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ISOMORPHIC CONE-COMPLEXES

JACK SEGAL AND E. S. THOMAS, JR.

In this paper we show that the 1-section of a finite sim-
plicial complex M is characterized by the topological type of
the 1-section of the cone over M. This enables us to prove
that a finite simplicial complex is characterized by the topo-
logical type of the 1-section of the first derived complex of
its cone.

R. L. Finney [1] proved that two locally-finite simplicial complexes
are isomorphic if their first derived complexes are isomorphic. J. Segal
[3] making use of this showed that two locally-finite simplicial com-
plexes are isomorphic if the 1-sections of their first derived complexes
are isomorphic. He then showed in [4] that a restricted class of
finite complexes are characterized by the topological type of the 1-
section of their first derived complexes. In contrast to [4] the results
of this paper apply without restricting the class of finite complexes.

Throughout, sp will denote a (rectilinear) p-simplex; M will denote
a finite geometric simplicial complex with r-section Mr and first de-
rived complex M'. The cone at m over M, mg M, is denoted by mM.
For more details see [2, 1.2], We only consider complexes with at
least two vertices.

LEMMA, (a) If mM and nN are isomorphic then so are M and
N. (b) If (mM)1 and (nN)1 are isomorphic then so are M1 and N1.

Proof, (a) Let φ be an isomorphism of mM onto nN. If φ(m) = n
we are done so we assume φ(m) Φ n, hence we also have φ~\n) Φ m.

Given a complex K, with vertex v, the subcomplex consisting of
those simplexes not having v as a vertex is denoted K(y}.

We now define subcomplexes of M and N as follows:

M1 = (mM)(φ~\n)y , M2 =

N, - (nNKφ(m)> , N2 - N<cp(m)y .

The following relationships are easily verified:

(1) Mi — mM2i Nx = nN2

( 2 ) φ IM2 is an isomorphism of M2 onto JV2

( 3 ) φ\M is an isomorphism of M onto Nl9 and φ~irN
is an isomorphism of N onto Mx.

Using ^ to denote isomorphism we then have:
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MF& NX = nN2 & mM2 = Mλ^ N .

Here the first and last isomorphisms follow from (3), the equalities
from (1) and the middle isomorphism follows from (2) and the fact
that taking cones preserves isomorphism.

A proof of part (b) is obtained by taking 1-sections at appropriate
places in the above argument.

THEOREM 1. If \ (mM)1 \ and \ (nN)1 \ are homeomorphίc then
M1 and N1 are isomorphίc.

Proof. For nontriviality we assume each of M and N has at
least 3 vertices. Let TM denote the set of vertices of mM whose
order in | (mM)1 \ is not 2 and let TN be the corresponding set in nN;
then m is in TM and n is in TN.

Now let h be a homeomorphism of \(mMy\ onto | (^ΛΓ)11. We
shall modify h where necessary to get a new homeomorphism h which
maps the vertices of (mM)1 onto those of (nN)1.

Clearly any homeomorphism of | (mM)1 | onto | (nN)1 | takes TM

onto TN. Let vu ---,vr be the vertices of (mM)1 having order 2; we
show how to construct homeomorphisms hu , hr such that

U I (mM)11 — I (^JV)11

and for i ^ j , hό(v;) is a vertex of (nN)1. Starting with h we shall
construct hx\ the construction of ht from h^ follows the same pat-
tern and will be omitted.

For simplicity we write v rather than vx. If h(v) is a vertex of
(nN)1 we let hx = h. Suppose then that h(v) is not a vertex. Let
C be the closure in | (mM)1 \ of the component Q of | (mM)1 \ — TM

containing v\ then C is either an arc with endpoints in TM or a sim-
ple closed curve which one easily shows must be of the form Q U {m}.

Suppose first it is an arc with endpoints x and y. Using the fact
that v has order 2 in | (mM)1 \ we conclude that one of x, y, say x,
is m and that Q contains no vertex of mM other than v.

Let σ be the 1-simplex of mM spanned by m and y. Applying
h, we get a pair of arcs h(\σ\) and h(C) in | (nN)1 \ whose union is
a simple closed curve containing exactly two points of ΪVnamely h(m)
and h(y). It follows that there is a vertex w of nN which lies either
on h(\ σ |-{m, y}) or h(C - {m, y}). In the first case we choose a self-
homeomorphism k of | (nN)1 \ which is the identity off h(\σ\\jC), in-
terchanges h(\σ\) and h(C) leaving h(m) and h(y) fixed, and takes
h(v) onto w; we define hλ — koh. The second case is similar-except
that k is taken as the identity off h(Q).

If C is a simple closed curve, C = Q\J{wt}, then Q must contain
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exactly two vertices of order 2, say v and w. Since h(C) Π TN — {h(m)}
it follows that h(m) — n and h(Q) contains exactly two vertices of
order 2, say v' and wf. In this case we choose a self-homeomorphism
k of I (πiV)11 which is the identity off h(Q) and takes h(v) to v' and
A(w) to w'. The composition hx = k o /& has the desired properties.
This completes the construction of hx.

We let h = hr; then Λ takes each vertex of ( m l ) 1 to a vertex of
(nN)1. In particular (mM)1 has at least as many vertices as (nN)1.
Since a similar construction can be made starting with h~τ, the num-
ber of vertices in each complex is the same. Hence the homeomorphism
h takes the vertices of (mM)1 onto those of (nN)1. It follows (see,
for example, the argument' of Theorem 3 of [4]) that h induces an
isomorphism of (mM)1 onto (nN)1.

Applying part (b) of the lemma, we have that M1 and N1 are
isomorphic.

DEFINITION. An ^-complex M is full provided, for any subcom-
plex K of M which is isomorphic to s\, 2 <̂  p <̂  n, K° spans a p-
simplex of M.

THEOREM 2. // M and N are full complexes, then they are
isomorphic if \ (mM)1 \ and \ (nN)11 are homeomorphic.

This follows from Theorem 1 and Theorem 1 of [3] which says
that if M and N are full and M1 and N1 are isomorphic, then M and
N are isomorphic.

DEFINITION. Given the cone at m over M and a subcomplex K
of M we define the tower-complex over K (relative to mM) to be
((mK)fy and we denote it by tm(K). Furthermore, we call the underly-
ing polyhedron of tm(K) the tower over K (relative to mM) and denote
it by t(K), i.e.., t(K) = \tm(K)\.

THEOREM 3. // M and N are complexes, then M and N are
isomorphic if and only if t(M) and t(N) are homeomorphic.

Proof. Suppose t(M) and t(N) are homeomorphic. We first as-
sume that M and N have no vertices of order 0. Then the order of
each vertex of (mM)' in tm(M) and of (nN)f in tm(N) is at least three.
So we may apply Theorem 5 of [4] to obtain an isomorphism between
mM and nN. This by part (a) of the Lemma yields the desired
isomorphism between M and N.

Now consider the case in which M or N has vertices of order 0.
Let K denote the set of vertices of M which are of order 0 and let
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L be the corresponding set for N. Let M = M — K and N — N — L.
Then

t(M) = t(M)[jt(K)

and

= t(N)\Jt(L).

Let h be a homeomorphism of t(M) onto t(N). Since £(ϋΓ) is the
smallest connected subset of t(M) that contains K, the set h(t(K)) is
the smallest connected subset of t(N) that contains h(K). But Λ(ίΓ) = L,
because the points of K and L are the only ones with order 1 in
t(M) and t(N). Therefore, h(t(K)) = t(L), and by taking comple-
ments we see that h(t(M)) = t(N). Therefore, by the preceding argu-
ment, there exists an isomorphism / of M onto N. Since h yields an
isomorphism of K and L, f can be extended to an isomorphism of M
and N.
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