenvalue problem for this equation but
solutions of boundary value problems for the equation itself
seem to have been ignored. It appears that Pini was the first
to seek a solution in terms of integrals analogous to thermal
potentials, Like Pini, we use a fundamental solution very
similar to that of the heat kernel to obtain potential terms
which lead to a system of integral equations., While Pini uses
Laplace transforms to obtain solutions to the integral equa-
tions, we observe that the problem may be reduced to one
integral equation of a complex valued function, f = a -+ ik * f,
effecting a significant simplification,

Along the way, we obtain, by reduction to Abel integral
equations, a general method of solving semi-infinite problems
which can solve boundary value problems not available to
Fourier transforms, the technique presently used.

The first appendix is a justification of the change of order of
integration for a key iterated integral; the computation of some im-
portant integrals is given in the second appendix.

2. The fundamental solutions. By standard Fourier transform
techniques, one finds that a fundamental solution for the equation

(1) @ + ) = 0
is

S 2
2 Kx,t = iz g <£ . T ]
(2) (@, 1) xp (2 + 4)

We also define
(38) C(x,t) = Re K(x,t), S(x,t) =ImK(x,t).

We obtain by straightforward computation:

(4) 0K =12 g
2t

(5) @2 +i0)K =0,

(6) (@2 —0)K =0,
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and hence
C
(7) (a;+a§){s}=o.
It is convenient to set
(8) Kz, 0) = | K, 9)ds;
thus
(9) Kz, t) = a—mrs‘meisds
2 Jn
where
a= —nw"% Mt and h = 2 .
4t

Then
(10) 0K, =Lk -2k,

x x
11) 2K, = —iK,
(12) @+ i0)K, = 0.

3. Semi-infinite bar. We consider now the problem of the semi-
infinite bar; that is, we seek a function u(x, t) on D = {0 < 2} x (0, T")
such that

13) 04+ =0,
and in the limit
(14) w(®, 0) = d,u(x, 0) = 0,

w0+, t) = a(t)

(15)
2,u(0+, ¢) = b()

where the conditions on the functions e and & will be determined
presently.

We try a solution in the form
(16) wa,t) = | [C(@, t = 9)p(s) + S, t — shy(e)ds .

To relate ¢ and + to @ and b, we consider

(17) U, t;9) = | K@, t = s)p(s)ds .
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The next two theorems are essentially contained in [3] but for com-
pleteness we include them here. (We use BV and CBV to mean
respectively the classes of functions of bounded variation and continuous
and of bounded variation.)

THEOREM 1. If ¢ is BV on [0, T], then
0% 4+ 10,)U =0

on D.
Proof. By integration by parts
(18) U= 9K + | Ko, t - 5)da(s)
so that by (11)
(19) U = —igp(0)K(w, t) + StK(x t — 8)dep(s) .

Differentiation of (18) with respect to ¢ and comparison with (19)
completes the proof. Defining

u (%, t; ) = Re U(x, t; @)

(20)
Uz, t;0) =Im U,

we have

COROLLARY. If e C' and ¢’ €BV on [0, T], then u, and wu,
satisfy (13).

Proof. Since (19) can be written as

we can apply Theorem 1 again.

THEOREM 2. If e CBV(|0, T]), then

@1) lim Uz, £ ) = —n—lfze"”"‘gzo(to — 8 eg(s)ds
=iy
(22) 11}013 2, Uz, t; @) = Eop(t,)
on (0, T), and
(23) lim U= lim 0,U=0.
t—0+ t—0+

z>2) T—1)F0
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Proof. Equation (21) and the first equality in (23) follow easily
by standard arguments. That

StaxK(x, t — s)p(s)ds
exists for all © > 0 follows immediately from
[ 0.pds| = (@t | + Vigs b )M, 1)
where

Mit,, t,) = g a,,de{ b= w<z=t

(see [2, p. 623]) and, since the integral exists, goes to zero as t,, t, — t.
(The second part of (23) obtains from M(0,t)— 0 as t—0.) On the
other hand, by integration by parts,

: 11
0,Kd ’ I S S Y P TS
Sw 5| < 21/7zm|{[z w’l

Lo (G5)sas|} = S iy —
o 4s VT |z

so that the convergence is uniform with respect to x for |z| = o6 > 0.
Therefore

_‘_

(24) Ude, t; @) = | Kula, t — 9)p(s)ds .
For ¢ =1,
. _ t o giFlt . ¢ . ,L'x‘z)
U.(x,t;1) = Son(x, s)ds = 21/?@90 Sos exp<48 ds

which through a change of variable becomes

/ oo
Uz, t;1) = — 6_4 sgn (x)g m~*e"™dm
h

16"
vV
where h = 2*/4t. Since

lima =0,
-0+
t—tg

(25) lim U, ¢;1) = +1.
x—0%
t—-tg

Now, for 2 >0
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|/ 0K, t = 9lp(s) — p(tlds

- <S:_S + S:_(s)axK [p(s) — p(to)lds
= Il + Iz ’
and

uugg%wmﬂ@—ﬂmuwm—r%

which goes to zero as t— ¢, and v — 0-+. Also,
L1 ={ swp 190 = @t | + Vi) — plt); t — 5, )} Me)
where

M(x) = sup

StzaxK(x, t — s)ds‘,
131

t—0<t <t <t But,

S““a,m] -1
[ T

h(tg) )
g m—l/zezmdm ’
Bty

where h(s) = x*/4(t — s), and since the limits of integration are always

positive and the integral on (0, ) exists, the last integral is uniformly
bounded in z and ¢, i.e. M(x) < M,. Therefore,

| L] = Misup|p(s) — p(t) | + Vip(s) — @(to); (¢ — 0, D)} .

Thus, for ¢ sufficiently close to ¢ and é so small that ¢ — § is also
close to t,, the continuity of ¢ and of its variation implies that ||
is small which completes the proof.

We gshall later find it necessary to extend these theorems for an
important special case which is not contained in the above hypotheses.
We can show that our theorems do not hold without the BV require-
ment, but as we shall see, BV is not necessary; thus, the present
conditions are not the most natural for the kernel in question.

From the preceding we see that the conditions (14) are satisfied
and that the boundary conditions (15) must be related to the density
functions ¢ and + by

yu—@W@@@- (¢ — 8y (s)ds = alt)

1
(26) V2w b Var S
P(t) = b(t) .

We then have
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P(t) = b(t)

(27) w(t) = _1/?% S:(t — 8)~a(s)ds — b(t) .

That is, we have proved that:

THEOREM 3. If b(t) and d/dtgt(t — 8)™*a(s)ds have first deriva-
tives which are CBV[0, T'], then (16) satisfies (13) with conditions
(14) and (15) where ¢ and + are given by (27).

4. The finite bar problem. We consider next the problem of
finding a function u(x, t) on the domain

D={0<2x<2} x(0,T)
which satisfies
(28) @, 4+ 0)u =0in D
with

w(x, 04+) = du(x,0+) =0

and
(29) w(0+,t) = a(t), w@—,7) = axi)
for t > 0.

We seek a solution in the form

u(xy t) = uc(xy t; @1) + us(x’ t; “/fl)

(30)
+ U2 — 2, t; @) + U2 — @, T; Yrg).

We observe that, by the corollary to Theorem 1, if ¢; and ; (1 = 1, 2)
have CBV derivatives, then (30) satisfies (28) and, by Theorem 2, that
(80) satisfies the initial conditions and finally that there hold the
relations

2, - 27y {t—lﬂ cos (%) + %}*@2

(81y) 4 {t—uz sin (—1— + —Z—)}*“/’ 2= T

3l) o + 2{t“3’2 sin (-1— + %)}*@2 - .‘2{75—3/2 cos <% + %)}*(,Dz =b
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{t—”z cos <% + %)} * @y + {t—”2 sin <% + f_) g

(31,) 4

+ 2_1/211/2§D2 4 2_1/211/2¢2 = —aq,

3L,) 2{t-3/2 sin (% -+ %)}*gal — 2{15—3/2 cos (—1— + —Z——)}*Q/fl + @, = —b,,

where
rrg =7t = 9)9()ds
and
Ig(t) = (@)™ | (¢t = sy p(e)ds -

This system is equivalent to that found by Pini [3, p. 101].
For convenience we define operators

. Ecp = ;?:) {t~'exp (it ™)} xp
Ep = F—(a)—{t“‘1 exp (it}

and

(33) C*+ iS*=E«, C~+ iS*= K=,

so that the system (31) can be written

21N, 4 Q[ 4 i, — Sy, = —q,
I’p, + 28~p, — 2C 2y, = b,
C’1I2¢1 + 5’1/2“#1 + 2—1/21'1/2¢2 + 2—-1/2_[1/2,&2 = —aq,
28 ~Mipy — 202, + @, = —b,.

(34)

Adding and subtracting the first and third equations and the
second and fourth equations respectively and setting

P+ @ = S Y+ e =0
P1— P = fr Vi — Yy =0,
a, + a, = A b, — b, =B
a, —a, =4, b+ b, =08,

(3%)

we obtain two systems of two equations each:

_2—1/21'1/2]4'1 . 2-1/21’1/2‘(]1 _ C’l/zj'1 _ Sl/2g1 — Al

36
#) fi+ 2870, — 20, = B,
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and

_2_1,211/2‘}(-2 . 2—1/2]1/2g2 + Cl/zf2 + Sl/zg2 — Az

37
&7 fo — 28702, + 2C g, = B, .

Defining operator matrices

— -2z __9-1j2]2
(38) M:[ . . ]
and
ce Sz
(39) Ny = [-20 —uz 2C-”2] '

we can write (26) and (27) respectively as

w w(21-13]

and
e a
frnd ]‘[—1
ME SN
where
0 I°
M= .

(41) [_ Quz -1z 1'0:I

Hence, (36) can be written as

o [
91 D, (o}
with
M
S
D, B,

To simplify M—N,, we prove:

LEMMA. If @ t¢s CBV [0, T, then
(43) I72E g = —2F g,

Proof. Consider

H(t) = %S |, 27 exp (if(s — (¢ — 5)(s — ] drds

12
0
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which is a absolutely integrable and, hence, can be written as
H) = L aro() | exp (/s — It = 9)(s = r)]ds
0 r
= gtgv(ﬂErfc(e"“"‘(t — )y .
0
Observe that
d —iT[4 —1/2y __ 1 —
—— Erfe(e ™4t — )™ = =V 7w 3, K(2,t — 1)
dt 2
and define
F(t) = %V?axK(z, Do .

Then,
tH(E + r) — H@t)] — F(b)
= S:"‘s@(’)"){r—l[E((t + 7 — 7)) — E((t — 7))

- —;-773/2&1{(2, t—n}dr

+ f‘lgi: P(rME(t + © — )"*)dr

— = @B —
t—
= Il + IZ - IS)

where E(s) = Erfc(e~***s) and ¢ is to be chosen.
If z >0, we write

8
I— L= ot - py1E@ + 97 - Eo~)]dp
g f“SZ@(t +7—pE@dp=J +J,.
By the properties of the complimentary error functions,
p+T

E(p + 07 — E(@™) = 26“"*8 ~eTindn,

»

whence,
[l = 2{sup (| [; [0, T]) + V(p; [0, TD}M(z, 0)
where
z p+T . _al2
wiz, o) = sw |['(= o rnan)ip) .
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Integrating the inside integral by parts and then integrating by parts
with respect to p, we obtain

Sz(. . .)dp — __q:[zml(e—i/(m-r)(p + 7)5/2 _ e—i/pp5/2)];

z

* %@S T (e P (p 4 T — e~Pp)dp

w

1 (7 p+7 |
+ Ev,g <T“1S e””n“”%n)dp.

w p

Now then, we are justified in taking the limit as ¢ — 0 to obtain

lim M(z, 6) < sup|[e ¥?(ip"® + 5/2p*?)],

-0

— 52 S e-in(ip=7* 4 3/2p")dp
— 1/2§z e‘i“’p‘”zdp'
< A2 if o<1,
On the other hand,
|J.| = sup (| ol; [0, T])<f‘1 SO | E(@7)| dp)
< B+ [p" + 0ldp
< B{c" + 0(c*)
which goes to zero with z. Thus, choosing 6 such that

Iim|J,| <e¢

=0

and holding it fixed, we have
@ [Li=0
and hence,
T,ii—? |t H(t + 7) — H(t) — F(t)]| < €.
For = <0,
L-1= ("ot +c - DEG - B - 0dp

+ T_ISZQ(t — p)E(p~*)dp
=J! + J,.
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The estimates for J, are exactly like those of .J,; the only change
in J{ occurs in the range, 0 < ¢, < t, < 6 — 7, over which M’'(d, 7) is
taken, but if |7 | < d, then we strengthen the inequalities if we extend
the range to 0 < ¢ < ¢, < 20 and everything goes as before.

Thus (d/dt)H(t) = F'(t) and the lemma follows by easy comparison

with (43).
The lemma established, we return to (42) where we now see that
—28-12 2012
M~'N, = — —
20/ 2C- — 281 2/ 2§ 4 20
But
- C —1/2 - -
1/ 2 {S} — C—1/2 F S—1/2
so that
—§-uz -z
IENEE e |

and (42) becomes

S Cl} [—S‘”Z ;e flJ
44 = 2 .
w - S
Further, if we multiply the second equation in (44) by ¢ and add
it to the first with

f:ﬁ+7:gl

45
( ) a"—‘Cl—l—’iD“

(44) becomes
f=a+ 2XEf

or
(46) O = a(®) = | It — 5) Fs)ds
where
47) k(t) = im et =% exp (i/t) .

Starting from system (40) we obtain in an analogous fashion
(48) g="0— 20E"g

where g = f, + tg9,, b = C, + iD,. Or,
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(49) a(t) = b() + S:k(t — sjg(e)ds
where k is defined in (47).
These two problems are combined in the equation

(50) F@t) = a(t) + Mexf(t) .

5. Solution of the integral equation. We here solve the integral
equation (50) collecting our results at the end in the form of a theo-
rem. By formal successive substitution of (50) into itself, we obtain

(5l)  f=a+ Nex@ + [ NP hx(kxa) + N[N Ex(kx(kx@) + +-- .

In Appendix A, we show that for functions a(t) e CBV [0, T] we can
interchange the order of integration to obtain

kx(kxa) = (kxk)xa = k,xa
where by explicit evaluation
k(t) = (2/m)*t~%* exp (—2/[t) .

This function has the same form as k (it is even absolutely integrable)
so that again

Ex(kx(kx@)) = kx(kyx@) = (kxk,)*a .
Thus, we obtain for (51)
(52) f=a+Nex@ + [ MNP Ryxa + NN hx@ 4+ oo
where
k., = (2/7)*nt~** exp (—2n*/t)
J— —%(2/71’)”2(20@ + 1 — )t exp (—[n@n + 2) — i(2n + 1)]/t)
(see Appendix B for the computation).
To see that this series has meaning, one observes that on [0, T']
k| = M, and |[ks| = M,
whence
| by | = M3t/ (m — 1), n>0
and
s | = | alt = 5) | Buuea(s) | s
< MMt~ (n — 1)!, n>0,
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Hence, if a € CBV and one sets A = max (a(t); [0, T']) then
[fl=lal+ N [kxa]
+ INAGE + [N MY 5 (0] M) T — 1)!

151

which shows that (52) is a uniformly convergent series for all A and

(53) f=a+Nex@ + 3N (k@ + Neyurs %)

To show that f, defined by (53), is continuous, one need only show
that k& +@ is continuous; the other terms have very smooth kernels. If

g(t) = gts~3/2 exp (i/s)a(t — s)ds ,
0
then for ¢ > ¢,
o(t) — g(t) = | s exp (ifs)a(t, — 9)ds
121

+ o exp ipas)ds

+ st—s/z exp (¢/s)a,(s)ds
= -[1 + Iz + Is

where a,(s) = a(t;, — s) — a(t, — s) and 6 < (1/2)¢, is to be chosen.

[I;| < @2sup|a| + 2V(a; [0, T])M;, 1=1,2.

The existence of the integral implies that

M, = sup’ S”s‘slz exp (1/s)ds

, L=u<v=t

goes to zero as t,— t; and that

M, = sup S O<u<v<d,

Now

is small if 6 is small. The uniform continutity of a makes I, small

as t,— ti.
One observes that
Nes f = Nkx@ 4+ | NP Ex(k*a@)
+ K’k*lz ! A Izn(an*a + kan—i—l*d.)J
:—a+ f!

and we have proved:
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THEOREM 4. If aeCBV]0, T, then f, defined by (53), ts a con-
tinuous solution of the equation

f=a+ Nexf
for all .

6. Solution for the finite problem. The function f, determined
by (563), may not be BV; for example set a(tf) = 1. Thus, the solution
of the system (34) may not satisfy the conditions of Theorems 1 and
2. However, we can establish the validity of the results directly.

ProposiTioN. If a is CBV, then

(54) U, t;kxa) = — Uz + 2, ¢; a) .

The proof of this proposition is easily effected by an inversion of
the order of integration and evaluation of the interior integral. Justi-
fication of the interchange can be obtained by adapting the argument
of Appendix A.

From (63) f— AMkxa is CBV, @ is CBV by assumption and the
remaining sum has a bounded first derivative because of the form of
k., m = 2. Therefore,

U, t; f) = U, t; f — Mexa@) — ANU(x + 2, ¢; @),
and from Theorem 2

lim Uz, ¢; f) = — ™I f — Nexa@)] + MEV@ .
0+
t——'to

We observe that kx@ = —2(E-°g and —2E-Y* = {J-*EY2 (the
lemma) so that

Uz, t; f) — —e™ IS,
Also, from Theorem 2

lim U, = =(f — Mexa@) — ANUL(2, t; @) .

Since U,(2,t;a@) = —k=a, we see that U,(x,t; f)— f(t) as z— 0+
which is the only case of interest.

We thus conclude that if I-2a; and b, (7 = 1, 2) have first deriva-
tives which are CBV then (33) provides a solution to the equation
(0% + 0%)u = 0 with homogeneous initial conditions and boundary values
given by (32).

Appendix A. To solve the integral equation above, it was neces-
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sary to interchange the order of integration for a very singular inte-
grand. We here prove that the interchange is valid.

If fis CBV][0, T] and |a] >0, |b| >0, Rea =0, Reb = 0, then
for 0=t T

= S:g:[(t — s)(s — w)]*exp (—a(t — s)™ — b(s — w)™)
- & fu)duds
= S:f(u) S:[(t — 8)(s — u)exp (—a(t — s)™ — b(s — u)™)

cxdsdu = J, .

(A.1)

The method of proof will be to show that J, exists, to restrict the
domain to that on which interchange is easily justified, and then to
show that the neglected terms vanish in the limit which will establish
the existence of J; and the equality J, = J,.

The first integral of J, is evaluated explicitly in Appendix B as

(G e [TV,

Thus
J, = CIS:(t — w)~exp (—e(t — w)™) f(uw)du

which is equivalent to the first integration of .J..
Now then,

1) = | (s = wy exp (~b(s — wy) fwdu
(A.2) '
= S w2 exp (—b/u) f(s — u)du

will exist if we can show that

I(m,n) = Sn u=exp (—b/u)f(s — u)du —0 as n,m—0.
But
I(m,n) = (B + V(f, [0, T])) M(m, n)

where B = sup | f(t)], 0 <t < T, and

M(m, n) = sup

Sz u=exp (—b/u)du|, m=z<n.

The existence of the integral implies that M(m,n) — 0 as m, n— 0;
hence, I(s) exists.



154 ERNEST L. ROETMAN

Moreover, similar estimates give
(A.3) [I] = (B + V(£ (0, )M, s) ,
where by integration by parts
M0, s) = |b]" |exp (—b/z)2"* — exp (—b/w)w"*|
S u“”zdul,

2
w

Ly
+ o]

and thus M(0,s) < 3|b|'s~%, Hence, I(s) is well behaved near the
origin so that the outside integral of J; is not improper at the origin
and its existence will be established if

JI = S:_S(t — 8)7* exp (—a(t — s)™)I(s)ds

has a limit as 6 — 0. However,

JI = S.s s exp (—a/s)I(t — & — s)ds

+ S:_SS"WeXp (—a/s)[I(t — s) — It — & —s)|ds

where the first integral is proper and we may interchange the order
of integration to obtain

(RN ER

=Ji—L—1L.

Substitution into J! gives J! = J; — I, — I, + I, where I, is the second
integral in J! above. Since J, exists, limJ; = J,. We have only to

50
show that I, — 0 (1 =1, 2, 3) with ¢ to have J, = J,.
We integrate the first integral of I, by parts to obtain

It —s) — I(t — 0 — s) = b~ exp (—b/0)d"*f (s — 0)

— -;—b*lssu—”z exp (—bju) f(s — w)du

+ b"lss_s(s — u)"* exp (—b(s — u)™)df (w)

which substituted into I, gives
I3 - b—l(I?:l - Isz + Iaa) .
If we extend f to the negative reals by f(¢) = f(0) for ¢ < 0, then

I, = b9 exp (—b/&)g T =52 axp (—afs) f(s — d)ds .

t
8
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The integral converges to I(s) as 6 — 0 so that I,, - 0 as 6 — 0.
Observe that

’S:u‘l” exp (—bju) f(s — u)du‘ < [B + V(f)MLO0, §)
where
M0, 9) = sup!SZ u—”zexp(—b/u)dul, 0=w<z<9.

By the same analysis as used to estimate M(0, s) we see that M;(0, ) <
const. 6** and hence

Ll = Kot [ svds = KoV + (6 - 0)).

Finally we have

|, (6 — W exp (—uls — wdfwW)| = K&V(S; 5 = 5,9).

Since f is uniformly continuous on [0, T'] so is V(f; (0, s)); thus,
V(f; (s — 0d,s)) = o) as 6 — 0 uniformly in s, and

t—

8

|L| < Ké”zo(l)g *s=oitds — o(L) .

Integrals I, and I, are essentially the same as can be seen by
substituting s = % + v into I, and s = ¢t — v into I,., We thus consider
only I, which we write as

1= s 1€ — w— ol exp (—a(t — u — ) = bjo)dvdu.

Integrating the first integral by parts (integrating exp (—b/v)), we
obtain

I = b7'6"* exp (—b/d) S;_su—m exp (—a/u) f(t —uw)du
— b‘IS:—Zaduf(u)S:exp (—bv —a(t —u— )™
% [%v*“z(t — o — o) 820 — w — )
— av'*(t — u — v)“"z]dv ,
L=b'I;— IL,— I;+ I,. Since I, is just I, I,—0 as 6 —0

Since ¢t —u —v =0, hence (t —u—v)*=<0™ (a>0), L; (=
2,3, 4) are absolute integrable as double integrals so that Fubini’s
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theorem is applicable. Reversing the order of integration in I, we
obtain

t—28
0

I, = b"ls:%v“l/z exp (——b/v)g t—u—v)fexp(—a(t —u— v)™)
cxf(uw)dudv .

The inside integral can be estimated by [B + V(f)]M.(5, v) where
M6, v) = sup‘ Sz t—u—v)y*exp(—a(t — u — v)du|,

0=w<z2z<t—20. By integration by parts we see that M, satisfies
My0,0) =3[a[ (¢t —v)"* + a7 (20 — v)"*;

thus, I,— 0 as 6 — 0. Similarly the inside integral I,,, after reversing
the order of integration, can be estimated by K[(20 — v)~™"* + (¢t — v)~*/?]
so that I;— 0 as 6 — 0.

Estimates like those above are too coarse for I,; we must take
another approach. If we reverse the order of integration and then
integrate the inner integral by parts

8
al, = f(O)S VAt — v)" P exp (—b/v — a(t — v) N)dv
0
8
—f— 25)8 W2(26 — v)¥2 exp (—bjv — a(t — v)~dv
0

t—2
0

+ Ssvl’z exp(—b/v)g ’ exp(—a(t — u — v)™")
X [—=3/2(t — u — )P fw)du + (t — u — v)~df(u)]dv ;
that is

al, = f(O)Im - f(t - 25)I142 =+ Im + Im .

Now, I, is just I, and
5
| Ll < (¢ — 6)—3/28 VT dv

so that I,, and I,,— 0 as 6 — 0.
For I,, we have immediately that

Ll = (o] = w = 0V 0, wpd.
0 0

Ifo<land 0<p<1, y=06"”>6 and
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t—382

| = w—omravig o, = (774 (7 - — oravi)

= @Cy — o)V (0, 0) + 2y — v) V(S (8 — 29, §)
+ (20 — v)7V(S; (&, — 20))

by the second mean value theorem for Riemann-Stieltjes integrals
where ¢t — 2y < £ <t — 25. Therefore,

[ L | = 2072y — 0)7"* V(3 (0, ) + %V(f; (&t — 20)).

Since V(f, (0, ) is continuous in %, we have

| L | = 20°077%(2 — 0"=2)7 V(5 (0, 1)) + o(1)

as 6 — 0.

To complete the proof we have only to show that L, — 0 as 6 — 0.
The only question arises if ¢ and b are both imaginary for which we
write b = 8, a = thB. If we set v = 26/(w + 1), than

Lo = (SA + S”)(w 4 1) exp [ —iB(w + 1)(hw + 1)(20w)"ldw .
1 N
Given € > 0, we can choose N such that

7w = [T + Dw-aw < 208 + 17N <,

N

The remaining integral goes to zero with 6 by a stationary phase
argument.

Appendix B. We here evaluate certain integrals which we have
used. From [1] p. 146(28)

L {t—3/2 exp (—%a/t>} =2V wa e e

for Re(a) > 0. One can easily show that the formula is valid if
Re(a) <0, |a| = 0. Thus, using this formula we have

S:[(t — W] exp (—alt — w)~ — bju)du

— 1/7((1—1/2 4 b—llz)t—alz eXp[_(al/z + b]/2)2t—1] ,
larga| = 7/2, |argb|=m/2.

Thus for kxk, a = ¢ b = ¢=** and k,(t) = (2/7)"*t** exp (—2/¢).

let) = kxTo, = —%1/(2_/{)(3 — i) exp[—(4 — 30)].
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Finally, by induction
ko(t) = (2/7)"*nt="2 exp (— 2n%/¢)
and hence
koo ia(t) = loxk,,
—%(2/ﬂ)1/2(2n 1 — i)t exp (—[n@n + 2) — i(2n + )] .

Il

The author expresses his gratitude to Professor W. Fulks who
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