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BISECTION INTO SMALL ANNULI

MOSES GLASNER, RICHARD KATZ, AND MITSURU NAKAI

In a Riemannian manifold the modulus of a relatively
compact set with border consisting of two sets of components
is introduced to measure its magnitude from the viewpoint of
harmonic functions. The existence of a subdivision into two
sets each having modulus arbitrarily close to one is established.

I* Let M be a Riemannian manifold, i.e. a connected orientable C°°
n-manifold that carries a metric tensor gi3 . Consider a bordered compact
region EczM whose border is the union of two nonempty disjoint sets
a and β of components. We shall call the configuration (E, a, β) an
annulus.

Let h be the harmonic function on E with continuous boundary
values 0 on a and log μ > 0 on β such that

( 1 ) I * dh = 2π .

The number μ > 1 is called the modulus of the annulus (E, a, β) and
we set

μ — mod(£7, a, β) .

Let w be the harmonic measure of β with respect to JE7, i.e. the
harmonic function on E with continuous boundary values 0 on a and
1 on βm By using Green's formula we obtain

(2) log//- 2π

DE{w) '

where DE(w) denotes the Dirichlet integral I dw A * dw of w over E.
JE

An illustration of these concepts is obtained by taking the annulus
E = {x I r <* I x I <Ξ; R) in ^-dimensional (n ;> 3) Euclidean space. The
harmonic measure of | x \ — R with respect to E is

w = R2-n _ r 2-»

and the modulus oi (E, \ x \ = r, \ x \ = R) is given by-

log μ = π1-"!/2»(2 - n)r(—)(i22-" - r2-") .

Note that μ > 1, in a sense, measures the relative thickness of E and
that μ—*l as iϋ — r —>0.
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Our result gains interest if we generalize the notion of annulus
slightly. Let (Ej9 aj9 /?,•) (j = 1, , m) be annuli such that Et Π Eό = 0
for i Φ j . Set E = U?UEj, <* = UΓ=i<*;> & = U5U£; τ h e n w e s h a 1 1

also call the configuration {E, a, β) an annulus. The modulus
μ = mod (i?, α, β) and the harmonic measure of E with respect to β
are defined exactly as for a connected annulus. Moreover, formula
(2) is valid and consequently we have

( 3 ) = v.
log μ 3=ι log μά

where μά = mod {Eό1 ah β/).

2* Let M be a noncompact Riemannian manifold throughout this
number. A function which is positive and harmonic on M except for
a fundamental singularity is called a Green's function if it majorizes
no nonconstant positive harmonic functions on M. If a Green's func-
tions exists, then M is called hyperbolic, otherwise it is called
parabolic.

An increasing sequence (Ωn) of bordered compact regions is called
an exhaustion of M if U Ωn = M. Note that the configuration
(Ωn+1 — Ωn, dΩn, dΩn+1) is an annulus and denote its modulus by μn.

The parabolicity of a noncompact Riemannian manifold M is
characterized by the following

MODULAR CRITERION. There exists an exhaustion (Ωn) of M with
Π μn — °° if and only if M is parabolic.

In the 2-dimensional case this criterion has been established by
Sario [5] and Noshiro [4] and their work can easily be generalized
to arbitrary Riemannian manifolds (cf. Smith [7], Glasner [2]).

One naturally asks whether a convergent modular product has any
bearing on the hyperbolicity of a manifold. The main result of this
paper is that any annulus can be separated into two annuli each
having modulus less than 1 + ε. This clearly answers the question in
the negative and also settles Problem 3 in Sario [6].

3* Suppose the annulus (E, a, β) has components (Eί9 aό, βά)
(j = lf . . . , m). Let τ, be a hyper surf ace in Es such that E5 — Ίό —
E}UE}', EϊnE? = 0 , and (E^ajf7j) and (Ey,ys,βd) are annuli.
Set 7 = \JT=ιΎj. We shall call 7 a bisecting surface of (E, a, β). Also
set Ef = XJt^E] and E" = U?=i^7 We are now able to state the

THEOREM. Given an annulus (E, a, β) and e > 0 there exists a
bisecting surface 7 of (E, a, β) such that
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( 4 ) mod (Ef, a, Ί)< 1 + e, mod (E", 7, β)< 1 + s .

This was established by Sario [5] for doubly connected plane regions
using Koebe's distortion theorem. All proofs for the 2-dimensional
case known to the authors use either a distortion theorem, in essence,
or an estimate (cf. Akaza-Kuroda [1]) obtained by means of Mobius
transformations (Nakai-Sario [3]) which cannot be generalized to higher
dimensions. Therefore, one is led to estimate the Dirichlet integral
of the harmonic measure directly and the proof presented here seems
to even give a more elementary proof for the 2-dimensional case.

4* Denote by C(a, b) = CXQ(a, b) the Euclidean cylinder

where α, b > 0 and x0 = (xl, •••,£?) is a fixed point. Let g(α, b) be
the class of C1 functions / on C(a, b) with continuous boundary values
0 on C(a, b) Π {xn = x%} and 1 on C(a, b) f] {xn = xl + b}. Also denote
by De the Dirichlet integral with respect to the Euclidean metric.
We set s equal to the surface area of Σ K 1 ^ ) 2 = ~L, xn = 0 and state
the

LEMMA. For every f e g(α, 6),

( 6 ) DS,ath)(f) ^ ^P-

and equality holds for fo(x) = b~1(xn — x%).

Clearly (6) is valid with equality for /0. To prove (6) for an
arbitrary / we may assume f eC1 in a neighborhood of C(a, b). By
Green's formula we have

De

CM){f ~ /o, /o) = ( (/ - fo)^ds - 0 ,
JdC(a,b) 07b

since / — f0 = 0 on the upper and lower boundary of the cylinder and
(dfo/dn) = 0 on the side of the cylinder. Consequently Schwarz's in-
equality yields

which completes the proof.

5 . We are ready to prove the main result. Take a point xoea
and a point y0 e β. Let x1, , xn be a local coordinate system a t
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xQ — (%\, . . . 9 χi) valid in a neighborhood U of x0 such that U Π oc is
given by xn = αj and #n increases as a; moves from a to i?. Similarly,
let y\ , yn be a local coordinate system at #0 = (j/J, , 2/*) valid in
a neighborhood F of #0 such that V Π /3 is given by #* = y* and #TO

increases as y moves from β to E. Choose a constant c > 0 so small
that

( 7 ) V

and also

( 8 ) (9ij\U
i = l

for every vector (ξu , £n). Now choose α > 0 sufficiently small to
insure that Σ £ ί ( ^ - 4) < ^ with xn = »? and Σ f ί t f ~ ?/o)2 < ^2

with 2/π = i/j are contained in U Π α and F Π /5, respectively. Finally
choose 6 > 0 so that

( 9 ) 0 < 6 < β***- 1 log (1 + 6)
27Γ

Cβ0(α, 6) - {»• - a??} cJS7, CyQ(a, b) - {τ/w -

and

C.0(α, 6) Π CyQ(a, 6) = 0 .

Now take a bisecting surface 7 of (E, a, β) subject to the requirements

7 n (C,0(a, b) U Cyo(a, b)) - 0

and

7 => [C*0(α, b) n K - ^ + 6}] U CyQ(a, b) n {l/% = y? + 6}] .

Let wf (resp. w") be the harmonic measure of 7 (resp. β) with
respect to E' (resp. £"'). Since J5" z> CXo(a, 6), by using (7) and (8) we
obtain

(10) DAW) > DCχQ{a,b)(w') ^ cDίχQ{a,b)(w') .
χQ{

Hence by using (6) and (9) we have

— < log (1 + 6)
')DE.(w')

and in view of (2) we conclude that

mod (E\ a, y) < 1 + ε .

A similar consideration for E" establishes (4).
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