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PRODUCTS OF POSITIVE DEFINITE MATRICES. II

C. S. BALLANTINE

This paper is concerned with the problem of determining,
for given positive integers n and j , which n X n matrices
(of positive determinant) can be written as a product of j
positive definite matrices. In § 2 the 2 x 2 complex case is
completely solved. In particular, it turns out that every
2 x 2 complex matrix of positive determinant can be factored
into a product of five positive definite Hermitian matrices
and, unless it is a negative scalar matrix, can even be written
as a product of four positive definite matrices. Sections 3
and 4 deal with the general n X n case. In § 3 it is shown
that a scalar matrix λl can be written as a product of four
positive definite Hermitian matrices only if the scalar λ is
real and positive, and that λH (λ complex, H Hermitian) can
be written as a product of three positive definite matrices
only if λH is itself positive definite. In § 4 it is shown that
every n X n real matrix of positive determinant can be writ-
ten as a product of six positive definite real symmetric
matrices and that every n X n complex matrix of positive
determinant can be written as a product of eleven positive
definite Hermitian matrices.

The 2 x 2 real case was earlier solved in [1, Th. 1 and the
remarks immediately following]. The results in §4 use only the
2 x 2 results and certain well known results. In later papers of this
series the results of § 4 will be improved upon, using more refined
methods.

In the rest of this section we state without proof several well
known results that we shall use in later sections. First we introduce
some notation. For a fixed positive integer n we denote by Sίf the
set of all n x n Hermitian matrices and by & the set of all positive
definite matrices in Sίf. Then for each positive integer j we denote
by 00* the set consisting of every n x n complex matrix which can
be written as a product of j matrices from &. (Thus &>γ — &.)
Analogously, we denote by 3ίΓ the set of all n x n real symmetric
matrices (thus ^Γ is just the set of all real matrices of £%f), by &
the set of all positive definite matrices of 3ίΓ (thus & is just the
set of all real matrices of ^ ) , and by &ύ the set consisting of
every n x n real matrix which can be written as a product of j
matrices from & (so &ι = <%). For a matrix S all of whose
eigenvalues are real the inertia of S is the ordered triple (of non-
negative integers) consisting of the number of positive eigenvalues
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of S, the number of negative eigenvalues of S, and the nullity of S
[3, p. 1119].

The following theorem is essentially Sylvester's Inertia Theorem
combined with standard diagonalization theorems, but in a form con-
venient for our present purposes [e.g., 3, Corollary 8, p. 1127].

THEOREM 1. Let HzSίf and P e ^ . Then HP is similar over
the complex field to some Ke£έf, and the inertia of K is neces-
sarily the same as that of H. Conversely, if S is similar to some
Ke Sίf then there are matrices He ^f and P e ^ such that S = HP,
and H and K (and S) necessarily have the same inertia.

Specializing to the case when H is itself in 3?, we obtain the
following:

COROLLARY 1.1. Se^2 if and only if S is similar over the
complex field to an element of &*, i.e., if and only if S is diagonable
and has only positive eigenvalues.

The real analogs of the above theorem and corollary also hold.
Of these we shall need only the latter, which we now state.

COROLLARY 1.1'. S e ^ P if and only if S is similar over the
real field to an element of &, i.e., if and only if S is real and
diagonable and has only positive eigenvalues.

We conclude this section with three obvious facts about ^ j and

Fact 1. .^j is invariant under unitary similarity, that is, Se^j

implies every matrix unitarily similar to S is also e ^ j . (Analogously,
&j is invariant under orthogonal similarity.)

Fact 2. ^ j is invariant under multiplication by positive scalars
(as is &j), that is, Se.^j implies \Se^j for every λ > 0.

Fact 3. ^ j is invariant under inversion (as is &j), that is,
Se^j implies S"1 e ^ j .

2. The 2 x 2 complex case. In this section we start by assum-
ing S is a 2 x 2 complex matrix with det S > 0. We shall derive
necessary and sufficient conditions (nasc) on S that S be e ^ 3 (these
nasc are given in Theorem 2 below). Now, S G ^ 3 if and only if
there i s a P e ^ such that PSe ^ 2 . By Fact 2 (§ 1) we may assume
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S is unimodular and need only consider unimodular solutions P. It is
well known that every square complex matrix is unitarily similar to
a lower triangular matrix [4, p. 165, Corollary 6.2, or 5, p. 229, Th.
8.14 (applied to the transposed conjugate matrix)], so we may further
(by Fact 1) assume that S is lower triangular, i.e., that

eiΘ 0

q p~ιe~iθ

where p > 0, θ is real, and (by performing a further diagonal unitary
similarity if necessary) q ^ 0. We want usable nasc on PS that it
be G ̂ 2 , so we use the following obvious consequence of Corollary
1.1: Let ad — be = 1. Then the (unimodular) matrix

T =
a b

c d

is e ^ 2 if and only if T = / or a + d is real and >2. Now we
let

P = r z

z t

so that r > 0, and rt — zz = 1. We shall next put z = x + ίy, with
x and y real. Thus S G ^ 5 3 if and only if the following system has
an admissible (real) solution (r, ί, a?, y) (i.e., a solution in which r > 0
and £ > 0):

Im {trace (PS)} = (rp — tp~ι) sin # — yq = 0

Re {trace (PS)} =Ξ (rp + tp~ι) cos 5 + α g > 2

4(rί — £2) Ξ= (rp + ίp" 1 ) 2 — (rp — tp~1)2 — 4x2 — Ay2 — 4 .

(We have here seemingly ignored the possibility that PS = /, but if
PS were = I we would have S itself e ^ (and hence q would = 0
and eiθ would =1) and the above system would then certainly have
an admissible solution.)

The grouping of terms in the above system suggests the substitu-
tion

u = rp + tp~\ v = rp — tp~ι

which (for fixed p > 0) is a nonsingular linear substitution taking the
admissible region

{(r, t):r > 0, t > 0}

onto the new admissible region
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{(u, v ) : u > \v\}

in the new unknowns u, v. Thus S e ^ z ifland only if the following
system has an admissible solution (for u, v, x, y, in^which u > | v |):

v sin θ — yq = 0

u cos θ + xq > 2

^ 2 - 4(1 + x2 + 2/2) + ΐJ2 .

Clearly, if this system has any admissible solution at all, then it has
an admissible solution with x ^ 0 (simply replace x by | x \ in the
solution), and hence has an admissible solution in which y — v — 0
and in which u has its former value and x has a value >̂ its former
value (now assumed ^0) in the original solution. Thus S e 3?z if
and only if the following system has an admissible solution (for u
and x9 with u > 0 and x >̂ 0):

u cos # + xq > 2

u = 2(l + xψ2 .

This last system evidently has an admissible solution if and only if
the inequality

2(1 + x2)1'2 cos θ + xq > 2

has a solution x ^ 0. In order to see more easily what happens as
ί ϋ ^ + o o , we rewrite this inequality as follows:

( 1 ) (2 cos θ + q)(l + α;2)]/2 + q[x - (1 + £2)1/2] > 2 .

Now, if 2cos# + g <; 0, then the left side of (1) is ^ 0 for all real
x (since q ^ 0) and hence (1) has no solution. On the other hand, if
2 cos θ + q > 0, then all sufficiently large x are (admissible) solutions
of (1) since as x —» + oo the first term on the left —>+°° while the
second term is bounded below.

Thus we arrive at the preliminary result that S e ^ 3 if and only
if 2 cos θ > — q (where p > 0, q ^ 0 always). We first square out
and get

q2 > 4 cos2 θ when cos θ <Ξ 0

for our nasc on S. Now, q2 and cos θ are unitary invariants of S
but are not rational unitary invariants. Thus we pick a system of
rational unitary invariants and express the above nasc in terms of
this system. In terms of a "general" 2 x 2 matrix T (not necessarily
unimodular), one such system would be

det T, trace T, trace (Γ*Γ)
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(where T* means the transposed conjugate of ϊ 1), In the present
case we have (replacing T by S)

det S = 1

trace S = peiθ + p~]e~iθ — (p + p~x) cos θ + i(p — p~ι) sin θ

trace (S*S) - p2 + p- 2 + g2 .

A straightforward calculation (which could be quite lengthy if under-
taken without foreknowledge of the result) reveals that

q2 - 4 cos2 θ - trace (S*S) - | trace S |2 - 2 .

Also, by inspection we obviously have

cos θ ^ 0 if and only if Re {trace S} £ 0 .

Thus our nasc on S (that S be e ^ 3 ) are

tr (S*S) - I tr S |2 - 2 > 0 whenever Re {tr S} ^ 0

(where tr means trace). This condition describes a unitarily invariant
set of unimodular matrices, which set (by our derivation above)
contains all lower triangular unimodular matrices of ^ 3 and contains
no lower triangular unimodular marices that are not 6 ^ 3 . Thus
(by Fact 1) it gives nasc on an arbitrary unimodular matrix S that
S be € ^ 3 . If now S is an arbitrary 2 x 2 matrix of determinant
Δ > 0, then we apply the above condition to the unimodular matrix
Δ~{1I2)S, and get

t r (S*S) - I t r S Γ - 2A > 0 whenever Re {tr S } ^ 0 .

This is therefore (by Fact 2) a nasc t h a t an arbitrary 2 x 2 complex
matr ix S be e ^\ and this (plus a routine simplification) proves the
second conclusion in the following theorem.

THEOREM 2. Let α, b, c, d be complex numbers such that ad — bc>0.
Then the matrix

a b

j , d

is e «£^2 if and only if

a + d is real and ~>2(ad — 6c)1/2, or else b ~ c = 0 and a = d > 0

is G ̂ 3 ΐ / and only if

I c — b\2 + (a — α)(rf — d) > 4(αd — be) whenever Re {α + d} ^ 0
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is e ^ 4 if and only if

it is not a negative scalar matrix

is e ^ 5 (always).

Proof. The nasc for ^ 2 is just the "homogenized" version of
the condition given near the beginning of this section for unimodular
matrices. (It is well known, but is given here for purposes of com-
parison.) We could prove the nasc for ^ 4 the same way we proved
the nasc for ^ 3 (i.e., by derivation), but this method would be
unnecessarily laborious. (The result itself is easily conjectured by
analogy with the real case [1, loc. cit.].) The "only if" part of the
^ 4 nasc is a special case of Theorem 3, which is stated and proved
in the next section. For the "if" part, assume S is not a negative
scalar matrix. We may also assume S is not a positive scalar matrix
(if it were, it would obviously be e ^ 4 ) . Then S is unitarily similar
to a nondiagonal matrix. (E.g., if S = diag(i, m) with I Φ m, and
U is the matrix of a 45°-rotation, then U^SU has ±(1/2)(Z - m) Φ 0
in the off-diagonal positions.) Thus (by Fact 1) we may assume S is
nondiagonal:

S =
"a b
c d

(c, b) Φ (0, 0)

(and always ad — be > 0). We have only to show that there is a
Pe^ such that PSe^*. We shall show this, in fact with a
diagonal P. Let P = diag (r, t) with r > 0 and t > 0. Then, by the
nasc for ^ 3 , PS e ^ 3 if

I tc - rb |2 + rt(a - a)(d - d) - Art(ad - be) > 0 .

If c Φ 0, we can take t = 1, and then obviously we can take r
sufficiently small (but >0) to satisfy the above inequality; if c = 0,
then b Φ 0 and we take r = 1 and t sufficiently small.

To prove the last conclusion (of Theorem 2) it suffices to show
that every negative scalar matrix is e ^ \ This already follows
from the real case [1, loc. cit.], but we can give also a brief inde-
pendent proof here. Suppose S is a negative scalar matrix. Then
for any nonscalar Pe & PS is nonscalar (and has positive determinant),
so (by the ^ 4 nasc) PS e ^\ and hence S e ^ 5 .

REMARK 1. The above proof can be adapted to yield a second
proof for the real case (proved in [1, loc. cit.] by a completely different
method). No essential modification would be needed in the proofs of
the ^ 4 and ^ 5 parts to get the respective proofs of the ^ 4 and
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^ ? 5 results. For the <^?3 proof we could use the fact that each 2 x 2
real matrix is orthogonally similar to one of the form

'a —

c (

[6, p. 185, Example 39] and proceed from there as in the above proof
of the ^ 3 nasc. This same method could also be used (in the 2 x 2
case) to derive the respective nasc's for 302 and ^ ? 2 directly (without
using Corollaries 1.1 or 1.1').

REMARK 2. One might imagine using this same method (the one
used above to derive the ^ 3 nasc when n = 2) to derive the cor-
responding results (or prove the results after correctly conjecturing
them) for ^ 3 or ^ P when n ;> 3. However, prospects in this direction
are decidedly unpromising.

REMARK 3. Since & c & it is obvious that ^ J ' c ^ for each
j , but it is not a priori evident that for j >̂ 2 &j contains all the
real matrices of &κ However, comparison of the real and complex
2 x 2 results reveals that when n = 2 &* does indeed contain all
the real matrices of ^ y (for all j). Also, it is known that, for
arbitrary n, &2 contains all the real matrices of ^ 2 , since this follows
from Corollaries 1.1 and 1.1' and standard diagonalization theorems,
e.g. [4, P. 101, Th. 7.4, or 5, p. 180, Th. 7.5].

3* Some nonexistent factorizations (n X n case)* Turning now
to the general n x n case, we shall show that only the obvious scalar
matrices are e ^ 5 4 (viz., the positive ones), and that only the obvious
Hermitian matrices (or, more generally, only the obvious scalar multi-
ples of Hermitian matrices) are e ^ (viz., those that are e ^ ) .
The analogous real results follow immediately, so we shall not state
them separately.

THEOREM 3. Let λ be a complex scalar and I be the n x n
identity matrix. Then XI e ^ 4 only if λ > 0.

Proof. Suppose Xle^\ Then there are SL and S2, both e ^ 2 ,
such that XI = S&. Thus

( 2 ) XSr1 = S2

and (by Fact 3) Sϊ1 e ^ 2 . Now, by Corollary 1.1 all the eigenvalues
of Sr1 and of S2 are positive, so all those of λSf1 have signum = sgn λ,
hence by (2) sgnλ = 1, i.e., λ > 0.
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THEOREM 4. Let X be a complex scalar and H be a complex
Hermitian n x n matrix. Then XHe^d only if ^ ^

Proof. Suppose XHe^\ Then there are S e ^ 2 and
such that XH = SP. Thus

( 3 ) XHP-1 = S

and (by Pact 3) P-1 e &ΰ. Now, by Corollary 1.1 all the eigenvalues
of S are positive and by Theorem 1 HP*1 is similar to a Hermitian
matrix, hence has only real eigenvalues, so all eigenvalues of XHP*1

have signa = ± sgn λ. Therefore by (3) λ is real and all eigenvalues
of XHP-1 are positive, so by Theorem 1 (since XH is Hermitian) all
eigenvalues of XH are positive. Thus XH is positive definite Hermitian.

4* Some factorizations which do exist (n X n case)* In the
last section we showed that two special classes of matrices had no
members in, respectively, ^ 3 and ̂ 4 ; the classes were chosen the
way they were, partly in order to minimize the proofs. In this section
we shall show that there is a j , independent of n, such that every
complex n x n matrix of positive determinant is e ̂ d, and here we
shall choose j in a way which minimizes the proof. We shall derive
the same result for the real case, except with a considerably smaller
value of j .

We start with the real case. By [1, loc. cit.] we know that every
2 x 2 rotation matrix is e ̂ 5 ("rotation matrix" means "unimodular
real orthogonal matrix"). Now, it is well known [6, pp. 109-110,
Example 14] that each n x n rotation matrix is orthogonally similar
to a block-diagonal matrix each of whose diagonal blocks is a 2 x 2
rotation matrix, except when n is odd there is also one 1 x 1 diagonal
block (consisting of a 1).

THEOREM 5. Let R be an n x n rotation matrix. Then
(i) i ί e ^ 5 ;
(ii) if all of the real eigenvalues of R are positive, iϋe^r54;
(iii) if all eigenvalues of R have positive real parts, Re&*\

and
(iv) if RΦ

Proof. By Fact 1 we need only consider the case where R is in
the block-diagonal form described above. Then the first three parts
follow from the corresponding 2 x 2 results ([1], loc. cit., or [2], Th.
2.4 and the second paragraph following it, pp. 270-271, where the
2 x 2 rotation matrices are discussed separately). Part (iv) follows
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from Corollary 1.1'.

COROLLARY 5.1. Each n x n real matrix of positive determinant
is e&\

Proof. Let S be a real n x n matrix and det S > 0. Then [6,
p. 185, Examples 41-42] there are matrices P and R such that
Pe^,R is real orthogonal, and S = PR. Thus detJE > 0 and hence
R is a rotation matrix and so (by (i) of Theorem 5) is e ^ 5 . There-
fore Se^\

REMARK. For n Ξ> 3 the converses of (ii) and (iii) of Theorem 5
are false, as will be shown by the following examples. For our first
example,
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where x = V 5 . The three factors on the right are €<^?, while
their product (which is € ̂ 3 ) is a matrix of a (90-degree) rotation
and (thus) two of its eigenvalues have real part = 0. Therefore the
converse of (iii) is false.

For our second example,

" 5 0 -xz

0 2 0
-xz 0 5
Iδyz —24kxz

127 -AQxy

-40xy 190

where x = i/ΊΓ, y = VΊ>", z = "i/T. The four factors on the right
are e ^ , while their product (which is e^?4) is a (180-degree) rota-
tion matrix with two negative real eigenvalues. Therefore the converse
of (ii) is false.

We now turn to the complex case. It is well known [4, p. 172,
Th. 9.2] that each n x n unitary matrix is unitarily similar to a
diagonal (unitary) matrix (all of whose diagonal entries necessarily
have absolute value unity). Thus it suffices (by Fact 1) to consider
the diagonal case. By Theorem 2 (last part) we know that every
2x2 unimodular unitary matrix is e ^ 5 , but, when n ^ 3, an
n x n diagonal unimodular unitary matrix U ordinarily will not
have its diagonal entries occurring in conjugate pairs (even those
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diagonal entries that are not positive), so we cannot proceed so
directly as we did in the real case. What we can do is write
U = U,U2f where the diagonal entries of Uί occur in conjugate pairs
(except for an extra 1 when n is odd) and likewise for U2. One such
way to factor U is as follows. Suppose

U =

where uβό = 1 for all j and det U = u,u2 un = 1. Then we let

UΊ = d i a g (u19 ΰlf UjUtUa, ΰjΰzϋB, •) ,

U2 = diag (1,

where the respective last (i.e., %th) diagonal entries are un and 1 if
n is even, and 1 and un if n is odd. Now we can apply the last part
of Theorem 2 to each of the 2 x 2 blocks

diag (uu Uj), diag (u^Uo, ΰ^ΰ-s),

o f U1 a n d t o e a c h o f t h e 2 x 2 b l o c k s

diag (UjUz, ΰiΰz),

of U2, and can conclude that each such block is e ^ 5 . Thus U itself
is e ^ 1 0 , and we have proved:

THEOREM 6. Each n x n unimodular unitary matrix is e ^ 1 0 .

COROLLARY 6.1. Each n x n complex matrix of positive determi-
nant is e ^ n .

Proof. The proof is entirely analogous to that of Corollary 5.1.

REMARK. The exponents occurring in Corollary 5.1, Theorem 6,
and Corollary 6.1 ("six", "ten", and "eleven", respectively) can be
reduced (to "five", "five", and "five", respectively, and, by Theorem
3, no further (if n^2)) by using more refined methods. We shall
employ such methods in the next papers in this series.
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