ISOMORPHIC CONE-COMPLEXES

JACK SEGAL AND E. S. THOMAS, JR.

In this paper we show that the 1-section of a finite simplicial complex M is characterized by the topological type of the 1-section of the cone over M. This enables us to prove that a finite simplicial complex is characterized by the topological type of the 1-section of the first derived complex of its cone.

R. L. Finney [1] proved that two locally-finite simplicial complexes are isomorphic if their first derived complexes are isomorphic. J. Segal [3] making use of this showed that two locally-finite simplicial complexes are isomorphic if the 1-sections of their first derived complexes are isomorphic. He then showed in [4] that a restricted class of finite complexes are characterized by the topological type of the 1section of their first derived complexes. In contrast to [4] the results of this paper apply without restricting the class of finite complexes.

Throughout, s_p will denote a (rectilinear) *p*-simplex; *M* will denote a finite geometric simplicial complex with *r*-section M^r and first derived complex *M'*. The cone at *m* over *M*, $m \notin M$, is denoted by *mM*. For more details see [2, 1.2]. We only consider complexes with at least two vertices.

LEMMA. (a) If mM and nN are isomorphic then so are M and N. (b) If $(mM)^1$ and $(nN)^1$ are isomorphic then so are M^1 and N^1 .

Proof. (a) Let φ be an isomorphism of mM onto nN. If $\varphi(m) = n$ we are done so we assume $\varphi(m) \neq n$, hence we also have $\varphi^{-1}(n) \neq m$.

Given a complex K, with vertex v, the subcomplex consisting of those simplexes not having v as a vertex is denoted $K \langle v \rangle$.

We now define subcomplexes of M and N as follows:

$$egin{aligned} M_1 &= (mM) ig\langle arphi^{-1}(n) ig
angle &, \ M_2 &= M ig\langle arphi^{-1}(n) ig
angle \ N_1 &= (nN) ig\langle arphi(m) ig
angle &, \ N_2 &= N ig\langle arphi(m)
ight
angle \,. \end{aligned}$$

The following relationships are easily verified:

(1) $M_1 = m M_2, N_1 = n N_2;$

- (2) $\varphi \mid M_2$ is an isomorphism of M_2 onto N_2 ;
- (3) $\varphi \mid M$ is an isomorphism of M onto N_1 , and $\varphi^{-1'}N$ is an isomorphism of N onto M_1 .

Using \approx to denote isomorphism we then have:

JACK SEGAL AND E. S. THOMAS, JR.

$$Mpprox N_{\scriptscriptstyle 1}=nN_{\scriptscriptstyle 2}pprox mM_{\scriptscriptstyle 2}=M_{\scriptscriptstyle 1}pprox N$$
 .

Here the first and last isomorphisms follow from (3), the equalities from (1) and the middle isomorphism follows from (2) and the fact that taking cones preserves isomorphism.

A proof of part (b) is obtained by taking 1-sections at appropriate places in the above argument.

THEOREM 1. If $|(mM)^1|$ and $|(nN)^1|$ are homeomorphic then M^1 and N^1 are isomorphic.

Proof. For nontriviality we assume each of M and N has at least 3 vertices. Let T_M denote the set of vertices of mM whose order in $|(mM)^1|$ is not 2 and let T_N be the corresponding set in nN; then m is in T_M and n is in T_N .

Now let h be a homeomorphism of $|(mM)^1|$ onto $|(nN)^1|$. We shall modify h where necessary to get a new homeomorphism \tilde{h} which maps the vertices of $(mM)^1$ onto those of $(nN)^1$.

Clearly any homeomorphism of $|(mM)^1|$ onto $|(nN)^1|$ takes T_M onto T_N . Let v_1, \dots, v_r be the vertices of $(mM)^1$ having order 2; we show how to construct homeomorphisms h_1, \dots, h_r such that

$$h_i: |(mM)^1| \longrightarrow |(nN)^1|$$

and for $i \leq j$, $h_j(v_i)$ is a vertex of $(nN)^1$. Starting with h we shall construct h_i ; the construction of h_i from h_{i-1} follows the same pattern and will be omitted.

For simplicity we write v rather than v_1 . If h(v) is a vertex of $(nN)^1$ we let $h_1 = h$. Suppose then that h(v) is not a vertex. Let C be the closure in $|(mM)^1|$ of the component Q of $|(mM)^1| - T_M$ containing v; then C is either an arc with endpoints in T_M or a simple closed curve which one easily shows must be of the form $Q \cup \{m\}$.

Suppose first it is an arc with endpoints x and y. Using the fact that v has order 2 in $|(mM)^1|$ we conclude that one of x, y, say x, is m and that Q contains no vertex of mM other than v.

Let σ be the 1-simplex of mM spanned by m and y. Applying h, we get a pair of arcs $h(|\sigma|)$ and h(C) in $|(nN)^1|$ whose union is a simple closed curve containing exactly two points of T_N -namely h(m) and h(y). It follows that there is a vertex w of nN which lies either on $h(|\sigma|-\{m, y\})$ or $h(C - \{m, y\})$. In the first case we choose a self-homeomorphism k of $|(nN)^1|$ which is the identity off $h(|\sigma| \cup C)$, interchanges $h(|\sigma|)$ and h(C) leaving h(m) and h(y) fixed, and takes h(v) onto w; we define $h_1 = k \circ h$. The second case is similar-except that k is taken as the identity off h(Q).

If C is a simple closed curve, $C = Q \cup \{m\}$, then Q must contain

346

exactly two vertices of order 2, say v and w. Since $h(C) \cap T_N = \{h(m)\}$ it follows that h(m) = n and h(Q) contains exactly two vertices of order 2, say v' and w'. In this case we choose a self-homeomorphism k of $|(nN)^1|$ which is the identity off h(Q) and takes h(v) to v' and h(w) to w'. The composition $h_1 = k \circ h$ has the desired properties. This completes the construction of h_1 .

We let $\tilde{h} = h_r$; then \tilde{h} takes each vertex of $(mM)^1$ to a vertex of $(nN)^1$. In particular $(mM)^1$ has at least as many vertices as $(nN)^1$. Since a similar construction can be made starting with h^{-1} , the number of vertices in each complex is the same. Hence the homeomorphism \tilde{h} takes the vertices of $(mM)^1$ onto those of $(nN)^1$. It follows (see, for example, the argument of Theorem 3 of [4]) that \tilde{h} induces an isomorphism of $(mM)^1$ onto $(nN)^1$.

Applying part (b) of the lemma, we have that M^1 and N^1 are isomorphic.

DEFINITION. An *n*-complex M is full provided, for any subcomplex K of M which is isomorphic to $s_p^1, 2 \leq p \leq n$, K^0 spans a p-simplex of M.

THEOREM 2. If M and N are full complexes, then they are isomorphic if $|(mM)^1|$ and $|(nN)^1|$ are homeomorphic.

This follows from Theorem 1 and Theorem 1 of [3] which says that if M and N are full and M^1 and N^1 are isomorphic, then M and N are isomorphic.

DEFINITION. Given the cone at m over M and a subcomplex K of M we define the *tower-complex* over K (relative to mM) to be $((mK)')^1$ and we denote it by $t_m(K)$. Furthermore, we call the underlying polyhedron of $t_m(K)$ the *tower* over K (relative to mM) and denote it by t(K), i.e., $t(K) = |t_m(K)|$.

THEOREM 3. If M and N are complexes, then M and N are isomorphic if and only if t(M) and t(N) are homeomorphic.

Proof. Suppose t(M) and t(N) are homeomorphic. We first assume that M and N have no vertices of order 0. Then the order of each vertex of (mM)' in $t_m(M)$ and of (nN)' in $t_m(N)$ is at least three. So we may apply Theorem 5 of [4] to obtain an isomorphism between mM and nN. This by part (a) of the Lemma yields the desired isomorphism between M and N.

Now consider the case in which M or N has vertices of order 0. Let K denote the set of vertices of M which are of order 0 and let L be the corresponding set for N. Let $\tilde{M} = M - K$ and $\tilde{N} = N - L$. Then

$$t(M) = t(\tilde{M}) \cup t(K)$$

and

$$t(N) = t(\tilde{N}) \cup t(L)$$
.

Let *h* be a homeomorphism of t(M) onto t(N). Since t(K) is the smallest connected subset of t(M) that contains *K*, the set h(t(K)) is the smallest connected subset of t(N) that contains h(K). But h(K) = L, because the points of *K* and *L* are the only ones with order 1 in t(M) and t(N). Therefore, h(t(K)) = t(L), and by taking complements we see that $h(t(\tilde{M})) = t(\tilde{N})$. Therefore, by the preceding argument, there exists an isomorphism *f* of \tilde{M} onto \tilde{N} . Since *h* yields an isomorphism of *K* and *L*, *f* can be extended to an isomorphism of *M* and *N*.

References

1. R. L. Finney, The insufficiency of barycentric subdivision, Michigan Math. J. 12 (1965), 263-272.

2. P. J. Hilton and S. Wylie, *Homology Theory*, Cambridge University Press, Cambridge, 1960.

3. J. Segal, Isomorphic complexes, Bull. Amer. Math. Soc. 71 (1965), 571-572.

4. ____, Isomorphic complexes, II, Bull. Amer. Math. Soc. 72 (1966), 300-302.

Received August 4, 1966. The authors were supported by National Science Foundation grants NSFG-GP3902 and GP5935, respectively.

UNIVERSITY OF WASHINGTON AND UNIVERSITY OF MICHIGAN

348