ISOMORPHIC CONE-COMPLEXES

Jack Segal and E. S. Thomas, Jr.

Abstract

In this paper we show that the 1 -section of a finite simplicial complex M is characterized by the topological type of the 1 -section of the cone over M. This enables us to prove that a finite simplicial complex is characterized by the topological type of the 1 -section of the first derived complex of its cone.

R. L. Finney [1] proved that two locally-finite simplicial complexes are isomorphic if their first derived complexes are isomorphic. J. Segal [3] making use of this showed that two locally-finite simplicial complexes are isomorphic if the 1 -sections of their first derived complexes are isomorphic. He then showed in [4] that a restricted class of finite complexes are characterized by the topological type of the 1section of their first derived complexes. In contrast to [4] the results of this paper apply without restricting the class of finite complexes.

Throughout, s_{p} will denote a (rectilinear) p-simplex; M will denote a finite geometric simplicial complex with r-section M^{r} and first derived complex M^{\prime}. The cone at m over $M, m \notin M$, is denoted by $m M$. For more details see [2, 1.2]. We only consider complexes with at least two vertices.

Lemma. (a) If $m M$ and $n N$ are isomorphic then so are M and N. (b) If $(m M)^{1}$ and $(n N)^{1}$ are isomorphic then so are M^{1} and N^{1}.

Proof. (a) Let φ be an isomorphism of $m M$ onto $n N$. If $\varphi(m)=n$ we are done so we assume $\varphi(m) \neq n$, hence we also have $\varphi^{-1}(n) \neq m$.

Given a complex K, with vertex v, the subcomplex consisting of those simplexes not having v as a vertex is denoted $K\langle v\rangle$.

We now define subcomplexes of M and N as follows:

$$
\begin{array}{ll}
M_{1}=(m M)\left\langle\varphi^{-1}(n)\right\rangle & , M_{2}=M\left\langle\varphi^{-1}(n)\right\rangle \\
N_{1}=(n N)\langle\varphi(m)\rangle & , \quad N_{2}=N\langle\varphi(m)\rangle .
\end{array}
$$

The following relationships are easily verified:
(1) $\quad M_{1}=m M_{2}, N_{1}=n N_{2}$;
(2) $\varphi \mid M_{2}$ is an isomorphism of M_{2} onto N_{2};
(3) $\varphi \mid M$ is an isomorphism of M onto N_{1}, and $\varphi^{-1 \prime} N$ is an isomorphism of N onto M_{1}.

Using \approx to denote isomorphism we then have:

$$
M \approx N_{1}=n N_{2} \approx m M_{2}=M_{1} \approx N
$$

Here the first and last isomorphisms follow from (3), the equalities from (1) and the middle isomorphism follows from (2) and the fact that taking cones preserves isomorphism.

A proof of part (b) is obtained by taking 1-sections at appropriate places in the above argument.

Theorem 1. If $\left|(m M)^{1}\right|$ and $\left|(n N)^{1}\right|$ are homeomorphic then M^{1} and N^{1} are isomorphic.

Proof. For nontriviality we assume each of M and N has at least 3 vertices. Let T_{A} denote the set of vertices of $m M$ whose order in $\left|(m M)^{1}\right|$ is not 2 and let T_{N} be the corresponding set in $n N$; then m is in T_{M} and n is in T_{N}.

Now let h be a homeomorphism of $\left|(m M)^{1}\right|$ onto $\left|(n N)^{1}\right|$. We shall modify h where necessary to get a new homeomorphism \tilde{h} which maps the vertices of $(m M)^{1}$ onto those of $(n N)^{1}$.

Clearly any homeomorphism of $\left|(m M)^{1}\right|$ onto $\left|(n N)^{1}\right|$ takes T_{a} onto T_{N}. Let v_{1}, \cdots, v_{r} be the vertices of $(m M)^{1}$ having order 2 ; we show how to construct homeomorphisms h_{1}, \cdots, h_{r} such that

$$
h_{i}:\left|(m M)^{1}\right| \rightarrow\left|(n N)^{1}\right|
$$

and for $i \leqq j, h_{j}\left(v_{i}\right)$ is a vertex of $(n N)^{1}$. Starting with h we shall construct h_{1}; the construction of h_{i} from h_{i-1} follows the same pattern and will be omitted.

For simplicity we write v rather than v_{1}. If $h(v)$ is a vertex of $(n N)^{1}$ we let $h_{1}=h$. Suppose then that $h(v)$ is not a vertex. Let C be the closure in $\left|(m M)^{1}\right|$ of the component Q of $\left|(m M)^{1}\right|-T_{M}$ containing v; then C is either an arc with endpoints in $T_{a t}$ or a simple closed curve which one easily shows must be of the form $Q \cup\{m\}$.

Suppose first it is an arc with endpoints x and y. Using the fact that v has order 2 in $\left|(m M)^{1}\right|$ we conclude that one of x, y, say x, is m and that Q contains no vertex of $m M$ other than v.

Let σ be the 1 -simplex of $m M$ spanned by m and y. Applying h, we get a pair of $\operatorname{arcs} h(|\sigma|)$ and $h(C)$ in $\left|(n N)^{1}\right|$ whose union is a simple closed curve containing exactly two points of T_{N}-namely $h(m)$ and $h(y)$. It follows that there is a vertex w of $n N$ which lies either on $h(|\sigma|-\{m, y\})$ or $h(C-\{m, y\})$. In the first case we choose a selfhomeomorphism k of $\left|(n N)^{1}\right|$ which is the identity off $h(|\sigma| \cup C)$, interchanges $h(|\sigma|)$ and $h(C)$ leaving $h(m)$ and $h(y)$ fixed, and takes $h(v)$ onto w; we define $h_{1}=k \circ h$. The second case is similar-except that k is taken as the identity off $h(Q)$.

If C is a simple closed curve, $C=Q \cup\{m\}$, then Q must contain
exactly two vertices of order 2, say v and w. Since $h(C) \cap T_{N}=\{h(m)\}$ it follows that $h(m)=n$ and $h(Q)$ contains exactly two vertices of order 2 , say v^{\prime} and w^{\prime}. In this case we choose a self-homeomorphism k of $\left|(n N)^{1}\right|$ which is the identity off $h(Q)$ and takes $h(v)$ to v^{\prime} and $h(w)$ to w^{\prime}. The composition $h_{1}=k \circ h$ has the desired properties. This completes the construction of h_{1}.

We let $\widetilde{h}=h_{r}$; then \tilde{h} takes each vertex of $(m M)^{1}$ to a veriex of $(n N)^{1}$. In particular $(m M)^{1}$ has at least as many vertices as $(n N)^{1}$. Since a similar construction can be made starting with h^{-1}, the number of vertices in each complex is the same. Hence the homeomorphism \tilde{h} takes the vertices of $(m M)^{1}$ onto those of $(n N)^{1}$. It follows (see, for example, the argument of Theorem 3 of [4]) that \tilde{h} induces an isomorphism of $(m M)^{1}$ onto $(n N)^{1}$.

Applying part (b) of the lemma, we have that M^{1} and N^{1} are isomorphic.

Definition. An n-complex M is full provided, for any subcomplex K of M which is isomorphic to $s_{p}^{1}, 2 \leqq p \leqq n, K^{0}$ spans a p simplex of M.

Theorem 2. If M and N are full complexes, then they are isomorphic if $\left|(m M)^{1}\right|$ and $\left|(n N)^{1}\right|$ are homeomorphic.

This follows from Theorem 1 and Theorem 1 of [3] which says that if M and N are full and M^{1} and N^{1} are isomorphic, then M and N are isomorphic.

Definition. Given the cone at m over M and a subcomplex K of M we define the tower-complex over K (relative to $m M$) to be $\left((m K)^{\prime}\right)^{1}$ and we denote it by $t_{m}(K)$. Furthermore, we call the underlying polyhedron of $t_{m}(K)$ the tower over K (relative to $m M$) and denote it by $t(K)$, i.e.., $t(K)=\left|t_{m}(K)\right|$.

Theorem 3. If M and N are complexes, then M and N are isomorphic if and only if $t(M)$ and $t(N)$ are homeomorphic.

Proof. Suppose $t(M)$ and $t(N)$ are homeomorphic. We first assume that M and N have no vertices of order 0 . Then the order of each vertex of $(m M)^{\prime}$ in $t_{m}(M)$ and of $(n N)^{\prime}$ in $t_{m}(N)$ is at least three. So we may apply Theorem 5 of [4] to obtain an isomorphism between $m M$ and $n N$. This by part (a) of the Lemma yields the desired isomorphism between M and N.

Now consider the case in which M or N has vertices of order 0 . Let K denote the set of vertices of M which are of order 0 and let
L be the corresponding set for N. Let $\tilde{M}=M-K$ and $\widetilde{N}=N-L$. Then

$$
t(M)=t(\widetilde{M}) \cup t(K)
$$

and

$$
t(N)=t(\tilde{N}) \cup t(L)
$$

Let h be a homeomorphism of $t(M)$ onto $t(N)$. Since $t(K)$ is the smallest connected subset of $t(M)$ that contains K, the set $h(t(K))$ is the smallest connected subset of $t(N)$ that contains $h(K)$. But $h(K)=L$, because the points of K and L are the only ones with order 1 in $t(M)$ and $t(N)$. Therefore, $h(t(K))=t(L)$, and by taking complements we see that $h(t(\widetilde{M}))=t(\widetilde{N})$. Therefore, by the preceding argument, there exists an isomorphism f of \widetilde{M} onto \tilde{N}. Since h yields an isomorphism of K and L, f can be extended to an isomorphism of M and N.

References

1. R. L. Finney, The insufficiency of barycentric subdivision, Michigan Math. J. 12 (1965), 263-272.
2. P. J. Hilton and S. Wylie, Homology Theory, Cambridge University Press, Cambridge, 1960.
3. J. Segal, Isomorphic complexes, Bull. Amer. Math. Soc. 71 (1965), 571-572.
4. --_, Isomorphic complexes, II, Bull. Amer. Math. Soc. 72 (1966), 300-302.

Received August 4, 1966. The authors were supported by National Science Foundation grants NSFG-GP3902 and GP5935, respectively.

University of Washington and
University of Michigan

