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IRREDUCIBLE INTEGERS IN GALOIS EXTENSIONS

R. T. BUMBY

We start from the question: When are the irreducible
integers of a number field determined by their norms? Atten-
tion is centered on the case in which the word " norm " is
taken to mean the relative norm of a Galois extension. In
this case we are able to show that the ideal class group, as
a module over the Galois group, is severely limited by this
condition. The restriction of this question to (relatively)
quadratic extensions has special properties which are studied
in further detail. The homological methods which are in the
background of our study become very useful in the study of
quadratic extensions.

As in [l], we say that the extension K/k satisfies Property N
when: if a is an irreducible integer of K and β is another integer of
K such that Nκ/ka = Nκ!kβ, then β is irreducible.

The norm from K to k induces another map, also called Nκίk,
from the ideals of K to the ideals of k. Ideals can be written uni-
quely as a product of prime ideals. If K/k is a Galois extension, the
ideals having the same norm as a given prime ideal 5β are the images
5β' of 5β under the action of the various automorphisms p of the
Galois group. The norm of 3̂ is a power of a prime ideal P of ft,
and any ideal of K whose norm is divisible by P must itself be
divisible by one of the Sjy. Thus if 31 and S3 are ideals of K and
Nκlk% = Nκll&, then

21 = Sβi 5βr

S3 = ξβf1 . . . ψr

r .

We shall assume that we are given a fixed Galois extension of
number fields K/k which we wish to test for having Property N.
For this purpose, we assume that we have integers a and β in K
having the same norm and that β = jd with 7 and δ integers of K,
neither of which is a unit. To prove Property N we must show that
a is also reducible. From Na = Nβ, it follows that N(a) = N(β).
Thus we may write
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Some of the SI,, 33, may be the unit ideal.
If we wish to prove Property N we must show that this allows us to

write (a) as a product of two principal ideals, neither of which is the
unit ideal. The most direct way to do this would be to rearrange the
factors Wp and 33{! which are given to us. There is no other way to
prove Property N. Each ideal class contains primes; so if we replace
SI, and 85, by prime ideals in the same ideal class (or the unit ideal
if we start with a principal 21, or 85,), the only factors of the ideal
replacing (a) are products of these ideals. Such a product will be
called a block.

There is the possibility that N(a) — N(β) while Na is not equal
to the norm of any element of (β). If a and β are elements of K,
then N(a) = N(β) if Na/Nβ is a unit of k. Only if this ratio is the
norm of a unit of K will a have the same norm as a generator of
(β). Changing 21, to t%{t e K) replaces β by tβ and a by tpa. Thus
Na/Nβ is multiplied by Ntp/Nt = 1 = Nl. The only restriction placed
on our solution of this problem by working with Na instead of N(a)
is the limitation of the possible classes of 51,33,. Let us formulate
the requirement on the ideal class group H of K. For convenience H
will be written additively, and the induced action of the Galois group
G will be denoted by left multiplication.

THEOREM 1. The extension K/k does not have property N if and
only if we can find cp, dpeH for all peG such that

(i ) not all cp are 0
(ii) not all dp are 0
(iii) Σpcp = 0

(iv) Σpdp = 0

(v) if &, is an ideal in the class c, + dp for each peG, then
Ίlpe&(ί&p/&p) is a principal fractional ideal having a generator of
norm 1.

(vi) no " block " of Σppcp + Σppdp has sum 0 unless either it or its
complement consists entirely of 0 terms.

REMARKS. The discussion preceding the statement of the theorem
amounts to a proof. It should be noted that the condition in (v) was
shown to be independent of the representative (£p of the ideal class
cp + dp. The somewhat mysterious property (v) has a nice interpreta-
tion in terms of homological algebra. (Iwasawa [2] is a helpful re-
ference here.) Let E donote the group of units in K, I the group of
ideals of K, and H the ideal class group. The group P of principal
ideals can be thought of either as the kernel of the map I—*Hoτ
as K*/E. This gives two exact sequences
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in which the objects are G modules. By composing connecting homo-
morphisms of the cohomology sequences of these exact sequences, we
get a map rj : H~2(G, H) —> H°(G, E). This is the map that we con-
structed explicitly in the discussion preceding the theorem. In fact,
one verifies that the condition that N{a) = N(β) is precisely the con-
dition that ζcp + dpy be a ( —2)-cocycle, and (v) states that this cocycle
must represent a class in the kernel of η.

2. Basic calculations*

PROPOSITION 1. If G acts trivially on H or if H = Z2@Z2, then
property N holds.

Proof. In the first case, the norm completely determines the
classes of the ideal factors of a number. Thus the question of re-
ducibility depends only on the norm. In the second case, it is easily
verified that there are only three types of irreducible elements (cf.
Rogers [3]): (a) primes, (b) $&*& where S& ~ 5β2, ( c ) ^ 2 ^ 3 where no
two of Sβi, φa, φ3 are equivalent. If the ideal factors are replaced by
conjugates in any way that leaves the product principal, then the
product will be of the same type—hence irreducible.

These choices for H will be called "type I".
On the other hand if we can construct cP and dp satisfying (i)-(vi)

of the previous section, then we can not have property N. If cp + dp

has the form given in Table 1, (v) will hold. This is easy to verify
by direct calculation; but, of course, Table 1 simply gives the form
of the ( —2)-coboundaries.

Table 1.

PβG

[x;σ,τ]P

1

— τX

σ

τX

τ

x

στ
—x

other

0

If it happens that the elements 1, σ, τ, στ fail to be distinct, then
the appropriate value for [x; σ, τ]p is the sum of all the quantities asso-
ciated with the names of p.

Our first goal is to determine which actions of single elements of
G are compatible with Property N.

PROPOSITION 2. Property N implies that for all peG either
(1 + p + ρ2)H or (1 - p2)H is zero.
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Proof. We have the following choices for cp, dp based on
c + d = [x; σ, σ].

Table 2.

peG

Cp

dp

Cp + dp

1

X

- ( 1 + σ)x

—ax

σ

0

(1 + σ)x

(1 + σ)x

(72

—x

0

—x

Other

0
0
0

To prove Property N, we must show that some proper block of
[x] + [ — (1 + σ)x] + [σ(l + σ)x] + [ — σ2x] must have sum zero. It
suffices to look at the blocks of length one and those of length two
which contain the first term; the other blocks are negatives of these.
Thus Property N requires that one of the following must be zero:
x, —(1 + σ)x, σ(l + σ)x, -σ2x, —σx,(l + σ + σ2)x, (1 - σ2)x. But all
are nonzero if (1 + σ + σ2)x and (1 — σ2)x are. Finally, an abelian
group cannot be a union of two proper subgroups, so either 1 — σ2 or
1 + o + σ2 annihilates all of H.

PROPOSITION 3. Property N implies that for all p e G, either
(a) (1 + p)H = 0, or (b) (1 - p)H = 0, or (c) ker (1 + p) = ker (1 - p)
and the order of H is a power of 2.

Proof. We construct somewhat more complicated choices for cp

and dp given by Table 3. These are also based on c + d = [x;σ,σ].

Table 3.

PβG

Cp

dp

Cp + dp

1

-y

—σx + y

—σx

σ

y

(1 + σ)x — y

(1 + σ)x

(72

0

—x

—x

other

0
0
0

The five nonzero terms of which the blocks will be built are:
— y, oy, —σx + y, σ(l J

rσ)x — σy, —o2x. To construct a counterexample
to Property N, we need only verify that no block has sum zero, and
we may confine our attention to the blocks of length one (listed above)
and all blocks of length two. The blocks of length two are: (σ — l)y,
-σx,(l + σ)(σx — y), -σ2x — y,—σx + (l + σ)y,σ(l + σ)x, -σ2x + σy,
σ2x + (1 — σ)y, —σ(σ + l)x + y, σ(x — y). As in the proof of Proposi-
tion 2, this list can be shortened. The abridged list is:

(σ - l)y, (σ + l)x, (1 + σ)(σx — y), σ2x + y, σx — (1 + σ)y,

σ2x + (1 - σ)y, -σ(σ + l)x + y,x — y, (1 + σ)x - y.
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If neither (1 + σ)H nor (1 — σ)H is zero, there will certainly be
values for x and y so that (σ — l)y and (σ + l)x are nonzero. We
must now look at the other terms of our list to see what might force
one of them to be zero.

If it is possible to find x with (1 + σ)x Φ 0 and (1 — σ)x = 0, we
can simplify our list further. For if (1 — σ)y Φ ΰ, we also have
(1 — σ)(y + ux) Φ 0, hence y + ux Φ 0 for any u. Similarly, if we
have (1 — σ)y Φ 0 and (1 + σ)y — 0, the list is simplified. If we have
both, the list completely evaporates.

Thus, if ker (1 + σ) g ker (1 — σ) and ker (1 - σ) g ker (1 + σ),
we have a counterexample to Property N.

If ker (1 + σ) c ker (1 — σ) properly, we want to choose x e ker(l — σ)
with (1 + σ)x Φ 0, and y e H with (1 — σ)y Φ 0. We must then con-
sider (1 + σ)(σx — y), σx — (1 + σ)y = x — (1 + o)y, and

σ2x + (1 - σ)y = x + (1 - σ)y .

If we have (1 + σ)(σx — y) = 0, then we also have

0 = (1 - σ){σx - y) = (σ - l)y .

But this is assumed nonzero already! Thus, for any y e H, not in
ker( l — σ), the elements (σ +ΐ)y and (σ — l)y must exhaust the ele-
ments of ker (1 — σ) which are not in ker (1 + σ) whenever we have
Property N. This leaves only the possibilities that ker (1 — σ) — Zz

and ker (1 + σ) = 0, or ker (1 — σ) = Z± and ker (1 + o) = Z^ since the
difference between the orders of these groups is at most 2 and all
elements of order 2 in the larger are in the smaller (also we are
assuming that they are not equal). In both of these possibilities,
Property N requires that (σ + l)y + (σ — l)y = 0 and y not be of
order 2. This is impossible.

If ker (1 — σ) c ker (1 + σ) properly, we want to choose
y e ker (1 + σ) with (1 - σ)y Φ 0 and x e H with (1 + σ)x Φ 0. As
above, we get a counterexample to Property N in this case if we can
choose y Φ (1 + σ)x, σ(l + σ)x. Again we find that Property N can
only hold when ker (1 + σ) = Z4 and ker (1 — σ) = Z2, or ker (1 + σ) =
Z3 and ker (1 - σ) = 0. Also (1 + σ) H = ker (1 + σ). With the aid of
Proposition 2 we discover that this is not consistant with Property N.

This leaves ker (1 + σ) = ker (1 — σ). Every element of this
common kernel is of order 2, hence (1 + σ) and (1 — σ) are both iso-
morphisms on the p-Sylow components of H for p > 2. By Proposi-
tion 2 such a subgroup must be annihilated by 1 + σ + σ2 if we have
Property N. Using the list constructed from Table 3, we find that
the group must have order at most 8. This leaves only H = Z7 with
σ being multiplication by 2 or —3. A closer look shows that x — 1,
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y ~ 5 gives a counter-example when σ = 2. This concludes the proof
of Proposition 3.

THEOREM 2. / / If/ft satisfies Property N, and if there is peG

such that neither (1 — p)H nor (1 + p)H is trivial, and if H is not

Z2 Φ Z21 then H must have the form Z2 φ φ Z2 or

and the kernels of (1 — p) and (1 + p) for all peG have index at

most 2 in H. If H contains any elements of order 4, then every

ker (1 — p) must contain all elements of order 2.

Proof. Proposition 3 tells us that H must have order 2n for some
n when the hypotheses of the theorem are met. If we consider the
subgroup Hx of H consisting of all elements of order 2, Proposition
2 tells us that we must have either (1 + p + p2)Hx = 0 or (1 - ρ2)Hx = 0
for all peG.

In the first case B̂  must be a direct sum of a number of copies
of Z2 φ Z2 with p acting by permuting the nonzero elements. If there
is more than one copy of this module, Table 3 produces a counter-
example easily.

If we have (1 — p2)^ — 0, we use Table 3 to search for a coun-
terexample with both x and y in Hx but not in (1 + p)Hlm It is easy
to see that we find what we are looking for whenever ker (1 + p) is
of index greater than 2.

Now suppose that there are elements of order 4 in H. If we
assume x of order 4 and y of order 2 in Table 3, we find that Pro-
perty N requires either (1 — σ)y, y — σ(l + σ)x, or y — (1 + σ)x to
be zero. This is inconsistant with the possibility that (1 + σ + σ2)H — 0,
so we may assume that (1 — σ2)H = 0. Thus (1 + σ)H g ker (1 - σ) =
ker (1 + σ), so Property N implies (1 — σ)Hλ = 0. Since (1 — σ2)H = 0
and ker (1 + σ) — ker (1 — σ) = Hu H must have exponent 4. If there
were two elements of order 4 in H whose difference was also of order
4, there would be a counterexample to Property N given by Table 3
with these elements in the role of x and y. This completes the proof
of the theorem.

This theorem allows certain possibilities for H if we have Pro-
perty N. These possible choices will be said to be of type II if they
are not of type I. All other G modules will be said to be of type III.
Thus if H is of type (I, II, III) we (always, sometimes, never) have
property N.

FINAL REMARK. Having the form of H written out so clearly it
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is a simple matter to find all subgroups of the automorphism group
of H composed of elements which all satisfy this theorem. If

H s Z2 0 Z2 ,

we get the full automorphism group. If H = Z± φ Z2 φ φ Z2, we
get the group of all automorphisms which reduce to the identity on
Hx. If H ~ Z2@ φ Z2 there are two types: those for which all
1 + p have a common kernel, and those for which they have a common
image. For all other groups we have {±1}. Except for H = Z2Q) Z21

the admissible automorphisms form an abelian group of exponent 2.
In particular, if G has no subgroup of index 2, the converse of Pro-
position 1 holds.

3* Further results* In the last section we found that certain
choices for H as a G module ensure Property N, and we also found
some severe limitations on H if we were to have Property N. The
latter conditions were based on a collection of examples which satisfied
condition (v) for structural reasons. More complicated examples can
be constructed, but further study does not seem practical at this time.
We concentrate instead on the case G — Z2.

For G = Z2, the only coboundaries are of the form [x; p, p], where
p is the nontrivial element of G. We can thus determine easily all
counterexamples to Property N for which c + d is a coboundary. The
result is easily stated.

THEOREM 3. %If H belongs to class II, no coboundary can be the
(c + d) of a counterexample to Property N, but every nonbounding
cocycle does give rise to a counterexample. Thus when G = Z2, the
map H~2(G, H) —> H°(G, E) must be a monomorphism if we have Pro-
perty N and H of type II.

Proof. The study of Property N is reduced to looking at

Ci = y cp = -y

<k= -(z + v) dp = (z + y)

where pz — z. (c + d) is a boundary when z e (1 + p)H. Property N
is equivalent to one of the following being zero:

y, ~(z + y), -py, p(z + y), -z, (1 - p)y, pz + (1 + p)y .

If H is of class II, this means that either (1 - ρ)y = 0 or
z e (1 + p)H. In class II, we can always find y with (1 — p)y Φ 0
so we have the theorem.

This result can be used to show that when G — Z2 and G does
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not act trivially on H, Property N implies that not too many primes
ramify in the extension K/k. We sketch the proof using the notation
of [2]. The mapping H~2(G, H) -> HQ(G, E) factors through H~\G, U/E).
The map a:H-2(G, H)~> H~\G, U/E) is onto, so both it and the map
β : H~\G, U/E) -> H°(G, E) must be monomorphisms for Property N to
hold. But β is a monomorphism if and only if 7: H~\G, E) -> H~\G, U)
is onto. The rank of H~\G, U) is equal to the number of ramified
primes, and the rank of H~λ(G, E) is bounded by the rank of the sub-
group of E consisting of the units of if whose norm in k is 1. Thus
the rank of H~ι{G, E) can be bounded by a quantity depending only
on k. This bound must then be a bound on the number of ramified
primes if we have Property N and G does not act trivially on H.

If k = Q, (p + 1)H — 0, so case III never arises. Case I requires
H to be of exponent 2. In studying case II by the method just out-
lined, we find many pleasant surprises: a is always an isomorphism,
and 7 is always a monomorphism. Thus Property N is equivalent
to the number of ramified primes being equal to (it can not be less
than) the rank of H~1{G1 E). This rank is 1 unless if is a real field
all of whose units have norm + 1 . (cf. [1] condition (1)), in which case
it is 2. Thus we have Property N for K = <2(τ/D~), k = Q in the
following cases.

One ramified prime: D = — 1, ±2, p, —q (where p = 1 (4) and
q = —1(4) are positive primes).

Two ramified primes: D = 2p, pp\ q,2q, qq'. Of these, the last
three never have units of norm — 1, so they always have Property N.
In the first two cases we find that exactly one of the forms

pp*x2 — y2

px2 — p*y2

p*x2 — py2

represents +l(p* stands for 2 or pr). If the second or third re-
presents + 1 then there is no unit of norm —1 and we have Pro-
perty N. If the first represents + 1 then we can have Property N
only if H is of exponent 2. If (p*/p) = — 1, then only the first form
can represent + 1 . But in this case the 2-Sylow subgroup has exponent
2. Thus we have Property N only if there are no elements of odd
order in H. If (p*/p) = +1, H must be of type II, so Property N
depends only on which of the three forms represents + 1 .

Thus we have a somewhat different version of the results obtained
in [1].
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