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ON THE SQUARE-FREENESS OF FERMAT
AND MERSENNE NUMBERS

LE ROY J. WARREN AND HENRY G. BRAY

It has been conjectured that the Fermat and Mersenne
numbers are all square-free. In this note it is shown that if
some Fermat or Mersenne number fails to be square-free, then
for any prime p whose square divides the appropriate number,
it must be that 2P"1 = 1 (mod p2). At present there are only
two primes known which satisfy the above congruence. It is
shown that neither of these two primes is a factor of any
Fermat or Mersenne number.

Those odd primes p for which 2P~1 ~ 1 (mod p2) have long been of

interest. No doubt much of this interest has been generated by
Wieferich's theorem, which states that if Fermat's equation xp + yp +
zp = 0 has a solution in integers with p an odd prime and xyz ^ 0
(mod p), then 2P~1 ~ 1 (mod p2).

Throughout, "p" and "g" will denote odd primes; "n" is a positive
integer other than 1; "2Rp" indicates that 2 is a quadratic residue
modulo p; "o(2, p)" is the exponent to which 2 belongs modulo p; and
Fn = 22n + 1 and Mq = 2* - 1.

Our result follows immediately from the following theorem which
proves a bit more than has been indicated so far.

THEOREM 1. If p divides some Fn [some Mq\ then 2{p~l)l* = 1

(mod Fn) [2{p~1)l2 = 1 (mod Mq)].

Proof. Let p \ Fn, then 22n = - 1 (mod p) and 22%+1 ~ 1 (mod p) so

that o(2, p) I 2*+1 and o(2, p) \ 2\ It follows that o(2, p) = 2n+1. Now

2P~1 = 1 (mod p) which implies that 2n+1 \ (p - 1) and

( 1 ) p = 1 (mod 8) .

Hence 2Rp and by Euler's criterion 2(p~1)/2 = 1 (mod p) so that
2n+ί I ((p - l)/2). It follows that (22n+1 - 1) | (2{p~1)12 - 1). Clearly
Fn I (22n+1 - 1), and therefore Fn \ (2(ί)-1)/2 - 1).

Let p I Mq, then 2 ? Ξ 1 (mod p) and 2q+1 = 2 (mod p). Since q + 1
is even, we obtain that 2ϋ?p and therefore

( 2 ) p = ± l ( m o d 8 ) .

Also o(2, p) I q so that o(2, p) — q. As before we get that
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( 3 )

so that Mq I (2ip-1)l2 - 1) to complete the proof.
The two known primes p for which 2P~1 ΞΞ 1 (mod p2) are 1093 and

3511.

THEOREM 2. Neither 1093 nor 3511 divides any Fn or any Mq.

Proof. We have 1093 = 5 (mod 8) so by (1) and (2) of Theorem
1, it follows that 1093 cannot divide any Fn or any Mq.

Now 3511 = - I ( m o d 8 ) , it then follows from (1) of Theorem 1
that 3511 cannot divide any Fn. Suppose that for some g, 35111 Mq\
then by (3) of Theorem 1, q | ((3511 - l)/2). This means that q must
be one of the three primes 3, 5, or 13. By direct computation 3511
does not divide Ms, M5 or ikf13.
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