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REFLECTION LAWS OF SYSTEMS OF SECOND ORDER
ELLIPTIC DIFFERENTIAL EQUATIONS IN TWO

INDEPENDENT VARIABLES WITH
CONSTANT COEFFICIENTS

JAMES M. SLOSS

In this paper we shall consider the reflection of solutions
of systems of equations

(l 1) uxx + uyy + Aux + Buy + Cu = 0 ,

where u = (uu u2, ••-,un)
τ, A, B, C are constant, pairwise com-

mutative n X n matrices, across an analytic arc K on which
the solutions satisfy n analytic linear differential boundary
conditions. If the boundary conditions have coefficients which
are analyiic in a specific preassigned geometrical region can-
taining ιc, then we shall show that the solution of (1.1) satis-
fying such boundary conditions can be extended across tc,
provided certain inequalities are satisfied. Moreover, the region
into which u can be extended will depend only on the analytic
arc K, the original region, and the coefficients of the boundary
conditions; i.e., we shall have reflection "in the large" and
the region will not be restricted by the equation.

There are two basically different situations considered, the results
of which are stated in Theorem 1, Theorem 2, and Theorem 3.

Theorem 1 treats the reflection of solutions of a system (1.1)
initially given on an open set Ω for which the boundary conditions
on an arc fc adjacent to Ω are

Σ Paβ(D)uβ = fa(z) , a = 1, 2,
β=ι

where

with Paβ(z) and fa(z) analytic in Ω\JκϋΩ, where Ω is an open set
determined by fc adjacent to /c and disjoint from Ω. In the event
that two inequalities involving the p?β(z)(r + s = k) are satisfied, then
we can reflect the solution of the system across fc into κ{jΩ, so that
the original solution is extended into all of ΩiJfcUΩ.

In Theorems 2 and 3 the reflection of solutions given in Ω, of the
special system (1.1)

Δu + En = 0 , E = n x n constant matrix ,
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is treated. In these cases boundary conditions of the form

fa = fu(z) , v = 1, 2, . , n

are assumed prescribed on Λ:, in which pl'(z) and f»(z) are analytic in
Ω\JιcUΩ. For Theorem 2, k ^ n, and for Theorem 3, k = n - 1.
There are five conditions which must be satisfied in Theorem 2 to
insure reflection. Aside from two inequalities involving the plt(z) that
must be satisfied as in Theorem 1, there is an additional determinental
inequality on the arc (z — G(z))

( 1 . 2 ) I D " [ G ( c ) - G(z)Y \ Φ O , l ^ v ^ n - 1 , 1 ^ i ^ n - 1 ,

which must be satisfied as well as two additional inequalities which
depend on the constants of the differential equations.*

In Theorem 3 it is unnecessary to assume (1) one of the dif-
ferential equation conditions, and (2) condition (1.2). Moreover, in
Theorem 3 the reflection is reduced in quadratures whereas in Theorem
2, for the general case, we have only an existential proof.

Finally, we shall give equations and boundary conditions to which
the theorems apply. Theorem 1 is applicable when the boundary con-
ditions are u = (φ^z), φ2(z), , φn(z)).

Theorem 2 and Theorem 3 are suitable for systems of differential
equations of the form

Σ ^ ( Φ i = 0, ί = 1,2, . . . , m

where the Pί3 are polynomials with constant coefficients and Δ is the
Laplacian. Two inequalities involving the coefficients of the Pu must
be satisfied. A special example is the metaharmonic equation

Δ*u + axΔ
n~xu + . . . + anu = 0 , ao = constant .

In this case it is only necessary to check one inequality for the
differential equation in the case of Theorem 2. A special example of
the metaharmonic equation is the polyharmonic equation

Anu = 0 .

In this case there are no inequalities for the differential equation
that must be checked for Theorem 2 or 3. Also in this case there
is a particularly simple representation of the solution in terms of
analytic functions in Ω and analytic functions in Ω which is a gener-
alization of the representation in [8].

In the special case of equations

* J. Leray kindly pointed out to me that (62) and one of the d.e. inequalities
are always satisfied and that the 3 holds for k<2n.
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Auβ = α i2ux + aj2u2 j = 1, 2 , aSi = constants ,

a special case of which is the metaharmonic equation

A2u + a An + bu = 0 , α, 6 constant ,

the condition on the arc fc is automatically satisfied. Moreover, the
conditions of Theorem 2, for the biharmonic equation, reduce to the
conditions given in [8] with the exception that Theorem 2 requires
ueC2+k(Ω[jfc)f]C4(Ω) whereas [8] requires only that

u € C\Ω u fc) n c\Ω) n C2(β u o .

Finally, it is noted that in the case when the analytic arc is a
portion of the x axis then the condition (1.2) is automatically satisfied.

Restricting ourselves to equations of the type (1.1) we get explicit
representations for the solutions in terms of the zero order matrix
Bessel function. For purposes of brevity we shall consider homogeneous
equations (1.1) since the treatment of nonhomogeneous equations in-
volves only obvious changes.

In his beautiful paper [6], Lewy thoroughly considered the question
of a single elliptic equation in two independent variables for which
the coefficients are analytic functions in a neighborhood of fc. Brown
[1] considered the reflection laws for a general fourth order elliptic
equation, with constant coefficients, in two independent variables across
a straight line segment on which he assumes the solution satisfies two
boundary conditions of the form

Σ PlsDlDs

yu(x, 0) = fu(x) , v = 1, 2 ,

where the line of reflection is y = 0 and pi8 are constants. Assuming
the original domain is convex then he achieves reflection in the large,
i.e., the domain of reflection is determined initially by the differ-
ential equation. Filipenko [2] investigated reflection for the harmonic
equation in more than two independent variables across the plane xλ = 0
and has shown that reflection in the large for certain initial domains
is possible provided boundary conditions of the form

are prescribed on the plane, where P is a polynomial. Lewy [7] has
given an example to show that the modification of P from a polynomial
to an analytic function is not possible. Garabedian [3], [4] has also
investigated certain reflection laws in the small for a nonlinear elliptic
equation and for quasilinear equations with special boundary conditions.
J. Leray [5] has, in a very interesting paper, used reflection for the



544 JAMES M. SLOSS

explicit determination of the Greens function for an M-harmonic
equation in a band, when differential boundary conditions are given
on the boundary of the band.

2* Geometric reflection across an analytic arc* Let to be an
open analytic arc defined by the real analytic function F(x, y) = 0
with Fl + Fy^O. As shown in [8], this defines a function ζ = G(z),
of the complex variable z = x + iy which is analytic in a neighborhood
of fc and for which tc is described by z = G(«). 2 — G(z) is called the
reflection of z across fc. z = z on /c. Let Ω be a semi-neighborhood
of Λ:, with G(s) analytic and univalent on Ω and thus G'{z) Φ 0 on Ω.
Let 42 = G(Ω) and assume β n f i = 0 . Then it can be shown that
for z in Ω{Jfcl)Ω, G(z) is univalent, f = z and G'(z) ^ 0. Moreover

G'(z) = [G'

and

G"(s) = -G"(z)G'(z)-3 .

3* Representation of the solutions* In this section we shall
derive a representation for the solutions of (1.1) which are in C'(Ωlifc).
This will be done by a slight variant of the very elegant method
developed by Lewy [6]. The solutions are expressed by means of a
complex Riemann function, which can be found explicitly in our case.

First we consider the transformation

(3.1) u = e-{ll2)iΛx+By)w(x, y)

where the exponential matrix is defined as usual by its McLaurin
expansion. Due to the pairwise commutativity of A, B and C we get
(1.1) becomes

(3.2) e-M*)u*+Bv) ίWχχ + Wyy + JL[4C - A2 - B2]w\ = 0 ,

1 4 )

which is equivalent to:

(3.3) wxz + wyy + Dw = 0

where

(3.3.1) D = — [4C - A2 - B2] .

4

Note that (3.3) can be written for z in Ω as

(3.4) 4G7(Js)wβs + Dw = 0

where
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(3.5) _ _ = _ _ _ _ t _ _ I _ . = _ G (z) —- + t — .
3z 2 L 3x 3i/ J 3a; 2 L J L dx dy Λ

Let

(3.6) w(x, v) = «{«±i, 1^1] = 4 ^ ± ^ , ̂ f ^ ] = W(z, z)

for z = x + ίyeΩ\jκ and 2 = G(s) e i2Ufc.
With the idea of finding a representation of the solution of (3.3),

we seek the complex Riemann function; viz. the solution of

(3.7) L[v] = vzζ + ±-DG'(Qv = 0
4

which is a function iϋ[2°, ζ°,«, ζ] of four complex arguments each
ranging independently over Ω{Jfc\jΩ with

(3.8) LZfζ[R] = 0

and

R[z°, ζ°; «°, ζ°] - /

(3.9) Rz[z\ ζ°; z, ζ°] = 0 .

, ζ°; °̂, ζ] = 0

We claim that such a matrix function is given by

(3.10) R[z\ ζ°; z, ζ] - JO[I/JD((« - z°)(G(ζ) - G(ζ°))J

where if Q is an w x n matrix, we define

With any norm for Q we get

where Jo, on the right, is the zero order Bessel function and thus
the matrix series converges for all Q. Thus R[z\ ζ°; z, ζ], as defined,
is analytic in z\ ζ°, z and ζ for z\ ζ°, z and ζ in Ω U A; U Ω. Moreover
it is easy to see that (3.9) are satisfied and by direct computation,
we see that (3.8) is satisfied.

Our next aim is to find a representation of W(z, z) as defined by
(3.6). This will be done by finding a function W*(z, ζ) which is
analytic for z in Ω and analytic for ζ in Ω and for which

W*(z, z) = W(z, z) .
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We consider now the Cartesian product

S x S = {{z,ζ):zeΩ{Jιc,ζeΩljfc} .

Let zι and z2 be arbitrary points of Ω{jιc and let p be a path joining
zx to #2 which lies in Ω\jκ. Then let p be the reflection of p joining
z1 to z2 in fiU^. Let

S2(2i, zif p) = {(z, ζ)eS x S:zep and ζ e £} .

Note that

(3.11) - RW*t + — G'(ζ)RDW* - RzζW* - —G'(ζ)DRW
4 4

since, as is clear from (3.10), RD — DR. We define

W*(z, z) = W(z, z) = w(x, v), W.*(z, ζ) \ζ=i = Wz{z, $),

i.e. the solution to equation (3.3), and let this be the "initial condition"
for the extension of TF* as an analytic function in (z, ζ). Let W*
be assumed to be a solution of L[W*] = 0 for (z, ζ) e S2(zly z2, p). We
shall want to integrate (3.11), when W* is such a solution and R is
a Riemann function, over "triangles" Δι of S2(zu z2, p) with vertices
(ζ°, ζ°), (z°, ζ°) and (β0, g°), over "triangles" Δ2 with vertices (ζ°, ζ°), (ζ°, 2°)
and (z°, z°) and over "squares" with vertices (c, c), («, c), («, 2), (c, ί),
c being a point of /c. Over such "regions" as these, we have:

(3.12) 0 = - £(RW*)tdt + &RtW*dt - §RσW*dσ .

Consider i2[̂ °, ζ°, ί, σ] and TΓ*(ί, σ) in the above, where the region is
the "triangle" c S f e ^ p ) with vertices (ζ°, ζ°), (z\ ζ°), (a;0, g°). We
get, due to the nature of .β[z0, ζ°; ί, σ],

W*{z\ C) = W*(ζ°, ζ°)

(3#18) + \22mA ζ0; tf ΐ ΐ

Next we consider R[ζ°, z°; t, σ] and W*(t,σ) in (3.12) and integrate
over the triangle c S*(z19 z2, p) with vertices (ζ°, ζ°), {z\ z°), (ζ°, 2°) and
get, making use of the special character of the Riemann function
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W*(ζ\ z°) = W*(z", z")

(o.l4j j(ζQζ°)

°, z°;σ, σ]W*(σ, σ)dσ .

Finally we shall integrate (3.12) with R[z, z; t, σ] over the rectangle
aS2(zly z2, p) with vertices (c, c), (z, c), (z, z), (c, z) where c is assumed
to be a point of tc, and thus, (c = c):

W*(z, z) = TF*(c, z) + PΓ*(^, c) - R[z, z; c, c]W*(c, c)

%[z, z\ t,c]W*(t,c)dt

"(c,z)

Rσ[z, z; c, σ]W*(c, σ)dσ .

This gives the representation of the solution of (3.3) for which we
were looking. The integrals entering (3.13), (3.14) and (3.15) are
independent of the path p since in (3.13) and (3.14)

[(RW*)t - (RtW*)]σ - [ROW% - RaW? + RWt* - RσtW* - RσWt*

= RLtσ[W*]-Lσt[R]W* = 0

by (3.11).
Next we show that W*(z, ζ) as defined by (3.13) is an analytic

function of z and ζ for z in Ω and ζ e Ω. This is done by showing
dW*(z, ζ)/dz = 0 and dW*(z, ζ)/5ζ = 0; i.e. the Cauchy Riemann
equations are satisfied. Since R is an analytic function of its
arguments, z = z, z — G{z), dz/dz = G'(z),

G'(z)W*(z, z)Rσ(z, ζ; σ, σ) | ί β,,σ a = ί = 0

by the nature of R. Next we check analyticity in ζ.

(ζ, 0 - G'(ζ)[CB(s, ζ; ί, t)W*(t, t))t - RtW*(t, t)]t=ξi=ζ

= U%)[Wξ*(ζ, Q - R(z, ζ; t, t)Wt*(t, t) \t^u] = 0

by the nature of R = Jo. Note that (3.14) can be got from (3.13)
simply by substitution. The representation of the solutions of (1.1),
which we shall use, is given with the aid of (3.1) and (3.15) by:

U*(z, z) - exp \A*Z + £*G(£)UlF*(2, c) + TΓ*(c, z)

- R[z, z; c, c\W*(c, c)
(3.16) f z

- Rt[z, z; t,c]W*(t, c)dt
Jc

- \^Rσ[z, z c, σ]W*(c, σ)d
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where

A* = —i(A - iB) , E* - -i-(A + iB) .
4 4

4* Reflection of solutions of (1*1) across analytic boundary
conditions* Before proving the reflection theorems we shall need to
prove two lemmas.

LEMMA 1. Let μ — μx + μ29 μλ and μ2 nonnegative integers,

(4.1) A = ±{D9 - iDy) , Dt =±-G\z)(Dx + iDy)
Δ Δ

then for functions

M{x, v) = M[

are analytic in x and y, the following operator relation holds:

(4.2) + terms of order <^ μ — 1 in Dz and Ό% all

of which contain terms of order at least

one and not greater than μ — 2 in D%; i.e.

all of order ^ μ — 2 in DΛ ,

where a^, af1"2, a£ i μ 2, , a£ i μ 2 are the coefficients of aμ, a"-^, , bμ

in (a + b)K(a - δ)μ2 (Note a 0

W 2 = 1, ^ 1 Λ 2 = (-1K2)

δ(v, μ) = 0 if v > μ ,

= 1 if v ^ ^ .

Proof. By induction on &. For μ = 0 clearly true. For μ = 1
we have from (4.1) for μx = 1, /̂ 2 = 0

J5β = D# + (G'(ί))-rjDί which is (4.2) for μx = 1, μ2 = 0

and for μx = 0, //2 = 1

Dt which is (4.2) for μx = 0, μ2 = l .

Assume (4.2) true for μ, we must show it is ture for μ + 1. i.e.,
assume (4.2) and then consider



REFLECTION LAWS OF SYSTEMS OF SECOND ORDER ELLIPTIC 549

(A) + terms of order ^μ in Dz and Zλ all containing

terms of order at least one and not greater than

μ - 1 in Dή. i.e.,

Σ
i=i

But

(a + b)(a

= (α

+ + (apj? + aμ/μήabμ

and thus we see

{ μ+i

3=0

where α^+^s are the coefficients of aμ+ί,a,i'b, •',bμ+i in
Now consider

Σ

(B) + <"KG'(£))-<fI+2)G"(ψ + (^ ίί. 2 )]A" +

Σ aHn+W

- α^ 1

2 + 1 ( G ' (2))"" ' + 2 ) G"(2)(^ ί 1
where since

(α - 6)(α + 6)^(α - 6)^2 = aμ+1 + (α:fi« - ΐ)aμb

the α ^ 2 are the coefficients of aμ+1, aμb, bμ+1 in (α + b)μi(a — b)μ*+L.
Thus the lemma is proved.
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LEMMA 2. Given the operators

Pil(D) + pi2(D) + + PiΛD) i = 1, 2, , n

where

τ> (Ώ\ — V Ύ\r$(v\ΏrΓ)s /n (TV\ — X1 Ύ\rs('y\TlrDs . . .
Pil\-L') — 2-i Pil \*/-L'z J-Sy i Pi2\1J) — 2LJL Pi2 \&)*-'x -^y J

then for

Dz = \{DX - iDy), DΛ - i-G'(2)(D. + iDy)
LA LA

= M = MU)i
+ M0,k(z)(G'(z))-kDΪ

where Tk_2(z) is a matrix of terms in Dz and D* and of order
^k — 2 in Dz and of order ^k — 2 in DΛ.

IPIΪ Λ . PSV

MUz) = Σ (i)Ί = Σ (iYiPlβ)
r+s=k \ I r+s=k

\PZ - v"J
M i /y\ — \ ' (ό\ssvrs( Φhrs \ Ά/f (/y\ — X' (ό\s( rϊirs \^ \,\\*') — / l \ v) t^i \J/aβ/i ^VJ-k l>0\/ί'/ — ' J \ *) \J/aβ/

jyj.Qi]c\Z') —— x i \ %) \Paβ)i L' *-lik 1\^/ — / i \v) (Xjc—l\Paβ)
r+s=k r+s=k

"*"' Oik—1\ / ' ι \ / f̂f

where a\s are the same as in Lemma 1.

Proof. By Lemma 1

= Σ P«I{W S [Σ ocγ{G^

- δ(2,

+ Σ (iYPrADΪ-1+ Σ /

+ qn(Dβ9 DA) where g<x is a polynomial in D z and DΛ

of degree ^ fc — 1 with coefficients analytic in Ω U ιc U Ω and which
contains terms of order ^k — 2 in β 2 and of order <Lk — 2 in DΛ.
Similar results hold for paβ(D), β = 2, , n. Combining these results
with the fact that ar

k

s — ( — 1)% we get the conclusion of the lemma.
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We are now in a position to prove

THEOREM 1. Let u — (uu u2, , un) e C2(Ω) and satisfy in Ω

(4.3) uxx + uyy + Aux + Buy + Cu = 0

where A, B, C are pairwise commutative constant n x n matrices.
Moreover let ueCk(Ω{Jfc)Γ\C'(Ω{Jκ) and satisfy on K the boundary
conditions:

n

Σ paβ(z, Dx, Dy)uβ = fa(z) , a = l,2,- -,n,
β=l

where

paβ(z, ί, y) = Σ

with pr

a'β(z) and fa(z) analytic in Ω\Jιc\jΩ. Moreover, if Paβ(z,ξ,7])
is the principal part of paβ(z, ξ,η), we assume in Ω{Jfcl)Ω

(4.4) 0 =* I ΛΓtf0(s) I - \Paβ(z,l, - ί ) ! 1

and

OΦ\MOtk(z)\ = \P«β(*,l, - i ) l ι .

Then we can reflect u across tc into Ω; i.e., there exists a unique
function u which is a solution of (1.1) in Ω U ιc U Ω and which
agrees with the given solutions u of (1.1) in Ω \J ic.

Proof. We apply M of Lemma 2 to the representation (3.16)
and evaluate on K. For simplicity let

g(z) = W*(C, Z) , h(z) - W*(Z, C) .

Then we get on K, remembering that z — z there:

(4.5) eA*z+B*G^{MU*Wk){z) + M0,k(z)(G'(z))-kg^(z) + Tk^[gf h, z]} = f(z),

where f(z) = (f^z), •• ,/Λ(«))Γ and Tk^[g9 h, z] is an expression of the
form:

^[gf h, z] = a^izW^iz) + ak^2(zWk^(z) + . . . + ao(z)h(z)

( 4 # 6 ) + \o

a-&> WΨW + **-&)9{ι\*) + + bo(z)g(z)

1 As Professor Jean Leray has kindly pointed out to me, these statements concern
the behavior of the boundary conditions in the characteristic directions.
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where E and the α's and 6's are matrices, analytic in Ω\Jκ\jΩ. Note
that for j >̂ 1,

(4.7) h(z) =
1)!

and similarly for g(z) where h{σ)(c) and g{σ)(c) are known via (3.13)
and (3.14). Moreover if K(z, t) is a matrix function known and
analytic in Ω U £ U i2 then for & ;> 1

\'K(Z, t)h(t)dt = * [dt&z, ί j Γ U - t2)
k-Wk>(t2)dt2 + #>(*)

Jc (A; — 1 ) ! Jc Jc

where Kx(z) is a known matrix function analytic in Ω\}κ\}Ω and thus

(4.8) [*K(z, t)h(t)dt = \*Kz(z, t)h{k)(t)dt + Kfc)

where

K2(z, t) = X Γ d ί , ^ , «(«! - ί)*-1 .
(k — 1)1 Jh=t

Thus (4.5) becomes on fc with the aid of (4.7) and (4.8) and the
significance of (4.6).

(4.9)
z, t)¥k\t)dt + \ K**(z, t)g*\t)dt + H(z)\ = f(z)

where H{z) is a known vector function of z, analytic in Ω U it U β,
and JBL* and JΓ** are known matrix functions of z, t analytic in
Ω U fc U Ω. Thus, since | AfA,o(«) | Ψ 0 and | MOtk(z) \ Φ 0 and G\z) Φ 0
in i2 U % U β, we can solve for h{k)(z) and g{k)(z) and get:

(4.10) /̂ (&)(2;) = \R(z, t)h{k)(t)dt + H(^) on
J

and

(4.11) g{k)(z) - [ & , t)g{k\t)dt + jff(s) on Λ:

where ^ ( ^ , t) and iί(^, ί) are known matrix functions analytic for z
and t in Ω [j fc D Ω and ίf(2) is analytic in Ω and continuous in Ω U /c

!?(#) is analytic in β and continuous in Ω U tc.
Treating (4.10) as a system of Volterra integral equations in

Ω \J ic and treating (4.11) as a system of Volterra integral equations
in Ω U /c, we get the analytic extension of h{k)(z) into Ω\J κ[j Ω and
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g{k)(z) into Ω (J tc U Ω. By integration, since h and g and their deriva-
tives of order <Lk are known and continuous on /c and specifically at
c at the outset, we get the unique extension of h(z) and g(z). By
means of (3.15) we get the unique analytic extension of W*(z, z) into
β U ^ U f l and thus the extension of u(x, y) into Ω U fc U Ω.

We shall next concern ourselves with a system which is particularly
useful when certain higher order equations are reduced to a system
of equations. With this in mind, we shall consider a more restricted
class of equations, since the inequality becomes very unwieldy.

Notation. Let

fe\\
el

,e\,

,E> =

(e\\

e\

•

βί* \

^eif

where e3

m = (e3

mU <4>, , e'mn) is the m t h row of E1.
Before stating the theorem, we shall prove

LEMMA 3.

, (t - z)[G(σ) - G(ζ)]}

(t - z)[G(σ) -

R[z, ζ; t, σ] =

where pn^ι(x, s) is the polynomial of degree ^n — 1 in x that interpo-
lates J0[Λ/XS] at the eigenvalues of E (s held fixed); a3(s) are entire
functions of s and E° = I. In the event that some or all of the
eigenvalues Xl9 λ2, , λy of E are multiple, i.e.,

IE - λ/ | = (λ - (λ -

\. φ χk if i φ k, n^ + n2 + + n5 = n, then we use Hermite "in-

terpolation to determine pn_x(x) such that if J(Xs) = JQ[Vxs\

J>n-i(λy, 8) = J(XjS)y —pn^(Xjf S) =
OX

>-'s)

Proof. The unique Hermite interpolation polynomial 2>M_i(λ, s) is
of the form:
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where the ZiA(λ) are polynomials in λ of degree <^n — 1.
Consider for Q(λ) the characteristic polynomial of 1?:

- Pn-άX, 8)

J(Xs) and 2>w_i(λ, s) are entire functions of λ and s, moreover the
polynomial Q(λ) has the same zeros in λ (multiplicity included) as
J(λs) — pn_i(λ, s). Thus /(λ, s) is an entire function of λ and s.
Rearranging, we get

J(\s) = Q(λ)/(λ, 8) + j v ^ λ , s)

But Q(λ) is the characteristic polynomial of £7. Thus by the Cayley-
Hamilton theorem Q(E) = 0 and

which gives the result since

J{E(t - z)[G(σ) - G(ζ)]} = J0{VE(t - z)[G(σ) - G(ζ)]} - R{z, ζ; ί, ^} .

Now we are in a position to state the theorem.

THEOREM 2. (HI) Let ft be an analytic arc of the type described
in § 2 for which the determinant of the (n — 1) x (n — 1) matrix

(4.12) ASz) - || D;[G(c) -

for z on Ω U % U Ω {arc condition).

I 0

(H2) det

where aό are those of Lemma 3 {differential equation condition).

(H3) Let u - {u,,u2, , ̂ f e C'(i3 U ic) n C2(β), (w ^ Λ ^ 2^ - 1, ^ ^ 2)
satisfy in Ω

(4.13) M M + uyy

where E is a constant n x n matrix for which
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.• ,o

(4.14)

1, 0,

(E)n, (E)u, (differential

equation

condition)

where (Ek)ij is the ij component of the kth power of E.
(H4) Let u satisfy on the analytic arc tz the boundary conditions

(4.15)

where

pal(z,
x = fa(z) ,

Pai(z, ί, V) = Σ
^k<

Vr£{z)ξrVs ,

with prA(z) and fa(z) analytic in Ω U fc (J Ω. Moreover if Pal(z, ξ, η)
is the principal part of paι(z, ξ, ΎJ) (as polynomial in ξ and rj)y we
assume for

> S> V) =

that for

(4.16)

and

(4.17)

DΓιPu(z, ξ, V), DΓ2DvPn,

), DΓ2DvPnl,

z, ξ,

- Δ%(z, ξ, 0 2 .

Then u = (uuu2, •- ,un)
τ can be reflected across the boundary con-

ditions (4.15) into Ω (J ιc U Ω.

Before proceeding to the proof of Theorem 2, we shall state
Theorem 3, which deals with the case k = n — 1, since the proof of
Theorem 3 follows the same lines as the proof of Theorem 2. Only
in the proof of Theorem 3, Lemmas 4, 5, 4A and 5A are unnecessary.

THEOREM 3. Let K be an analytic arc of the type described in §2.
(HI*) Let u = (u19u2,---, un)

τ e Cn~\ΩU/c)n C\Ω) and satisfy in Ω

2 These, as Professor Jean Leray has kindly pointed out to me, are conditions on
the behavior of the boundary conditions in the characteristic direction. He has also
proved that Conditions (HI) and (H2) are always satisfied, i.e. they are unnecessary
restrictions.
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U*x + Uyy + Eu = 0

where E is a constant n x n matrix for which

(4.14*) A, Φ 0 (see Th. 2) .

(H2*) Lβ£ u satisfy on the analytic arc it the boundary conditions

(4.15*)

where pli(z) and fv(z) are analytic in Ω U ιc U Ω. Also assume in

Ωϋ fCl)Ω

(4.16)* 42(z, £, V)^uη=i Φ 0 (see Th. 2 with k = n - 1) .

(4.17)* z/2(z, ί, Ύ])ξ=uη=-i Φ 0 (see Th. 2 with Λ = n - 1) .

= (uuu2, " ,un)
τ can be reflected across the boundary con-

ditions (4.15*) into Ω U fc U Ω. Moreover the reflection can be reduced
to quadratures.

Proof of Theorem 2. We first consider (3.16) with A* = 5* = 0
and

= W*(c, z) , h(z) - TΓ*(2;, c)

and get:

C/*(z, ί) - h(z) + flf(ί) - JK[«, z; c, c]h(c)
(4.18)

where, since it was shown that W*(z, ζ) is an analytic function of z
for z in Ω and an analytic function of ζ for ζ in Ω, then /&(*;) is an
analytic function of z for z in Ω and #(ζ) is an analytic function
of ζ for ζ in fl. From (3.13) and (3.14) and (H.3) we see that
h(z) e Ck(Ω U tc) and g(z) e Ck(Ω U K).

With the aid of Lemma 3 we get

(4.19) Rt[z, z; t, c] = Σ*[G(c) - G(z)]af{{t - z)[G(c) - G

(4.20) R.[z, z; c, σ] - Σ G'(σ)(c - z)af{{c - z)[G(σ) - G

Let

(βi, h) = eiJi, + eiX + + eUi, .

Then the first component of (4.18) becomes
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(4.21) Ux*(z, z) = h?(z, z) + gϊ(z, z) - {R[z, z; c, φic)}^ c o m p o n e n t

where

(4.22) hϊ(z, 0 = K(z) - Gx(ζ) Σ (V'{(* - *)Gi(C)}(βί, h(t))dt
i=o Jc

with

Gi(C) = G(c) - G(ζ)

and

(4 23) ^ ( * ' °
x G'(σ)(eί,g(σ))dσ .

Note that hf(z, ζ) is analytic for (z, Q o n f i x β and G C^ί^ U^)x(fiU /c)]
and that gf(z,ζ) is analytic for (z,ζ)onΩxΩ and 6 Ck[(Ω[j/c)x(Ω\Jtc)].

With the aid of Lemma 1, the boundary conditions can be written:

(4.24)
+ terms of order I + m ^ fc - 1 in Ώι

zΌ?Όί .

Apply the boundary conditions to (4.21), evaluate on the boundary tc,
remembering that on fc, z = z, and substitute the new functions
KjiZy z) and gά{z, z), (0 <; j ^ 2n — 1) where

(4.25) Ks(z, ζ) - Dίhf(z, 0 , 9,i*> 0 = Djgf(z, ζ)

with D°f = f, D°g = g. Thus the boundary conditions become, since
k ^ n — 1, for 2 on £

= Σ PrAz)(
r+s=fc

+ terms of order I + m ^ k — 1 in Dlhm{z, z)

(4.26) + Σ p:ί(«)(i) J Σ + ΣV*U<?'(z)] w -^r w ^

+ terms of order Z + m ^ Λ — 1 in D\gm(z, z)

v = 1,2, . . . , t t

(2" indicates we sum when k^ri),

where fv(z) is known and analytic in Ω U fc U β. It should be remembered
that the first two terms (involving only hm and their derivatives) are
analytic functions of z for z in Ω and that the last two terms (involving
only gm and their derivatives) are analytic functions of z for z in Ω

Rearranging terms in (4.26) yields for z on tc:
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( 4 2 7 ) + Σ βt ,*-
0

where

Λζ—z

(4.28) + t e r m g o f o r d e r ^ + m ^ ^ __ i i n DJ/Ijz, ζ)Ί

with coefficients analytic in Ω U /c U 42

Jζ=z

+ terms of order I + m ^ k — l i n D\gm{z, ζ)

with coefficients analytic in flU«Ufl.

(4.29) #„(*) - Σ p;ί(β)(i) αί

with Ay(z) analytic in Ω, Au(z) analytic in i2, and βtm{z) and fv(z)
analytic in Ω (J *c U Ω.

Our next goal is to convert (4.27) into a system of Volterra
integral equations for the n functions Dz

k~mhm(z, z), 0 <̂  m <£ n — 1.
On £, the system is to be satisfied and we shall see that they also
have an analytic solution for z in Ω \J K. With this in mind we state
and prove two lemmas.

LEMMA 4. Let Jc^n

(4.30) ak_m(z) = t ? i { , ζ ) z m ( , o ]
J£=z Jζ=z t

and the hypotheses (HI), (H2), and (H3) of the theorem hold. Then

(4.31) ak_m(z) = Σ \'Kk-*Λt,z)ak_r(t)dt + Ck-m(z) , n^m^k
r=0 Jc

where Kk_m>r(t, z) are analytic for t and z in Ω U K U Ω and Cfc_m(^)
is analytic for z in Ω U £ U 42.

Proof. Since the α^σ) occuring in (4.22) are entire functions,
the following Taylor's expansion with remainder is valid:

af][(t - z)Gί] - pn_t(t -z) + Rίin-2(t, z)



REFLECTION LAWS OF SYSTEMS OF SECOND ORDER ELLIPTIC 559

where pn_2{o) is a polynomial of degree n — 2 in σ and

Introducing this into (4.22) and interchanging the order of integration
for the remainder yields:

?(z, ζ) =

Next let

, h(t))dt

- G\(ζ) Σ < !

i0

β/, h(t))dt

. 1

o , t g 1 - 1 (C)Σa^
(n — 2)1 3=o

e{, h(t))dt

Γ(ζ) Σ [>'[(« - z)Gι(ζ)]
o J

^rrGΓ(ζ) Σ
(n — 2)! 3=o

- s)""2(βf, h(σ))dσ\ds .

"7 777" Z-k wj VWV î i

(r - 1)1 i=o

1 < r < i t - 1

Then, since by assumption

/ I 0

det

we can invert the system of equations and get

(4.31. A) W
n—1

r=0

where (6ir) is a constant matrix. Thus the expression for h* can be
written:
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hϊ(z, ζ) = BO(Z) - GάQ^BMdt
Jc

- Gl(θ\\t - z)B,{t)dt

(4.32) - G r [

+ . Gf(O Σ
(n — 2)1 3=o

• ((V - sy-'ΣKB
\Je r=0

Next we let

F0{z) = B0(z)

Fr(z) = - \\t - z)r~ιBr(t)dt
Jc

and thus

(4.32A) F?\z) = (-lY(r - 1)1 Br{z) .

Introducing these into (4.32) gives

f(O Σ ('<>[(« - z)Gi(ζ)]
o J

h*{z, ζ) = F0(z) + GάQFάz) + Gl(QFt(z)

+ (n - 2)1 " ( ζ )y?.S "

'(\\σ-s)~F.

Consider now for 0 < m ^ k

+ D?[G\(z)]nk-m){z) + + DΓ\Gr\z)Wι£im){z)

Σ Σ 6ir/ i
o

, Σ Σ 6ir/ i^
(n — 2)! i=or=o (r — 1)!

where δm0 is the Kronecker delta. Since

k-m + r-(n-2)-2^k-m + (n-l)-(n-2

— k — m — l<k — m,

k-m-r + (n — 2) + l^k-m-(n — l) + (n — 2

the last term involving the integrals is of the form:
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(4.34)
r

where the Kr(t, z) are analytic for t and z in Ω (J £ U Ω and Ck_m(z)
is analytic for z in Ω U fc U £?. This follows since r ^ n — 1 and 1.

- 8)—dσ
(n — 2)!

[& — m — r + 7i — 2 ] !

if k — m > 0 or, if k — m = 0 and r < τ& — 1, where Cr*(s) is a
polynomial in s. The only difference in the case k — m = 0,r = n — 1
is that the integral on the right side is replaced by F^s). And
since 2.

(\S - s)ιdσ)ds - Γif**(s, z)F{

τ

k~m)(σ)dσ

where K **(s, 2) is an analytic function of s and 2 (since K*(s, z) is)
for s and z in β U ̂  U fl. The last integral follows from integration
by parts I + 1 times.

Thus by the definition of ak_m{z), (4.30), (4.33), and (4.34) we get
f or 0 ^ m ^ k

+ DΓ[Gl(z)]Fik-»)(z)

(4.35) +

where for t, zeΩ\jκ[jΩ, LrΛ-m(t, z) and Ck-m(z) are analytic.
N e x t w e c o n s i d e r f o r O ^ m ^ n — 2 < k

(n — m — 2)

=

(4.36)

= 1 —\\z - tT-m-2ak_m(t)dt
(n — m — 2)1 Jo

+
Σ (
r=0 Jc

where we have integrated by par t s n — m — 1 t imes. Rk-m{z) and
Lk-m>r are functions analytic for z,t in Ω[J /c[jΩ. For consistency let
-A*-(n-i)(s) — αfc_(n-i)(^) and Rk_{n_γ) — C^^^iz), Lk^{^1)>r = Lr,k-ιn-1)m

Since by hypothesis we have for z in Ω \J K \J Ω
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[ Δt{z) I =

?!••• GΓι

0

0 , ^,m<Ln -1, 1 <L v ^ n - 1

the above system, coupled with «*_(„_!) (z) in (4.35) can be written as:

(4.37)

with:

Aΐ(z)

\ Aj;_lB_

/ 1 f*
{z

in - 2)! J.
(n - 2)!

1
(n - 3)!

L(t, z) — (Lk_m,r(t, z))

R(z) - (Rk(z), R^iz),

0 ^ r ^ n — 1 columns

A; — (% — ΐ) ^ k — m ^ k rows

We consider (4.37) as a system of Volterra integral equations and
obtain its solution in the form:

- R(z)]

, z)Δτ\t)\A*(t) - R(t)]dt
(4 38)

where Γ(t, z) is the resolvent matrix which is an analytic function
of t and z for t and z in Ω U £ U Ω.

Now we are in a position to express ak_m(z), n^m^k in terms
of αfc_»(s), 0 ^ m ^ % — 1. To this end we consider (4.35), which is
valid for 0 ^ m ^ k and combine with it the integrated expression
of (4.38):
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j?_m(ί, z)A*(t)dt + R*{z) , n^m^k

where /**_»(£, z) is analytic for ί and z in i? U /c U i2 and iϋ*(2) is
analytic for z in Ω U £ U i2. This combination gives:

(4.39) α*-m(s) - Σ (V*ϊ-W(ί f «)A?.r(ί)dί + ££*.(*) , rc ^ m ^ fc
r=0 Jc

where R£*m(z) is analytic for z in Ω{Jκ{jΩ and <Γ?,*_m(£, 2) is analytic
for t and z in βLJ^LJβ. But from the definition of A^r(z) in (4.36)
for 0 ^ r ^ n — 2 and A*_(Λ_u(s) = α fc-(w-1)(«), we get the result upon
integrating (4.39) by parts if necessary.

Thus Lemma 4 is proved.

With the notation and assumptions of Lemma 4, we next state
and prove:

LEMMA 5. For I + m <^ k — 1

(4.40) D!hm(z,

where KkLmtj(tt z) are analytic for t and z in Ω U £ U Ω and CjcLm(z)
are analytic for z in Ω U ιc U Ω.

Proof. In the notation of Lemma 4, since I + m <£ A: — 1

i=o

3k-l-m /L. _ 7 _

[ A
3=0 \ 3

Thus

— I — m — 1)!

+ polynomial in (ί — c)

= Σ Γ^* -«.i(β, t)ak^{s)dt + C^m{t)
3=0 Jc

with Ck-m(z) analytic for z in Ω U ̂  U Ω, K2Lm,s(t, z) is analytic for t
and « in fl U « U fl and where we have made use of Lemma 4 and
the fact that if r > 0 then
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\'dt(z - tyΫKia, t)ak_s(8)ds = —i—Γ(s - t)r+1K(t, t)ak_ό{t)dt

for the case when m + j ^n. Thus the Lemma is proved.
We are now in a position to continue the proof of the theorem.

Combining (4.28) with the results (4.31) of Lemma 4 yields:

(4.41)

= Σ \'κ>T(t, z)ak^(t)dt

+ terms of order I -{- m ^ k —• 1 in

D}hm(z, ζ)ζ=z with coefficients analytic in Ω U K U £ ,

where JGΓj *(ί, «) are analytic for t and « in Ω U Λ: U β. With the aid
of Lemma 5 applied to the second term on the right we get:

(4.42) - Σ (
m=0 Jc

where K^(tf z) are analytic in t and « for t and z in Ω U Λ; U β, and
Cv(z) is analytic for z in Ω [J /c [j Ω.

Finally, we combine (4.27) and (4.42) and get for z on κ\

(4.43) βo(z)Φ(z) = [K(t, z)Φ(t)dt + g*(z) ,

where g*(z) is an analytic vector function for z in Ω and in C(Ω U Λ:)

), α^ίz ) , , ak_n+1(z))τ ,

m designates the column, v the row.

0 ^ m ^ ^ — 1, 1 <̂  v ^ n .

But from (4.29) we see that

Σ
Σ

, Σ

I &%(*) I =

Σ WaVVni

where by definition of ar

μ

s

r+s

(a + b)r(a — b)s — Σ ocr

μ

sarJrS

and by definition

Σ (ΐVfyr8/nr8 V ίrW/Ύrs

V*'/ « i i^2i > > ^ j V*'/ α%-i.
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PΛz, ς,v)= Σ vilify*.
r+s=k

Thus if ζ = ξ + iη, ζ = ξ - iη then

PΛ(z, ξ, V) = 2~* Σ (ί)'PΓί(2)(ζ + O r(ζ - QY
r + a=k

and

Pvl(z, ξ, η) |,=1 = j\2r* Σ (iyoφplί(z) .
η=i r+s=k

PA«, ξ,V), (A - iDJPAz,ζ,V)> , (A - iDJ-ΨA*,f,V)

PA*,£. V)> (A - *A)-P«ι(*» ζ,V)> , ( A - iD^—ΨA*, ξ,V)

Pnι{z, ξ, η), (A - ίDη)Pnί{z, ξ,η), , ( A - ίA)""'-P.i(2. ξ, V) |=i

with C. = 1! 2! (n - 1)!
Since Pyi(2, f, 3?) are homogeneous polynomials in (£, ̂ ) of degree

fc, we see from Euler's formula that

Thus

+ ηDη)
n-ι-ι{ξDξ - ηDη)

ιPvl(z, f, 37) | f = 1 ̂  0
3 ? i

if and only if J2(s, f, 77) |e=i,,=i ^ 0. This follows immediately upon
writting the determinant as a sum of determinants. Thus we have

I βo(z) I = [G\z)Y-^-^ I β*μ(z) I Φ 03

for z in i? U ιc U fl by assumption (4.16). Thus

(4.44) 0(z) - βϊ\z)\lί(t, z)Φ(t) + βϊ\z)g*(z) .

We now consider (4.43) as a system of Volterra integral equations in
Φ(z) for z in Ω U £. As such, this system has a unique solution
vector Φe(z) which is analytic for z in Ω and continuous for z in Ω U /c
and moreover agrees with 0(2) for z on £. Thus 0e(#) furnishes the
analytic continuation of Φ(z) into fluff. Thus (?(^) is analytic for z
in Ω U £ U β. From the definition of 0(2) in (4.43.A) we see this yields
the analytic continuation of αk(z), αc^iz), , αk_n+1(z) into Ω I) tc U Ω.
But by (4.36), the definition of A*(z) and (4.38) we get the analytic
continuation of F{k~{n~ι)){z) into Ω U K U Ω. By integration, we get
the analytic continuation of F(z) into Ω I) tc Ό Ω. (We adjust the

3 Professor J. Leray pointed out to me the relation between βlμ and Δι(zt ξ,
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constants of integration to agree with F{z) and its derivatives at
the point c of the boundary; this gives uniqueness.)

Upon differentiating Fd(z) and using (4.32A) and (4.31A) we get
the analytic continuation of (e}9 h(z)) into Ω U fc U Ω. However by
assumption (4.14)

1 0 . . . 0
el ' =J = n- .

Thus we get the analytic continuation of h^z), h2{z), , hn(z) into
ΩΌfcΌΩ.

In a completely analogous way, we can show how to analytically
extend gk(z), gk^(z)9 , gk-.(n-i)(z) into Ω U fc (J Ω, knowing initially
only that they are analytic in Ω and continuous on Ω U fc. In this
direction we first note that we have:

LEMMA 4-B. Let k ^ n

y^.όυn) ak_m{Z) — Uζ uz gι \z, ς; — Uς gm\z^ z) , u ^ m ^ tc

and the hypotheses of the theorem hold. Then

(4.31B) ak-m(z) = X \ Kk-m,r(t, z)a*_r(t)dt + Ck_m(z)
r=0 Jc

where Kk_m,r(t, z) are analytic for t and z in Ω (J £ U Ω and Ck_m(z)
is analytic for z in Ω U fc U Ω.

Proof. The proof of this lemma is the same as that of Lemma
4, with only obvious modifications. In place of the expression for the
Taylor's expansion for aά about t — z we start with the expression
for the Taylor's expansion for aό about G^σ) = G(ζ) and integrate viz:

3=0

- (c - s)2Σα^0)(*ΐG(σ) - G{Q\G'{σ){e{, g(σ))dσ
3=0 Jc

~ ( C : " ) 3 Σ ^ ( 0 ) ί W ) - G{ζ)YGf(σ){eU g{σ))dσ -
2! 3=0 Jc

1 n—1

— 2) ! i=o

\\G(σ) - G(s)r-2G'(σ)(e{, g(σ))dσ)ds .

In place of Br(z) we introduce:
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Σ ay(0)(g>, β(ζ)) ,
O(r — 1)! J=O

and the expression (4.32) becomes replaced by

gT(z, ζ) = 50(ζ) - (c -

- (c -

- (c -

Also Fr(z) is replaced by

Fr(Q = - j W ) -

so

^«"(ζ) = (-lY(r - 1)! (G'(ζ)

Considering these as Volterra integral equations for Br(ζ), we can
solve, since G'(ζ) 9̂  0 in Ω (J ff U Ω, and get:

where Qr(σ, ζ) is the resolvent which is analytic for σ and ζ in
i2 U K U β. Thus

0 = ^o(ζ) + (C - «)#(ζ) + (β -
+ . . + (C - ί ) - 1 ^. .^ )

1 Λ-1 »-l / 1 \r

- G(ζ))(c -

(\[[G(σ)

and for 0 < m < n — 1
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at_m{z) = Dk

ζ-
mD?g*{z, ζ)Ί

Jz=ζz=ζ

= (-l)mm!.~

+ + ( i ) r Γ Ίt

(4.45) [w - 1 - m]!
(c -

Σ Σ f ( f . { ( ) i [ ( ( ) (ζ))( - z)]}
i=0 r=O J

(\[[G(σ) ~

Since

r - [{% - 2) - (A - m - 1)] ^ k - m ,

the last term can be written

(4.46) Σ [nk-m\σ)QkU,M, z)dσ
r=0 Jc

where Qk-mΛσi 0 a r e analytic functions of σ and ζ for σ and ζ in
Ω U £ U Ω. Introducing (4.46) into (4.45) gives an expression of the
same form as (4.35). We now proceed exactly as in Lemma 4 and
find that:

(4.47) ff<k~m)(z)

where

and JΓ*(£, «) is an analytic function of t and £ for t and £ in Ω U £ U ώ
and iί*(z) is an analytic function of z for 3 in Ω U £ U Ω. But for
W5£wϊgfc, O i g r f g w — l, we have r — [(n — 2) — (fc — m — 1)] <̂
k — m, thus (4.45) becomes replaced in this case by

r=0 Jc

where Q**m,r(σ, z) are analytic functions of σ and « for σ and £ in
Ω U £ U 42. Combining this with (4.47) gives the result.
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The condition ΔSz) Φ 0 is unnecessary in this lemma since the
corresponding condition is:

4 = (-i)ί (-«J/*2! 3! (n - 1)1 Φ 0 .

Next we note that we have

LEMMA 5-B. For I + m ^ k — 1

(4.38) Ό\gm(z, ζ)l = Σ ('&«./(*, t)aU(t)dt + &*(*)

where K£_nfj(z, t) are analytic for z and t in Ω U it U i5 ami C£-m(z)
is analytic for fl U ̂  U β.

Proof. Same as Lemma 5 using Lemma 4-B instead of Lemma 4.

As in the case of (ak(z), ctk~ι(z), , tf*-n+i(s))Γ, we get analytic
extension of (αί(«), α*_i(«), , #*-Λ+i(s))Γ into β U Λ: U Ω which are
analytic initially only in Ω, and continuous on Ώ \J it. The only
difference is that we use the fact that J2(z, ξ, η) |5=i,^=ί ^ 0 on
β U ^ U f l whereas in the extension of the a)s we used the fact that
Δlz, ξ, -η) \ξ=ltV=i Φ 0 on Ω U K U Ω.

In an analogous way we get the analytic extension of F{

r

k~n~1)(z)
into Ω U it U Ω, which in turn gives the analytic extension of Br(z)
into Ω U it U Ω, which finally gives the extension of (e(, g(z)). Since
by assumption Δγ Φ 0 this system yields the analytic continuation of
&(ζ), QlQ, , <7 (O into i2 U Λ: U Ω.

Upon introducing the extended vector functions h(z) and g(z) into
(4.18) we get the extension of U*(z, z) for z in i2U^Ui3, which was
given originally only for z in Ωl)κ. And thus, the solution of (4.13)
has been extended across the boundary conditions on tc into Ω U ιc U Ω.
This completes the proof of the theorem.

5* Applications* (A.I) Consider the situation where we are
given a solution to the differential equations

(1.1) uxx + uyy + Aux + Buy + Cu = 0

where (^, t62, , re,,)7', A, £ and C are pairwise commutative constant
n x n matrices in a simply connected open region Ω of the type
described in 2, part of whose boundary is the analytic arc ιc, and on
tc satisfies

- ,φn(z))

where φx{z), , φn{z) are functions analytic in Ω U it U β. Moreover
let % 6 C(£? U /^). Then by Theorem 1 we can uniquely extend the
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solution u into Ω U fc (J Ω so that it is a solution in this large region
and is the only one that satisfies the given conditions provided 0 Φ
I MOtO I where

J/nnl

In this case

oo _ 0 if i Φ j

1 if i — j '

Thus I MOfO | = 1 ^ 0 and reflection is possible.
(A.Π) Theorem 2 is suitable for systems of equations of the form:

where the

Laplacian,

for which

tnen

Pa are

e.g.,

if

polynomials

Δ2u,+

Δ*u2 + c

w2, w3, w4, wδ)

(° "
0

0

0

<o

with constant

aΔt

Δu2

T _

_ !

a

0

0

d

h +
+ o

0

b

0

0

0

bu2

\Δux

0

0

- 1

0

c

= 0

= 0

O v

0

0

- 1

o)

coefficients and Δ is the

Δuu Δ2u2)
τ

(A.III) When the arc K is a portion of the x axis, then condition
(H.I) of Theorem 2 is automatically satisfied since then G(z) = z and

- 1 - 2 ( e - z ) - 3 ( c - 2 ) 2

0 2! 3 2(c-«)

0 0 - 3 !

0 0 0

= ±1!2!3! . . . (n- 1)1 Φθ .

-(n-l)(c-z)n-2

(n - l)(n - 2)(c - z)n~3

(n - l)(n - 2)(n - 3)(c - z)n~4
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then

(A.IV) When we consider systems of the form:

Ali — fi 0/ I /f nι

Δu2 = CL2luι + anu2

- α n — α1:

^ 2 1 ^ 2 2

ai5 constants

and condition (H.I) of Theorem 2 becomes G'(z) Φ 0 for Ω U fc U Ω which
is automatically satisfied because of our initial restrictions on G(z).

(A.V) Given that uλ is a solution of the metaharmonic

equation

(5.1) Δnuι anuγ — 0

in Ω where au a2, , an are constants and u^x, y) is a single function,
Uί £ Q^-2+kψ y ^ n c*n(Ω), n-l^k^2n,n^2 and wx satisfies on κ\

(5.2) — Y A

r+s^k
fa = fa(z) a = 1, 2,

where the p;;(«) and fa(z) are analytic in β (J ̂  U β. Assume that tc
is such that (H.I) is satisfied. This equation can be written as a
system by letting u2 — Δuu uz — Δ2uu , un — Δn~xuγ and equation
(5.1) is equivalent to the system

/0
0

0

_ 1

0

0

0
- 1

0

0

0

0

... o

... o

. . . o
•• α 2

0\
0

Thus

^ 0 0 1 0 0 . . . 0 Vxn

0 0 0 1 0 . . 0

• —α.

and in this case (4.14) becomes.

Ί 0 0 0 ••

0 - 1 0 O

0 0 1 0 ••

[0

0 (-]

±an±an_ί . . . ±

o\
0

0 = 4-1



572 JAMES M. SLOSS

which means Διφ0 is not a condition in the case of the metaharmonic
equation. Thus if Δ2 Φ 0 and Δz Φ 0 for z in Ω U £ U β, as given by
(4.16) and (4.17), and if the aά are such that (H.2) is satisfied then
we get that ut can be extended into Ω U £ U Ω.

To get some idea of how we check condition (H.2) consider the
example

Δ2u + 2>Δu + 2u = 0 .

To determine ao(s) and a^s) of Lemma 3 where

p.x(X, s) = αo(s) + αΛsϊλ ,

note that

I E - XI \ = λ2 - 3λ + 2λ = (λ - l)(λ - 2)

and thus

Thus

Thus

Pitt, 8)

Pi(2, s)

0,(8)

αo(s)

t,σ] =

= do(s) + tti(s) = Jo[v 8 ] >

= J0[\/2s] - Jo[VY] ,

= 2J0[VΊΓ] - J0[v/2i] .

<*o{(* - «)[G(σ) - G(ζ)]}f J ?
\0 1

and the representation of the solution (4.18) becomes:

£7i*(s, «) = feiίίδ?) + flr±(«) - αo{(c — z)[G(c) —

+ ^{(c — z)[G(c) — G(z)]}h2(c)

- [G(c) - G(s)]ί*[αί1}{(* ~ ^)[G(c) -

— #1 \(ί — Z/lyΓKC) — ijr\Z)\)rl2\t)\Cίt

- (t - z)[[a^{(c - z)[G(σ) - G(z)]M<r)

- <{(c - «)[G(<τ) - Gί^Blfl.Wίff)*'

In this case, the condition (H.2) becomes:

1 0

α 0 {V) α L {}
= <(0) = - \ Φ 0 ,
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and is thus satisfied. Note that in this example (H.I) is also satisfied,
since as a special case of (A.IV) it is simply G'(z) Φ 0 for z in Ω U fc U Ω.

Note that the polyharmonic equation is a special case of the
metaharmonic equation.

(A.VI) It is of interest to note that in the case of the polyhar-
monic equation viz. Δnu ~ 0, Έ is of the form

10-1 0 0 ... 0\

0 0 - 1 0 . . . 0

\

0 0 0 0 . . . - 1

0̂ 0 0 0 . . . 0/

Thus En — 0 and the Riemann function is only the finite sum:

R[z\ ζ°, z, ζ] - J0[2VE(z - z°)(G(Q - G(ζ0))] ,

where

22(%—1)Γ//M 1\Π2

Note that the αy(s) of Lemma 3 are given in this case by

α, (s) = (-I

Thus condition (H.2) is clearly satisfied automatically. Thus for the
representation (4.20) of the first component

(5.3)

where

Let

(5.4)

and

ω(z, z) = lφ) - Σ MG(c) - G(z)]j\\t - zy~%+1(t)dt
3=1 Jc

A

+ 90) ~ Σiδi(c - zY\G'(σ)[G{σ) - Giz)}^
J = l Jc

j = l,2,' ,n-l

= -jb^G'(σ)[G(σ) - G($)γ-%+1(σ)dσ , j = 1,2, .., n - 1

φo(z) = h^z) , Ψ{z) =
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then the representation (5.3) becomes:

(5.5) ωfa z) = Σ [G(c) - G(z)Yφό{z) + Σ ( c - zyψά(z)
3=0 3=0

which is an equally good representation since the h's and g's can be
obtained simply by differentiation of the φ's and Ψ's if we utilize
(H.I). This is a generalization of the representation formula of the
author [8] for the biharmonic equation.

(A.VII) Next we shall check that the results of [8] for the
biharmonic equation are a special case of Theorem 2. In this case
A2u = 0, 1 ^ k ^ 3, als = 1, α?* = -k, a1/-1 = -(k - 2), α ^ " 2 - -(fc-4),
a[s = (k — 2r) = r — s. Thus condition (4.16) and (4.17) become the
same; viz.:

Σ (ί) pίi (s) Σ (*)8(
+s=k r+s=k

Σ Wvll(z) Σ (ί)s(r — s)plΐ(ί
r+s=k r+s=k

which is precisely the condition of [8]. As seen in (A.IV), (H.I) is
satisfied and as seen in (A.VI), (H.2) is automatically satisfied and as
seen in (A.V) Δx Φ 0. And in this special case our theorem reduces to
the theorem of [8], but with the continuity requirements strengthened
by insisting that u e Ck+2(Ω (J tc) ΓΊ C\Ω) instead of only

u e Ck(Ω U fc) u C\Ω) n C\Ω U K)

as in [8].
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