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REFLECTION LAWS OF SYSTEMS OF SECOND ORDER
ELLIPTIC DIFFERENTIAL EQUATIONS IN TWO
INDEPENDENT VARIABLES WITH
CONSTANT COEFFICIENTS

JAMES M. SrLoss

In this paper we shall consider the reflection of solutions
of systems of equations

a-1u Ugy + Uyy + AUz + Buy + Cu =0,

where u = (U4, Uz, -+, 4.)7, A, B, C are constant, pairwise com-
mutative n X n matrices, across an analytic arc x on which
the solutions satisfy 7 analytic linear differential boundary
conditions, If the boundary conditions have coefficients which
are analyiic in a specific preassigned geometrical region can-
taining «, then we shall show that the solution of (1.1) satis-
fying such boundary conditions can be extended across «,
provided certain inequalities are satisfied, Moreover, the region
into which « can be extended will depend only on the analytic
arc x, the original region, and the coeflicients of the boundary
conditions; i.e., we shall have reflection ‘“‘in the large’’ and
the region will not be restricted by the equation.

There are two basically different situations considered, the results
of which are stated in Theorem 1, Theorem 2, and Theorem 3.

Theorem 1 treats the reflection of solutions of a system (1.1)
initially given on an open set 2 for which the boundary conditions
on an arc £ adjacent to 2 are

B}’ipap(D)uﬂ =flz), @=1,2--,mors
=1

where

Pas(D) = 3 < pag(2)D;Dy
r+ssk<2n

with p73(2) and f.(2) analytic in QUEUL, where £ is an open set
determined by & adjacent to & and disjoint from £2. In the event
that two inequalities involving the pf3(2)(r + s = k) are satisfied, then
we can reflect the solution of the system across & into £U £, so that
the original solution is extended into all of QU&EUD.

In Theorems 2 and 3 the reflection of solutions given in 2, of the
special system (1.1)

du + Euw =0, E = n x n constant matrix,
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is treated. In these cases boundary conditions of the form

Z p::(z)D:D;ul = fv(z) y YV = 1! 29 cee, M

r+ssk<2n
are assumed prescribed on £, in which p?:(z) and f,(z) are analytic in
QU&kUQ. For Theorem 2, k=mn, and for Theorem 3, k =n — 1.
There are five conditions which must be satisfied in Theorem 2 to
insure reflection. Aside from two inequalities involving the p:i(z) that
must be satisfied as in Theorem 1, there is an additional determinental

inequality on the arc (z = G(z))
1.2)  |D[G() - GRF|=#0, 1l=sy=n-1, 1l=sj=n-1,

which must be satisfied as well as two additional inequalities which
depend on the constants of the differential equations.*

In Theorem 3 it is unnecessary to assume (1) one of the dif-
ferential equation conditions, and (2) condition (1.2). Moreover, in
Theorem 3 the reflection is reduced in quadratures whereas in Theorem
2, for the general case, we have only an existential proof.

Finally, we shall give equations and boundary conditions to which
the theorems apply. Theorem 1 is applicable when the boundary con-
ditions are u = (®.(2), Pu(2), + -+, Pu(?)).

Theorem 2 and Theorem 3 are suitable for systems of differential
equations of the form

S Pdyu; =0, i=1,2 e, m
i=1

where the P;; are polynomials with constant coefficients and 4 is the
Laplacian. Two inequalities involving the coefficients of the P;; must
be satisfied. A special example is the metaharmonic equation

d4u+ e du+ oo +a,u =0, a; = constant .

In this case it is only necessary to check one inequality for the
differential equation in the case of Theorem 2. A special example of
the metaharmonic equation is the polyharmonic equation

A"u =0,

In this case there are no inequalities for the differential equation
that must be checked for Theorem 2 or 3. Also in this case there
is a particularly simple representation of the solution in terms of
analytic functions in 2 and analytic functions in £ which is a gener-
alization of the representation in [8].

In the special case of equations

* J. Leray kindly pointed out to me that (62) and one of the d.e. inequalities
are always satisfied and that the 3 holds for k<2n.
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du; = U, + a U, i=12, a;; = constants ,
a special case of which is the metaharmonic equation
Au + adu + dbu =0, a, b constant ,

the condition on the arc & is automatically satisfied. Moreover, the
conditions of Theorem 2, for the biharmonic equation, reduce to the
conditions given in [8] with the exception that Theorem 2 requires
u e C**(QUK)N C*Q) whereas [8] requires only that

ue CHRUE)NCHANCHRUE) .

Finally, it is noted that in the case when the analytic arc is a
portion of the x axis then the condition (1.2) is automatically satisfied.

Restricting ourselves to equations of the type (1.1) we get explicit
representations for the solutions in terms of the zero order matrix
Bessel function. For purposes of brevity we shall consider homogeneous
equations (1.1) since the treatment of nonhomogeneous equations in-
volves only obvious changes.

In his beautiful paper [6], Lewy thoroughly considered the question
of a single elliptic equation in two independent variables for which
the coefficients are analytic functions in a neighborhood of £. Brown
[1] considered the reflection laws for a general fourth order elliptic
equation, with constant coefficients, in two independent variables across
a straight line segment on which he assumes the solution satisfies two
boundary conditions of the form

+ZS . pr*DDyu(z, 0) = f(2) , y=12,
where the line of reflection is ¥y = 0 and p’* are constants. Assuming
the original domain is convex then he achieves reflection in the large,
i.e., the domain of reflection is determined initially by the differ-
ential equation, Filipenko [2] investigated reflection for the harmonic
equation in more than two independent variables across the plane x, =0
and has shown that reflection in the large for certain initial domains
is possible provided boundary conditions of the form

Db Pl@yy iy -y w0 = 0

0,
are prescribed on the plane, where P is a polynomial. Lewy [7] has
given an example to show that the modification of P from a polynomial
to an analytic function is not possible. Garabedian [3], [4] has also
investigated certain reflection laws in the small for a nonlinear elliptic
equation and for quasilinear equations with special boundary conditions.
J. Leray [5] has, in a very interesting paper, used reflection for the
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explicit determination of the Greens function for an M-harmonic
equation in a band, when differential boundary conditions are given
on the boundary of the band.

2. Geometric reflection across an analytic arc. Let &£ be an
open analytic arc defined by the real analytic function F'(x,y) =0
with F; 4+ F?0. As shown in [8], this defines a function { = G(z),
of the complex variable z = x + 4y which is analytic in a neighborhood
of £ and for which & is described by z = G(z). 2 = G(z) is called the
reflection of z across £. Z =z on £. Let Q be a semi-neighborhood
of k£, with G(z) analytic and univalent on 2 and thus G'(z) = 0 on 2.
Let Q = G(?) and assume 2NQ2 = @. Then it can be shown that
for z in QU&KU D, G(2) is univalent, 2 = z and G'(z) = 0. Moreover

G =@
and

G"(z) = —G"(2)G'(Z)°.

3. Representation of the solutions. In this section we shall
derive a representation for the solutions of (1.1) which are in C'(2U«k).
This will be done by a slight variant of the very elegant method
developed by Lewy [6]. The solutions are expressed by means of a
complex Riemann function, which can be found explicitly in our case.

First we consider the transformation

(3.1) w = OB )

where the exponential matrix is defined as usual by its McLaurin
expansion. Due to the pairwise commutativity of A, B and C we get
(1.1) becomes

(3.2) gtz BN {w +w,, + %[40 A Bz]w} —0,

which is equivalent to:

(3.3) W,y + Wyy + Dw =0
where
(3.3.1) D= %[40 _ A*— B7.

Note that (3.3) can be written for z in Q as
3.4) 4G (Rw, + Dw =0

where
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5 1[a .0 5  1[~—TT8 . .0
R ]
B9 =2l Tl 37 T2l e Ty,

Let

3.6) w@, )= w[“ - Z 2 ;f] — w[ 2% ZG‘E), = ‘2)] = W(z, 2)

for z=2 +iyeRUk and 2 = Gr) e QUk.
With the idea of finding a representation of the solution of (3.3),
we seek the complex Riemann funetion; viz. the solution of

(3.7) L{v] = v + +DG Qv = 0

which is a function RJ[?’, {°, 2, (] Aof four complex arguments each
ranging independently over QU U 2 with

3.8) L,JR] =0

and

B[z, 52,0 =1
(3.9) RJ[2°, (% 2,01=0.
R([zoy Co; zoy C] =0

We claim that such a matrix function is given by

(3.10) R[2, (% 2, {] = J[V'D((z — )G — G(E))]

where if Q is an » X n matrix, we define

o7 @ . @ @
Sl Ql=1 2! + 2:21)F  253!)

With any norm for @ we get
IV @I < JLiVTQIl]

where J,, on the right, is the zero order Bessel function and thus
the matrix series converges for all Q. Thus RJ[?°, ' 2, (], as defined,
is analytic in 2, ¢° 2z and ¢ for 2%, ¢% z and { in QUkUL. Moreover
it is easy to see that (8.9) are satisfied and by direct computation,
we see that (3.8) is satisfied.

Our next aim is to find a representation of W(z, Z) as defined by
(8.6). This will be done by finding a function W*(z,{) which is
analytic for z in Q and analytic for ¢ in @ and for which

W*(z,2) =Wz, 2).
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We consider now the Cartesian product
SxS={z20:2e¢QUk LeclUK}.

Let z, and z, be arbitrary points of QU«k and let » be a path joining
z, to z, which lies in QU#&. Then let § be the reflection of p joining
Z, to 2, in QUk. Let

Sz, 2, ) ={(z,0)eS x S:zep and Lep}.
Note that
RL[W*] — LIR|W*
(3.11) = RW3 + —}G'(C)RDW* — R, W* — —All—G’(C)DRW*
= (BW*)e — (R.W?*); — (B W7),
since, as is clear from (3.10), RD = DR. We define

W*(Z, é\) = W(z! 2) = 'LU(x, y)y Wz*(zr C) I§'=; = Wz(zy 2)’
Wiz, Q) et = Wiz, 2)

i.e. the solution to equation (8.3), and let this be the “initial condition”
for the extension of W* as an analytic function in (z,{). Let W*
be assumed to be a solution of LW *] = 0 for (z,{)e S%z, 2, p). We
shall want to integrate (3.11), when W* is such a solution and R is
a Riemann function, over “triangles” 4, of S*z, z,, p) with vertices
(&, 09, (2%, £ and (2°, 2%, over “triangles” 4, with vertices (Z°, £°), (€, 2°)
and (2% 2°) and over “squares’” with vertices (c, €), (7, ©), (?, 2), (¢, 2),
¢ being a point of £. Over such “regions” as these, we have:

(3.12) 0= — f(RW*),dt + §R,W*dt— §R,W*da.

Consider R[z°, (% t, 0] and W*(t, o) in the above, where the region is
the “triangle” =Sz, 2, p) with vertices (&, £, (=, &%), (2%, 2°). We
get, due to the nature of R[2°, (% t, g],

W*(@, ) = W+, ¢

,o,Qo . R
+ g (RL, O3 t, ETWHE, £, — RW*)dt

(3.13) 0,00

(20,20)

| Rl 56, W3, 0)do
(£0,40)

Next we consider R[Z°, 2% ¢, 0] and W*(t,0) in (3.12) and integrate

over the triangle — S*(z, 2, p) with vertices (&°, {9, (2°, 29, (&°, 2°) and

get, making use of the special character of the Riemann function
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W@, 20 = W@, 2
(zO,AzO) . N ~
= | (R, 258, (YW (2, D), — R *Jdt

B §<z°fz°>R.,[i°, 2% 6, a|W*(6, o)do .
(20 ¢0)

(3.14)

Finally we shall integrate (3.12) with R[z, Z; t, ] over the rectangle
Sz, 7, ) with vertices (c, ¢), (z, ¢), (z, 2), (¢, 2) where ¢ is assumed
to be a point of &£, and thus, (¢ = é):

W*(Z, 2) = W*(C, 2) + W*(z, C) . R[Z, 2; e, C]W*(C, C)
(z,¢) . .
(8.15) - S Rz, 2; t, c]W*(t, c)dt

(esc)

- S“’”Ra[z, 3; ¢, 6|W (e, 9)do .

(c>c)

This gives the representation of the solution of (3.3) for which we
were looking. The integrals entering (3.13), (3.14) and (3.15) are
independent of the path p since in (3.13) and (3.14)

[(BW™), — (RWH)], — [R,W*], = R,W} + RW) — R, W* — R,W}*
= RL,,|W*] — L, JRI]W* =0
by (3.11).

Next we show that W*(z, {) as defined by (3.13) is an analytic
function of z and ¢ for z in 2 and {e Q. This is done by showing
oW*(z,0)/0z =0 and 0W*(z, ()6 =0; i.e. the Cauchy Riemann
equations are satisfied. Since R is an analytic function of its
arguments, 2 = z, 2 = G(2), d3/dZ = G'(2),

G'R)W*=z, 2)R,(2,(;0,0) |3-p,0-2 = 0
by the nature of R. Next we check analyticity in .

GOW*C 0 — TOURGE, G t, W (t, 1), — R *(t, ©)]e=¢ i—¢
= U(Z)[Wf*(f, C) - R(Z, C; ty i)Wt*(ty E) !t=$tA:§] = O

by the nature of R = J,. Note that (3.14) can be got from (3.13)
simply by substitution. The representation of the solutions of (1.1),
which we shall use, is given with the aid of (3.1) and (3.15) by:

U*(z, 8) = exp {A*z + B*G(é)}{W*(z, ¢) + W, 2)

— Rz, Z; ¢, c]W*(¢, ©)
(3.16) .
— S Rz, 2; ¢, )W *(t, e)dt

c
A

_ SiRg[z, Z; ¢, 0]W (e, ")d“}
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where
« 1 . N 1 }
A ~——4—(A—@B), B =-—-Z(A+’LB).

4. Reflection of solutions of (1.1) across analytic boundary
conditions. Before proving the reflection theorems we shall need to
prove two lemmas.

LEMMA 1. Let pt = p, + ts, . and p, monnegative integers,

4.1) D, = %(D, —iD), D: =—21—G'<2><Dz +iD,)

then for fumnctions

M, y) = [ 2200 2250 | = yege, 2)

that are analytic in x and y, the following operator relation holds:

DDy = (iy+{ 3, at(G' @)~ Di-D; — 02, e, o)
(@ @) (G (B) DY

4.2) + terms of order < p — 1 in D, and D; all
of which contain terms of order at least
one and mot greater than p — 2 im Dy; i.e.

all of order <= 1 — 2 in D,} ,

where afz, o a2 ... a2 qre the coefficients of a*, a*'b, .+, b*
wn (a + b)*1(a — by (Note ajw2 = 1, aiv2 = (—1)*) and

ov, p)=01if v > p,
=lifv=syp.
Proof. By induction on #. For pg =0 clearly true. For g =1
we have from (4.1) for g, =1, ¢, =0
D, =D, + (G'(Z))™'D; which is (4.2) for ¢, =1, ¢, =0
and for g, =0, p, =1
D, =D, — «(G'(?2))*D;  which is (4.2) for g, =0, g, =1,

Assume (4.2) true for g, we must show it is ture for p + 1. i.e.,
assume (4.2) and then consider
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D,ﬁ'l“D;‘Z = (i)#z{zy“ a‘jl”[(G'(E))‘jD,““"ng + (G’(ﬁ))‘(””D;"‘ng“]

=0

— Ct’ﬁ“‘”(G’(ﬁ))“‘#+2’G”(é\)[y + (# ﬁ 2>]D2‘"
(4) + terms of order <y in D, and D, all containing
terms of order at least one and not greater than

p—1in D;}. ie.,

DesviDye = (i D + 5 (G@)- D= Dffagn + agu]
i=
+ age(G(2)) e D
— aﬁ1”2(G’(2))—‘*‘+2’G”(2)(ﬁ i DDA# 4o } .

But
(@ + b)(a + b)(a — by
= (a + b){a# + afreqrlh 4 abitaabthE oo + leﬁ“‘?b"}
= q*t* + (a{lwz + l)an + (afwz + a;wz)a#-—lbz
+ e 4 (@it 4 alr)ab®
+ aﬁwzb#ﬂ

and thus we see

Dy+ D2 = (i)y2{§1 atatieGY(Z)) I DI D]
7=0

— aien@ (@) 6@ 1D+ o)
where af1t'#2 are the coefficients of a**,a*b, ---,b**" in (a+b)"1*(a —b)*.
Now consider
D;‘lDy#2+1 — (i)/l2+l{Dzﬂ+l + z#“ (G'('z\))‘jD,"“_jD;"[CU?ff — a;flﬂz]
i=1

— afi(G/(2) "D

(B) + aﬁlM(Gl(g))—(#ﬂ)Gu(g)[# 4 (# .li 2)]1)2# doe .}
= (S aper(@ (@)D
7=0

_ aﬁffH(G'(é‘»—(#ﬁ-?)GH(2)(§ i DD; 4o }

where since

(a — b)(a -+ b)m(a — b)#z = q*tt + (a{‘wz — ]_)a#b + (Qgé‘wz — a{tuxz)a#—l(f
d eee (aﬁwz — al‘lf‘lz)ab# — aﬁlf‘zb”“
—

the ai*2 are the coefficients of a**', ab, -+« b*** in (a + b)*1(a — b)*2*,
Thus the lemma is proved.
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LEMMA 2. Given the operators

Pa(D) + pi(D) + -+ + Din(D) 1=1,2-,m
where
pu(D) = 3 pE@DID;, pu(D) = 3 pE@DID;, -
then for

D, = —(D, — iD,), D; = +G(?)D, + iD,)

0:4(D) = M = M, ((2)D} + M,_,(2)(G"(2)) "' D' Dy+ M,;_,(:) D
+ M, (20G'(2)) "D} + M., (2)(G'(2))~*D,D}
+ My ia(R)Df ™ + Tof?)

where T, ,(2) is a matric of terms im D, and D, and of order
<k—2 in D, and of order <k—2 in D,.

P P vt Dia
Mio(z) = 3, @) : = > (1)(pi
r+s=k r+s=k
o8 ER 25
Miss®) = 3 () og' i), Meno®) = 5, ()00
Morle) = 3 (=i (@05), Muead) = 35 ()'eita(wls

Mua®) = 3, (ai(@ @) i) — 52, b)

x 5 Grar(y © 5@ @@ @ws

r+s=k

where o are the same as in Lemma 1.
Proof. By Lemma 1

pu(D) = 3, pi{@| S @ @)-Di-p;

J=0

— o2, iy, £ )@@+ @)
+ 2 (1ypuDf + 3 ()rpuai(G(2) " DE

+ qi(D,, D,) where g;, is a polynomial in D, and D,

of degree <k — 1 with coefficients analytic in QUxU2 and which
contains terms of order <k — 2 in D, and of order <k — 2 in D,.
Similar results hold for p,(D), 8 =2, .+, n. Combining these results
with the fact that ai® = (—1)°, we get the conclusion of the lemma.
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We are now in a position to prove

THEOREM 1. Let u = (u,, Uy, ++-, %,) € CYQ) and satisfy in Q2
(4.3) Uy + Uyy + AU, + Buy, + Cu = 0

where A, B,C are pairwise commutative constant m X n matrices.
Moreover let ue C*RUK)NC(RQUk) and satisfy on k the boundary
conditions:

‘;paﬁ(zy Da:y Dy)uﬂ = fa(z) ’ a = 1, 2’ e, M,

where

D2, 6,1) = 3 pip(R)E”,

rtssk<an

with pia(z) and f.(2) analytic in QUEUR. Moreover, if P.s(2, & 1)
is the principal part of p.:(z, &, 1), we assume in QUEUL
(4.4) 0 5 | Myo(2) | = | Paglz, 1, —2)
and

0 = | Moi(2) | = | Paslz, 1, =) ' .

Then we can reflect w across £ into Q; i.e., there exists a unique
function u which is a solution of (1.1) in QU kU L and which
agrees with the given solutions % of (1.1) in QU k.

Proof. We apply M of Lemma 2 to the representation (3.16)
and evaluate on £. For simplicity let

9(2) = W*(,2), Rz =W*zo0).
Then we get on k¥, remembering that z = Z there:
(4.5) e FIOM, ()AL P (2) + M, (2)(G'(2)) 9™ (2) + Tiilg, b, 21} = f(2) ,

where f(z) = (fi(z), * -+, f.(2))" and T,_Jg, k, 2] is an expression of the
form:

Tiilg, b, 2] = @ 1(RJRFV(2) + @ a(R)F(2) + -+ + a(2)h(2)
(4.6) + S:a_l(Z, D)L + by (2)gF1(2) + -+ - + by(2)9(2)

+ S’b_l(z, Hat)dt + BZ)W*(e, o)

1 As Professor Jean Leray has kindly pointed out to me, these statements concern
the behavior of the boundary conditions in the characteristic directions.
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where E and the a’s and b's are matrices, analytic in 2UxU 2. Note
that for 7 > 1,

_ 1 § =13 (5 e | o7 (0
@D he) = gc(z — PRI + 5 = = R ()

and similarly for g¢(z) where 2'“(¢) and ¢‘(c) are known via (3.13)
and (3.14). Moreox:er if K(z,t) is a matrix function known and
analytic in QU £ U 2 then for k> 1

SZK% h(t)dt = <T‘11—)v Szdth(z, tJYl(tl — t)* RO (8)dt, + K,(2)
where K,(z) is a known matrix function analytic in QUx U and thus
4.8) S’K(z, Hh(t)dt = SK(z He)dt + Ki(2)

where

=1 : I)! St_

Thus (4.5) becomes on £ with the aid of (4.7) and (4.8) and the
significance of (4.6).

Ky(z,t) = dt,K(z, t,)(t, — t)* .

6““"””"){Mk,o(z)h”‘)(z) + M, (2)(G'(2)) 9" ()
(4.9) ) )
+ S K*(z, Hh™(t)dt + S K**(z, t)gW (t)dt + H(z)} = f(z)

where H(z) is a known vector function of z, analytic in QU x U 2,
and K* and K** are known matrix functions of z,¢ analytic in
QUEUR. Thus, since | M,(2)| = 0 and | M,,.(2)| == 0 and G'(z) = 0
in QU kU 2, we can solve for A*(2) and g*(z) and get:

(4.10) hiP(2) = S’K(z, Hh®(t)dt + H(z) on &
and
(4.11) g®(z) = S’I?(z, g™ (t)dt + H(z) on &

where K(z, t) and K(z t) are known matrix functions analytic for z
and tin QUK U2 and H(z) is analytic in £ and continuous in 2 U«

H(z) is analytic in 2 and continuous in Q U «.

Treating (4.10) as a system of Volterra integral equations in
Q Uk and treating (4.11) as a system of Volterra integral equations
in QU £, we get the analytic extension of A*(z) into QU £ U 9 and



REFLECTION LAWS OF SYSTEMS OF SECOND ORDER ELLIPTIC 553

g% (2) into 2U kU Q. By integration, since % and ¢ and their deriva-
tives of order <k are known and continuous on £ and specifically at
¢ at the outset, we get the unique extension of h(z) and g(z). By
means of (3.15) we get the unique analytic extension of W *(z, 2) into
QU kU £ and thus the extension of u(z,y) into 2U £ U 2.

We shall next concern ourselves with a system which is particularly
useful when certain higher order equations are reduced to a system
of equations. With this in mind, we shall consider a more restricted
class of equations, since the inequality becomes very unwieldy.

Notation. Let

k

€; €; €

k

€ e; e;

F = . LE*= . ’...,E": .
el el ek

where ei, = (e, €i,, -+, €l,) is the m™ row of E',
Before stating the theorem, we shall prove

Lemma 3.
Elz, G t, 0] = p. (B, (t — 2IG(0) ~ GO
= S a,{(t - A[G) - GOVE’

where p,_,(x, s) is the polynomial of degree <m — 1 in x that interpo-
lates J[V'xs] at the eigenvalues of E (s held fixed); a(s) are entire
functions of s and E° = I. In the event that some or all of the
etgenvalues N\, Ny, +++, N; 0f E are multiple, i.e.,

|E =M= (0 = M) (0 — A" e (M = N)"(=1)",

N FE N A tFEE, N+ N+ oo + m; =n, then we use Hermite in-
terpolation to determine p,_(x) such that if J(\s) = J[V/As]
om—t
oMt
= gm~1J mh()\s)
a'n,j—-l
T’ Pri(Njs 8)
— s'n,j—lJ(nj-—l)()\st) .

Dai(Nyy 8) = J(Ns8), %pn_l(?m s) = sJW(\8), + -, y Pu—r(My,y 8)

Pus(hs, 8) = J(Nj5), %pn_lm, 5) = sJU(\z3), + -,

Proof. The unique Hermite interpolation polynomial p,_,(\,s) is
of the form:
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Paily 8) = 3 TS)a(V) + 3 ST a(N) + » -
i=1 i=1
+ i §M T MEN8) sy (V)
=1

where the [;,(\) are polynomials in A\ of degree <n — 1.
Consider for Q(\) the characteristic polynomial of E:

_ JOA8) — p.(N, 8)
F(n, 8) 0

J(ns) and p,_,(\, s) are entire functions of A and s, moreover the
polynomial Q(\) has the same zeros in M\ (multiplicity included) as
JAs) — v,,(\, 8). Thus f(\,s) is an entire funection of N and s.
Rearranging, we get

J(ns) = QIS 8) + Pas(N, 8)

But Q(\) is the characteristic polynomial of E. Thus by the Cayley-
Hamilton theorem Q(E) = 0 and

J(Es) = p,_(E, s)
which gives the result since

JUE(t — 2[G(0) — GO} = L{V'E( — 2)[Glo) — GOI} = R{z, {; ¢, 0} .

Now we are in a position to state the theorem.

THEOREM 2. (H1) Let £ be an analytic arc of the type described
in §2 for which the determinant of the (n — 1) X (n — 1) matriz
(4.12) 4,(2) = || D}[G(c) — G)f|]|#0, 1fv=n—-1,1<7<n—-1
for z on QU kU D (arc condition).

10 --- 0

a;(0)

(H2) det =0

a"(0)
where a; are those of Lemma 3 (differential equation condition).

(H3) Let w = (Uy,y, »++,%,) € CHRUE)NCH(2), Rk <2n—1,n=2)
and satisfy in Q2

(4.13) Upp + Uyy + Eu =0

where E is a constant m X n matrixz for which
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1, 0, eee, 0
By By oo, (B (differential
(4.14) 4, = | (EDy, By oo, (B, | #0 equation
condition)
(B gy (B gy voey (B

where (E¥);; is the ij component of the k™ power of K.

(H4) Let u satisfy on the analytic arc £ the boundary conditions
(4.15) Par(2, D, Du)ul = fu(2), a=12--,n,
where

Da(?, &, 7)) = N > . P(R)E™°,

ssk<

with p2) and f.(2) analytic in QU kU 2. Moreover if P.(z,&, %)
is the principal part of Da(z, &, 7) (as polynomial in & and 1), we
assume for
D; “Py(z, &, 77)& D *D,Py, - -, Drzn—lpn
Drt 12 ’D”“ZD P“ ,..,Dn_lpl
AZ(Z, &, 77) = ¢ . ( ) nt 2 7 2
Df’n_lpnl( )’ 'Df —2D7)Pn17 Tty Dﬂn—l.Pnl

that for ze QUEUR

(416) Az = Az(z: g, 77)e=1,v=i = 0?
and
(4.17) ds = Ay, & Ne=ryy=—i # 07,

Then % = (Uy, Uy, =+ -, U,)* can be reflected across the boundary con-
dittons (4.15) into QU &k U £2.

Before proceeding to the proof of Theorem 2, we shall state
Theorem 3, which deals with the case ¥ = » — 1, since the proof of
Theorem 3 follows the same lines as the proof of Theorem 2. Only
in the proof of Theorem 3, Lemmas 4, 5, 4A and 5A are unnecessary.

THEOREM 3. Let £ be an analytic arc of the type described in §2.
(H1*) Let v = (uy, Uy,~++, u,)" € CH(2U k) N CHRQ) and satisfy in Q

2 These, as Professor Jean Leray has kindly pointed out to me, are conditions on
the behavior of the boundary conditions in the characteristic direction. He has also
proved that Conditions (H1) and (H2) are always satisfied, i.e. they are unnecessary
restrictions.
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Upe + Uyy + Eu =0

where E is a constant n X n matrixz for which
(4.14%) 4,#0 (see Th. 2).

(H2*) Let w satisfy on the analytic arc k the boundary conditions
(4.15%) pDuy = > p(RDIDw, = £.A2) v=12—---,m,
where pgf(z) and f,(z) are analytic in QU kU 0. Also assume in
QUEkUL
(4.16)* Ay(2y &y N)emyn=i # 0 (see Th. 2 with k =n—1).
4.17)* 42, &, D)eyyne—i = 0 (see Th, 2 with k =n—1).

Then w = (U, Uy, <+, U,)" can be reflected across the boundary con-
ditions (4.15%) into QU £ U 2. Moreover the reflection can be reduced
to quadratures.

Proof of Theorem 2. We first consider (3.16) with A* = B* =
and

9(&) =W*e,2), h(z)=W*z,c)
and get:
U*(z, ) = h(2) + 9(2) — Rz, %; c, c]h(c)

4.18 z B
(4.18) - S Rz, 3; t, ch(t)dt — g R.[2, 2; ¢, 6lg(0)do

where, since it was shown that W*(z, {) is an analytic function of 2z
for z in 2 and an analytic function of ¢ for { in 2, then h(z) is an
analytic function of z for z in 2 and g¢g({) is an analytic function
of £ for ¢ in £. From (38.13) and (3.14) and (H.3) we see that
R(z) e CHR2 U k) and g(z) e C*@ U ).

With the aid of Lemma 3 we get

(4.19) Rz 2;t,¢] = g[G(C) — G(@)]a{(t — 2)[G(c) — G(AE’

(4.20) Rz, 2;¢,0] = ”2; G'(0)(c — 2)a{(c — ?)[G(o) — GR)}E7 .

Let
(efm h) = e{nlhl + ei;bzhz + e + ei;mh/n .

Then the first component of (4.18) becomes
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(4.21) Uiz, %) = hi'(z, 2) + 01(z, 2) — {Rlz, Z; ¢, c]l(¢)}ist componen

where

@22) B0 =) — GO S| et - AN, honit

with
G(L) = G(e) — G()
and
* . _ _ n—1 (¢ " _ 3
way  TE0=00 @ a% ee - 2160) - GOl

X G'(0)(¢],9(0))do .

Note that 4(z,) is analytic for (z,¢) on 2 X 2 and € C"[(A.QU £)X(QU k)]
and that g} (z, {) is analytic for (z,8) on 2 x 2 and € C*[(2U k) X (L Uk)].
With the aid of Lemma 1, the boundary conditions can be written:

wey TO=E, PGS a1 @ B DI D} U, )

+ terms of order Il + m <k — 1 in D!DjU* .

Apply the boundary conditions to (4.21), evaluate on the boundary «,
remembering that on k£, z = 2, and substitute the new functions
hi(z,z) and §;(?,2), (0 <7 < 2n — 1) where

(4.25) hiz, Q) = Dih¥(z,0),  §i2, &) = Digi(z, )

with D°f = f, D°9 = g. Thus the boundary conditions become, since
k=mn—1, for z on &

7@ = 5 p@0{ S, + Sadle @Dk 0|
+ terms of order I + m < k — 1 in D}h,(z, 2)
(4.26) + 3 @S + Sat @D 0],

+ terms of order I + m <k — 1 in D(§,.(z, 2)
v=1,2 .-, m

g=2

=z

(2’ indicates we sum when k& = n),

where f,(2) is known and analyticin 2UxU2. It should be remembered

that the first two terms (involving only %, and their derivatives) are

analytic functions of z for z in 2 and that the last two terms (involving

only §, and their derivatives) are analytic functions of z for z in §
Rearranging terms in (4.26) yields for z on «:
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S, AL QI @DEh(z, 0|
(4.27) + 5 6@ DE G0z, 0|

= A®R) + AR + f(2)

=z

where

A@) = 3, BRI E @ DIz, O]

(4.28) + terms of order I +m <k — 1 in D}h,(z, C)]gm

with coefficients analytic in QU kU 2 .

A = =3 Bt W DIC @I DE 0.2, 0],

+ terms of order I+ m =k — 1 in Dn(z, 0) ],

with coefficients analytic in QU kU 2 .
(4.29) Biu®) = >, PR (@) o
with A,(2) analytic in 2, A,(z) analytic in 2, and B%.(2) and f.(2)
analytic in 2 U £ U 2.

Our next goal is to convert (4.27) into a system of Volterra
integral equations for the n functions D} "h,(z,2), 0 <m < n — 1.
On k, the system is to be satisfied and we shall see that they also
have an analytic solution for z in 2 U x. With this in mind we state
and prove two lemmas.

LEMMA 4. Let k= n

(430) @ 4@ = DF"DI 0| = DIhun 0] 0=msk

and the hypotheses (H1), (H2), and (H3) of the theorem hold. Then

n—1

@3) @@ =3 (Kt da it +Cu@, nsmsk

=0

where K,_,. .t, 2) are analytic for t and z in QU k U 0 and Cin(?)
18 analytic for z in QU kU Q.
Proof. Since the a;(¢) occuring in (4.22) are entire functions,

the following Taylor’s expansion with remainder is valid:

a;”[(t — 2)G] = Dus(t — 2) + R;,._(t, 2)
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where p, ,(0) is a polynomial of degree n — 2 in ¢ and

R;,. (2 = —(_G—ZFS (& — o) *a”[(c — 2)G.]do .

Introducing this into (4.22) and interchanging the order of integration
for the remainder yields:

B 0 = (@) — GO S a0 (6, he)at
— G0 Z ap ()| (¢ — 2)et, (eat
- 57 GO ZapO| (¢ — 2, hit)dt -

1 n—1 (n—1 n—2( 7
(= 2)1G © Za '(0) S (t — 2)"7(el, B(1))dt

1 ” ISHE (n) _
+ mGl (C) ;Z:“o Scaj [(S z)Gl(C)]

Next let

B.&) = =57 5,00)el, hia) 1<r=n-—1

By(z) = hy(2) .
Then, since by assumption
1 0eevnee 0
get| YO .o, 0<j<n—1

af=(0)
we can invert the system of equations and get
(4.3L.4) (ef, W) = 5 b,.B,(2),

where (b;,) is a constant matrix. Thus the expression for A} can be
written:
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Bz 0 = Bie) — G| Bty
~ 610 ¢ - 9Bt -
(4.32) - G:H(:)S (t — 2)*B,_(H)dt

t om0 8 [le - 260

- (Sc(a — g Tgo b,-TBr(o)da>ds .
Next we let
Fi(z) = By(2)
Fo) = - [t = o B.ae
and thus
(4.32A) F(2) = (—=1)(r — 1)! B.(2) .
Introducing these into (4.32) gives

hi(z, ) = Foz) + G(OFi(2) + GUOF?) + -+« + G (OF,.(2)

1 n n—1 n—1 1) (n
OO E Sy 1),§a [ — 26O

. (Sc(g — s)”~2F,<”(a)do*>ds .

Consider now for 0 < m <k

D:="Dyhi(z, C)L = 8B ™(2) + DI[Gi(2)]F ™ (2)
+ DMGI@IF*™(2) + -+« + DrGI(]FE™(2)

LS, () Dk_mg Dp{G(Q)

(n—2)l =2 (r — 1)

(4.33)

+

al(s - AGON(| Frtoro — spdo)as]
where 0,,, is the Kronecker delta. Since
k—m+r—n—2—2<k-m+m—1)—(n—2 —2
=k—-m—-1<k—m,
k—-m—-—r+@nm-2)+1z2k-m—-(n—-1D+®n-2)+1=k—m,

the last term involving the integrals is of the form:
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n—1 z ~
(4.34) )5 S K.(t, )F ™ (t)dt + C,_n(2)
r=0 Je

where the K,(¢,72) are analytic for ¢t and z in QU kU 2 and C,_,(2)
is analytic for z in QU £ U £. This follows since r <n — 1 and 1.

(T—IT)'S:FTM(U)(G — 8)"*do

— (—1)—F+m YFr(k—m)(o.)(O. — g)bmrin=tdg 4 C.¥(s)
[k—m—r4+n-— 2]

if E—m>0 or, if k—m =0 and »r <% — 1, where C}(s) is a

polynomial in s. The only difference in the case k —m =0, r =n —1

is that the integral on the right side is replaced by F,_.(s). And
since 2.

S:K *(s, z)(S:F;k‘”)(a)(o — s)‘da)ds = S:K **(s, ) F ™ (g)do

where K**(s, z) is an analytic function of s and z (since K*(s, z) is)
for s and z in QU kU 2. The last integral follows from integration
by parts [ + 1 times.

Thus by the definition of «,_,(2), (4.30), (4.33), and (4.34) we get
for0<m<=<k

@-n(@) = 3,aFi (@) + DIIG@IF(2)
+ Dzm[Gf(Z)]Fz(k—m)(z) I Dzm[Gln_l(z)]Fé_?m)(z)

+ 3 Lot OF 00t
r=0 Je¢
+ CN’k—m(z) y

(4.35)

where for ¢,2e QUEUQ, L, ,_.(t, 2) and C,_,.(2) are analytic.
Next we consider for 0 < m < n —2<k

* —_ 1 £ — n—m—2
Alnle) = gy | 6~ 00
= 8,0 F=0(3) + DFIGR)IFI—(2)
(4.36) + DPGUAIF=@) + -

+ DMGI @IF £ (2)
+ 5 (Lt DF =000 + Bia(@
r=0 Je¢

where we have integrated by parts » — m — 1 times. R,_,(2) and

L,_,.., are functions analytic for z,¢ in QUxkUL2. For consistency let

Al () = C_un(?) and By, = Cy_inn(?), Lk—(;r\t—-l).r = L, 1—n-u.
Since by hypothesis we have for z in QU kU 2
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1 G- Gt

l1=smsEn—-1,1Z5vsn—-1

14| =|° 40
=N prewe|T =

0

the above system, coupled with «;_,_,(2) in (4.85) can be written as:

sy FEOUE = 4704 ~ A;l(z)S’L(t, ) F =0 (t)dt

— 47 (2)R(2)
with:
( Fo(k—-(n—l))(z) \
Fl-o-i)(z) = Fle==1)(z) ’
\ F,i’iﬂ’:“”(z) /
* 1 ‘ . 4\n—2
( ¥ (z) (mgc(z "o, (t)dit \
* 1 £
A*(z) = | Ai(®) = mgc(z — )", _ ()t
\ Af_in(?) \ X nn(R) )
0<r<n—1 columns
L(ty Z) = (Lk—-m»r(ty Z)) {
k—nmn—-—1=k—m<k rows

E(z) = (Bi(2), B (), -+, Bi_u-0(2)" .

We consider (4.37) as a system of Volterra integral equations and
obtain its solution in the form:

Fio—o-m() = 47(2)[A*(2) — R(2)]
(4.38) — 47@)| T, par LA ® — Rt

where I'(t,z) is the resolvent matrix which is an analytic function
of t and z for t and z in QU k U 2.

Now we are in a position to express a;_,.(2), n < m <k in terms
of a, ,(2),0<m <n —1. To this end we consider (4.35), which is
valid for 0 < m <k and combine with it the integrated expression
of (4.38):
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Fww@=rmgm@mmw+RWL n<m<k

where I'} .(t,?) is analytic for ¢ and 2z in QUEUR and R*(z) is
analytic for z in QU £ U 2. This combination gives:

4.39)  @n(2) = 2: S”F:,;t_,,,(t, DAr ()t + Ri*z), nm<m<k
where R}*,.(z) is analytic for z in QUkUQ and r'}x_.(t, 2) is analytic
for t and z in 2UkUQ. But from the definition of A} .(z) in (4.36)
for 0<r<n-—2and 4} () = &_w._(2), we get the result upon
integrating (4.39) by parts if necessary.

Thus Lemma 4 is proved.

With the notation and assumptions of Lemma 4, we next state
and prove:

LEMMA 5. For l+m<k -1

~ n—1 (z ~

@40) Dl 0] =5 | Brwit, D)t + Ce(a
=2 = c

where I?k”:m,j(t, ?) are analyticA for t and z im QU KU 2 and CiE . (2)

are analytic for z in QU k U £.

Proof. In the notation of Lemma 4, since [ +m <k — 1

k

Dt(k—l—-m)[Dzlﬁm(z’ Olietee = :Zl“z—om <k - g_ m)Dg'Dz"""”‘fD}ﬁm(z, C)]

= (T T ™Dk, 0
L

- g:‘)m( j )“k‘"“f(t) .

z2=6=1

o

z2=6=1

| w.

Thus

t

= 1 S
k—1—m— 1! J
FEEmk—1—m
275 o]
+ polynomial in (¢ — ¢)

.Dzlﬁm(zy C)z-_—g:g (t . s)k—.l_m_y_

n—1

t o ~
= 5 [ B nsts, Do)t + Catt)

with €. (2) analytic for z in QU kU 2, K., ;(t, 2) is analytic for ¢
and z in QU kU £ and where we have made use of Lemma 4 and
the fact that if » = 0 then
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1
r+1

Szdt(z — t)rS’K(s, tat,_(s)ds = S’(z — K, ()t
for the case when m + j = n. Thus the Lemma is proved.

We are now in a position to continue the proof of the theorem.
Combining (4.28) with the results (4.31) of Lemma 4 yields:

n—1

4@ = E Kt e _tyat

7=0

(4.41) + terms of order I +m <k — 1 in

D!hon(z, €)e-, With coefficients analytic in QUrU2 ,

where K}*(t, z) are analytic for ¢ and z in QU £ U 2. With the aid
of Lemma 5 applied to the second term on the right we get:

n—1

(4.42) 4 = 5 | Bott, D)t + C.(2)

m=0

v~vhere K,;(t,z) are analytic in ¢ and z for ¢ and z in QU £ U 9, and
C.(2) is analytic for z in QU £k U Q.
Finally, we combine (4.27) and (4.42) and get for z on &:

(4.43) B2 = | Rt 2000t + 973,

where g*(2) is an analytic vector function for z in @ and in C(R U k)

K@, 2) = (K..(t,2) ,
D(z) = (a(2), A, 4(2), =+, Wp_p1a(2))",
Bo2) = (Bi G R]™) ,
m designates the column, v the row.
0smsn—-1,15v<n.

But from (4.29) we see that

> (arpiiR), > (@)yrarpd, ---, 3 () anipr
r+s=k r+s=k rys=k
Zk(i)saS’psf(z) , Zk (1) e’ i, - -, Zk(i)saif_lp;ﬁ

llefﬂ(z)l = |"Fe= r+s= r+s=

Zk(i)“ag’pli(z) , THZ:,‘ (@) arpli, -, Zk(i)saﬁilmi

rt+s= r+s=

where by definition of a*
@+ by —b) = 3 arars=rr
=0

and by definition
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P.(2,&1n) = ;Qkp:f(z)s’rz‘ .

Thus if { =¢& + ip, L = & — iy then
P,(2,&,m) = 2""r +Z'.= k(i)’pif(z)(z + O -y

and
D{P,(z, & 1) l,i:,‘; = jl2—7 72 (e)yappli(z) .

+s=k
| BLu(2) | =
Pn(z’ & 7])7 (-DE - iD’])Pn(z’ &, 7]), M) (De - ’l:Dﬂ)n_l-Pu(zy &, 77)

— C PZL(Z’ E’ n)9 (De - iD’))Pﬂ(z: ‘Ey 77)’ ct (De - iDv)n—l'PZl(z’ Ey 77)

Pnl(zy &, 1})’ (DE - iD’?)Pnl(zy &, 77): M) (De - iD'i)n_lpnl(z’ &, 77) g::

with C, = 112! -+« (n — 1)!
Since P,.(z, & 7) are homogeneous polynomials in (& %) of degree
k, we see from Euler’s formula that

(€D, + nD,)'P,\(2, &, 1) = k'P,.(2,&,7) .
Thus
| BE2) | = (k) =2C, | (6D, + 9Dy)* v (ED; — 7D,)'P,\(%, &, 7)) 'g:g # 0

if and only if 4,2, &, %) |cz1,n=: # 0. This follows immediately upon
writting the determinant as a sum of determinants. Thus we have

|By(2) | = [G'(z)] 01 | BLu(z) | = O
for z in 2 U £ U 2 by assumption (4.16). Thus

(4.44) ?(z) = ;‘(z)S:I?(t, 2)0(t) + By (z)g*(2) .

We now consider (4.43) as a system of Volterra integral equations in
?(z) for z in QU k. As such, this system has a unique solution
vector @,(z) which is analytic for z in £ and continuous for z in 2 U &
and moreover agrees with @(z) for z on k. Thus @,z) furnishes the
analytic continuation of @(z) into 2 Ux. Thus @(2) is analytic for z
in Uk U2. From the definition of @(z) in (4.43.A) we see this yields
the analytic continuation of @,(2), @, ,(2), «+ -, As_n.a(2) into QU £ U Q.
But by (4.36), the definition of A*(z) and (4.38) we get the analytic
continuation of F%*-(-(z) into QU £ U Q. By integration, we get
the analytic continuation of F(z) into 2 Uk U 2. (We adjust the

* Professor J. Leray pointed out to me the relation between gf, and 4(z, &, )5},



566 JAMES M. SLOSS

constants of integration to agree with F(z) and its derivatives at
the point ¢ of the boundary; this gives uniqueness.)

Upon differentiating F;(2) and using (4.32A) and (4 31A) we get
the analytic continuation of (ef, h(z)) into 2U x U 2. However by
assumption (4.14)

4, =

1 0-.-- ]
=0, 1<7Zn-1.

0
ef

Thus we get the analytic continuation of h,(z), h(2), -+, h,(2) into
QUEUSL.

In a completely analogous way, we can show how to analytically
extend ¢.(2), gx_1(2), -+, 0r_w_n(? into QU kU2, kno‘wmg initially
only that they are analytlc in 2 and continuous on 2 U . In this
direction we first note that we have:

LEMMA 4-B. Let k=n
(4.30B) ai_.(2) = DE"Drrgi(z, Q) = DE™a(2, 2) 0=m=k

and the hypotheses of the theorem hold. Then
U31B) @t a@) = 3 | Riwrlt, D0 + Con(2)
r=0 Je

where I?,c_m,r(t, 2) are analytic for t and z in QU kU D and C‘k_m(z)
1s analytic for z in QU £ U 2.

Proof. The proof of this lemma is the same as that of Lemma
4, with only obvious modifications. In place of the expression for the
Taylor’s expansion for a; about ¢ = z we start with the expression
for the Taylor’s expansion for a; about G,(¢) = G({) and integrate viz:

6@ 0 = 00) — (¢ = 9 5 000 G o)el, g0))do
— e - 2 F ap O[16() - GOIE©)el, g(0))do
- LTS wp0)|1660) - GOIE O, go)ds — -

g @~ " 5 [alGe — 6o ~ )

. (SC[G(G) — ()]G (0)(e, g(a))da)ds :

In place of B,(z) we introduce:
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B.(0) = " 1), fgoa("(o)(glye(C)) )

EO(C) = g.(0)

and the expression (4.32) becomes replaced by:

01, 0) = B(Q) — (¢ - 9| Bi0)G(0)do

— (¢ - | Bo)I60) - GOIE(0)o

~ (¢ - | B0)6) - GOIG (@) — -
Also F,(2) is replaced by
7o = -{160) - 6Q1-6@B(0)do

SO
Fr@) = (=10 = DHE QO BAQ)
~ 'pp1660) - 616 @B (0)do .

Considering these as Volterra integral equations for B,(¢), we can
solve, since G’({) = 0 in QU £ U 2, and get:

B = (-1 = 1),[G'<c>]~fF"><<:>

U

~ GO [, OF s
where Ql(a, {) is the resolvent which is analytic for ¢ and ¢ in
QUkUQL. Thus

052, 0) = FyQ) + (¢ — DF(Q) + (¢ — 2°F(Q)
+ - + (c — z)"—lﬁ’wm

T m—2)! 2)! ERPIP! (fr — 1)1 bir

(4.33%) “aP(G(s) — GO)e — 2)]

Jas
(|16 - G116 @I
{F (o) + SGQT(‘:, o-)F';ﬂ(z)dr}do)ds

and for 0 <m=n-1
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atu() = D"D2g}3 0|,

= (=1pml Fg=(Q) + (-~ E e — Fm ()
m (n - 1)! n—1—m ¥ (k—m) (&
R G | it L B Fiegm
(4.45) Rl oy e ©
+ 5 5 pi(‘asrie - 97a 160 — GEO)e — )

n

07=0

[G(U) GG (o)

Foye) + SOQT(T, o)F r(r)(f)df}da]g=z> ’

Since
r—[n-2)—k—-—m-L]=k—m

the last term can be written

(4.46) s S’F;M«o)@ktm,r(a, 2)do

r=0 Je

where @ .,..(c,l) are analytic functions of ¢ and ¢ for ¢ and ¢ in
QU kU Q. Introducing (4.46) into (4.45) gives an expression of the
same form as (4.35). We now proceed exactly as in Lemma 4 and
find that:

447y Feew) = Szf;:_,,,(t, )A*t)dt + B*@) , n<m<k,

where
Fom(@) = (FFm(@), B (), - -, B (z)
i@ = ([l - trazoat, S(z— et (b, -+, - uon(2)

and [*(¢, 2) is an analytic function of ¢ and z for t and zin QU k U £
and R*(z) is an analytic function of z for z in QU U Q. But for
nEmZk,0r<n-—1, we have r—[n—-2)—(k—-—m—-1D]=
k — m, thus (4.45) becomes replaced in this case by

at_n(2) = DE"Drgi(z, C)]

=5 S Foe-m(g)dzx, (0, 2)do n<m<k,

where @“:"m,,(a, z) are analytic functions of ¢ and z for ¢ and z in
QU kUL, Combining this with (4.47) gives the result.
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The condition 4,(z) = 0 is unnecessary in this lemma since the
corresponding condition is:

4, = (—=1)=0122181 oo (m — 1) =0 .

Next we note that we have

LEMMA 5-B. For l+m<k -1

@38 Difu= 0] =3 | Kiwie ot 0t + Cra@

=2
where IZ’,’,"_m,j(z, t) are analytic for z and t in QU k U Q and 5,1‘_,,,(z)
is analytic for QU k U 2.

Proof. Same as Lemma 5 using Lemma 4-B instead of Lemma 4,

As in the case of (@.(2), a;_.(?), -+, a;_,1.(2))", we get analytic
extension of (a}(2), af_,(2), -+ -, af_,+1(2))" into QU kUL which are
analytic initially only in £, and continuous on £ U&x. The only
difference is that we use the fact that 44z, &, 7)== + 0 on
2U £ U 2 whereas in the extension of the a’s we used the fact that
Az(z’ E’ 7]) |E=1,')=i * 0 on ‘Q Uk U Q- .

In an analogous way we get the analytic extension of F*—"—1(z)
into 2U £ U £, which in turn gives the analytic extension of B.(2)
into 2 U £ U 2, which finally gives the extension of (ef, g(z)). Since
by assumption 4, # 0 this system yields the analytic continuation of
9.(0), 9x(8), +++, 9.(0) into QU £ U 2.

Upon introducing the extended vector functions A(z) and g(z) into
(4.18) we get the extension of U*(z, %) for z in QUxU 2, which was
given originally only for z in 2Uk. And thus, the solution of (4.13)
has been extended across the boundary conditions on £ into QU&U 2.
This completes the proof of the theorem.

5. Applications. (A.l) Consider the situation where we are
given a solution to the differential equations

1.1) Uype + Uyy + Au, + Bu, + Cu =0

where (u,, Uy, --+,u,)", A, B and C are pairwise commutative constant
n X n matrices in a simply connected open region 2 of the type
described in 2, part of whose boundary is the analytic arc #, and on
£ satisfies

4 IK = (¢1(z)y @2(3), M) @n(z))

where @,(z), -+ -, ,(2) are functions analytic in QU £ U 0. Moreover
let #ueC'(2 U k). Then by Theorem 1 we can uniquely extend the
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solution % into 2 U £ U £ so that it is a solution in this large region
and is the only one that satisfies the given conditions provided 0 s
| M,,,] where

00 00 00
Pii Dz Din

p.gol ...... pgon
In this case
o — 0if 2#79 .
Yo1lifi=j

Thus | M,,| =1 0 and reflection is possible.
(A.JJI) Theorem 2 is suitable for systems of equations of the form:

iPij(A)uj=0 1=1,2,--+,m
i=i

where the P;; are polynomials with constant coefficients and 4 is the
Laplacian, e.g.,

Au, + adu, + dbu, = 0
Lu, + cdu, + ddu, = 0

for which if
(W, Way Wy, Wy Ws)T = (U, AUy, Uy, AUy, AU)"
then

0-10 0 O
0 b 0 O
E=|10 0 0-1 0
0 00 0-1
0 d 0 ¢ O

(A.III) When the arc £ is a portion of the z axis, then condition
(H.1) of Theorem 2 is automatically satisfied since then G(z) = z and

—1 —20c—2) —3(c—2)F--- —(n —1)(c—2)"*

0 2! 3.2(c—2) -+ (n — 1)(n — 2)(c — 2)**

4z =] 0 0 -3l cer (0 — 1)(m — 2)(n — 3)(c — )
0 0 0 cee +(n — 1)!

=128l .e. (=D = 0.
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(A.IV) When we consider systems of the form:

AUy = Uy + A,
a;; constants
du, = anu, + a,u,

E - ( —Qy - alz)
— Ay Oy
and condition (H.1) of Theorem 2 becomes G'(z) = 0 for 2 U £ U 2 which

is automatically satisfied because of our initial restrictions on G(z).
(A.V) Given that u, is a solution of the metaharmonic

then

equation
(5.1) 4w + a, 4" Uy 4 oo + a,_du, + a,u, =0

in Q where a,, a,, - - -, a, are constants and u,(x, y) is a single function,
U € C" QR UE)NC™2),n— 1=k <2n,n =2 and u, satisfies on «:

(5'2) pa(D)ul = Z kpﬁ(z)D:D;ul = fa(z) a = 11 2’ e, M
r+s8s

where the p7:(z) and f,(z) are analytic in QU £ U Q. Assume that &
is such that (H.1) is satisfied. This equation can be written as a
system by letting wu, = du,, u; = Au,, -+, u, = 4" *u, and equation
(5.1) is equivalent to the system

B 0-1 0 0---0 O Uy
0o 0-10.--0 O Uy

4+ =0
o 0 0 0-.-0 -1
L A, Qu_, covves a, a, U,
Thus
0 010 0 0 \"x» 0 <0 (=1
0 010 0 *a,xa,_, *a,
E=| e B2
—Qp Oy v s O

and in this case (4.14) becomes.

1 00 0---0
0-10 0---0
4,=10 01 0---0}|==+1

0 0-er (=1
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which means 4, # 0 is not a condition in the case of the metaharmonic
equation. Thus if 4, 0 and 4, % 0 for z in QU k£ U 9, as given by
(4.16) and (4.17), and if the a; are such that (H.2) is satisfied then
we get that u, can be extended into 2 U £ U £.

To get some idea of how we check condition (H.2) consider the
example

Au + 34u + 2u =0,
To determine a,(s) and a,(s) of Lemma 3 where

DN, 8) = a(s) + ay(s)N,

note that
|E— M| =2M—=83\+2v=0— 1) —2)
and thus
D1, 8) = ay(s) + a(s) = J[V s],
(2, 8) = ays) + 2a,(s) = J[V2s] .
Thus
a,(s) = Jo[l/%] - Jo[I/?] ’
ao(s) = 2J [V s | — J[V2s].
Thus

10
Riz, G, 0] = ot = 216@ — 6Oy )

0 -1
+mu—mww—G@M2 Q

and the representation of the solution (4.18) becomes:
Ui (2, 2) = hy(2) + 9:(2) — asf(c — 2)[G(c) — G(R)]}hu(c)
+ af(c — 2)[G(c) — G(2)]thu(c)
~ [6() — G@N[ [a{(t - 2I6() — CEh()
— a’{(¢ — A)[Gle) — G@)Bh:(t)]d
— t = 3 laP{(c - 26() - GBVa(o)
— a;"{(c — 2)[G(0) — G(2)]}9:(0)G'(0)do .
In this case, the condition (H.2) becomes:

1

0\=awm=—l¢o
a(0) a0 ’

4
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and is thus satisfied. Note that in this example (H.1) is also satisfied,
since as a special case of (A.IV) it is simply G'(z) = 0 for z in QU £ U £.
Note that the polyharmonic equation is a special case of the

metaharmonic equation.
(A.VI) It is of interest to note that in the case of the polyhar-

monic equation viz. 4"u =0, E is of the form
0-1 0 0--- 0
0 0-10-.-- 0

E-|:
0 0 0 0----1
o 0 0 0.-- O

Thus E* = 0 and the Riemann function is only the finite sum:

R[Z, (', 2, (] = J[2V E(z — 2°)(G(C) — GO)],

where

q1=1-92+ & _ ... L (1= L
JO[]/Q] =T 2 + 2421) +(=1) 28 =[(n — DIP )

Note that the a,(s) of Lemma 3 are given in this case by
as(s) = (—1y2-%(jl) s 0<js<n—1.
Thus condition (H.2) is clearly satisfied automatically. Thus for the

representation (4.20) of the first component

w(z, 2) = o) — 3, 560) — GOV (¢ — 2y (t)dt

(5.3) B .
+ 0.(2) — S bi(c — 2| FON60) - GEg,0)do
where
bj = _1—,— .
2

Let

@J(z) = _jb:lsz(t - z)j—lhj-t—l(t)dt ’ .7 = 1y 2:' ce,n — 1
(5.4) .

7,(2) = —jb| G(ONG(0) = GOV "9,(0)do, §=1,2,0,n 1

and

Po(z) = hl(z) ’ 7(2) = 9.(2) ’
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then the representation (5.3) becomes:
65 o2 = 60 - GOV + 3, — 2T,(2)

which is an equally good representation since the A’s and ¢’s can be
obtained simply by differentiation of the @'s and ¥’s if we utilize
(H.1). This is a generalization of the representation formula of the
author [8] for the biharmonic equation.

(A.VII) Next we shall check that the results of [8] for the
biharmonic equation are a special case of Theorem 2. In this case
Su=0,1<k<8,ar=1a%=—Fk a' = —(k—2), a2 = —(k—4),
ar* =(k —2r) =r —s. Thus condition (4.16) and (4.17) become the
same; Vviz.:

ZJWM%) S (@)(r — s)pii(z)

r4s= r+s=k

0#4,=4;= . .
” SR S @ — )

which is precisely the condition of [8]. As seen in (A.IV), (H.1) is
satisfied and as seen in (A.VI), (H.2) is automatically satisfied and as
seen in (A.V) 4, # 0. And in this special case our theorem reduces to

the theorem of [8], but with the continuity requirements strengthened
by insisting that u e C***(2 U k) N C*2) instead of only

ueCHRUK)UCHR) N CHRU k)

as in [8].
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