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THE SILOV BOUNDARY FOR A LATTICE-ORDERED
SEMIGROUP

J . C. TAYLOR

Let X be a compact Hausdorff space and let S be a point
separating collection of Revalued lower semicontinuous func-
tions on X which is closed under addition. Assume that S is a
lower semi-lattice with respect to the partial order ^ (where
/ ^ g if g — f + ft, for some ft e S). Further, assume S con-
tains all the nonnegative constant functions λ and is such that
λ^f implies λ^f (where λ g / if λ g f(x) for all a; e X).
Then, the Silov boundary of S is precisely {x | (/ Λ </) (#) = min
{A%),g(%)}Vf,gεS} if, in addition, for all /, g9 and heS we
have / + (flr Λ ft) = (/ + flf) Λ (/ + ft).

This theorem1 extends a result due to H. Bauer [1]. He showed
that if HQC(X, R) is a linear subspace which contains the constant
functions, separates the points of X, and is a lattice with respect to
the partial order ^ , then the Silov boundary of H is precisely {x \
(/Λ g)(x) = min {f(x),g(%)} Vf,geH}. This result can be obtained
from the above theorem by applying it to the semigroup H+ of non-
negative functions in H.

The analogous theorem for upper semi-lattices is false. If, how-
ever, £ is a lattice with respect to ^ which satisfies the hypotheses
of the theorem, then dSQ{x \ (f V g)(x) = max {/(«), g(x)} v/, g e S}
and this inclusion can be proper.

2» Basic assumptions* Let X be a compact Hausdorff space
and let S be a set of R+— valued lower semicontinuous functions on
X which is closed under addition and separates the points of X. A
closed set ΰ g J is called a boundary for S if each function in S
attains its minimum on B. Bauer [1] has shown that there exists a
boundary, denoted by dS and called the Silov boundary of S, which
is a subset of every boundary.

Two partial orders ^ and ^ can be defined on S which are
compatible with addition. Set / <̂  g if f(x) ^ g(x) for all x e X and
set / ^ g if g = f + h, for some he S. Then, clearly, / ^ # implies

Assume that S is a lower semi-lattice with respect to g (i.e. if
/ and g are in S their meet f Λ g exists in S). Let A = {cc e X | v/,

1 The author wishes to thank the referee for extending this theorem from
continuous functions to lower semicontinuous functions, the crucial step being the
arguement for Proposition 1, and for shortening the arguement of Proposition 2.
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9 e S, {f A g)(x) = min {f(x), g(x)}}. Then, as the following, examples
show, not much can be said about the relationship of A and dS.

EXAMPLE 1 (due to E.J. Barbeau). Let X1 = {1, 2, 3} and let Sι

be the set of positive real-valued functions / on X with /(I) ^ 1/2
(/(2) + /(3)). Then S is a point separating subcone of C(X, R) which
contains the constants and is a lattice with respect to the partial
order ^ . In fact, for f,ge S19 (f V g)(i) = max {/(i), flr(i)}, (/ Λ #)
(i) - min {/#), g(j)} if j = 2 or 3, and (/ Λ flf)(l) - l/2[(/ Λ fr)(2) +
(/ Λ flf)(3)]. The set A - {2, 3} and 3SX - Xlm

EXAMPLE 2. Let X2 = {4, 5} and let £2 be the set of positive real-
valued functions for X with /(4) ^ /(5). Then <9S2 = {4} and A = X2.

EXAMPLE 3. Let X = X, u X2 and let S be the set of functions
/ with f\ X, e S<. Then A - {2, 3, 4, 5} and 3S - {1, 2, 3, 4}.

Assume now that S is a lower semi-lattice with respect to ^ ,
Define A, as before, to be {x\(f A g)(x) = min {f(x), g(x)} V/, g e S},
where / Λ g now denotes meet with respect to ^ .

LEMMA. A is closed.

Proof. If x0 ί A then, for some / and g e S, there is λ > 0 with
min (/, g)(x0) > λ > (/ Λ g)(xQ). Set /x = / Λ λ and ^ = g A λ Then,
since /I Λ 0i = (/ Λ 0) Λ λ, one of the inequalities min (/, λ)(α?0) ^ Λ
(x0), min (0, λ)(a;0) ^ ^(^ 0 ), and min (/ly ^)(^o)S(/i Λ #i)(#o) is strict.

Consequently, if £0 g A there exist f,geS with # real-valued on
X and min (/, flr)(a?0) > (/ Λ g)(x0). Now / = / Λ g + A and g = fA
g + k, so min (f,g)=fAg + min (Λ, fc). Since min (Λ, A:)(x0) > 0,
min (h, k) is lower semi-continuous, and g is real-valued, a neighbour-
hood of x0 is disjoint from A.

PROPOSITION 1. Let x0 e A and let £/ be an open neighbourhood
of xQm If S contains all the nonnegative constant functions there
exist ε > 0 and fe S with (1) f(x0) = 0 and (2) {x | f(x) <e}^U.

Proof2. Assume the proposition to be false. Then as feS,
with f(x0) = 0, and ε > 0 vary, the closed sets of the form {x & U \ f(x)
^ ε} define a filter base. Hence there is a point xx^U such that
if fe S and f(x0) = 0, then f(xλ) = 0.

For g e S if λ = g(x0) < + oo, then (g A λ)(&0) = λ. Now there

2 This arguement, based on a technique of Loeb and Walsh in [3] is due to the
referee.
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exist functions h and k e S with g A λ + h = g and g A λ + A = λ.
Since Λ(α?0) = A(a;0) = 0 it follows that ^(^) = (g A ^)(%i) = λ = #(#0).
If βr(α;0) = + co, then w = (g A n)(xQ) = (g Λ n)(x^) ^ g(Xj) and so g(xL)

— + oo. This contradicts the fact that S separates points.

COROLLARY. // S is a lower semi-lattice with respect to ̂  which
contains all the nonnegative constant functions, then A^dS.

3. The main theorem* From now on S is assumed to have the
following properties:

(a) S contains all the nonnegative constant functions λ.
(b) λ <; / implies λ ̂  /; and
(c) for all f, g,heS, f + (g Λ h) = (f + g) Λ (f + h).

PROPOSITION 2. Let / g S be maximal with respect to the follow-
ing properties:

(1) f,gel=>f+gel
(2) g^f and fel=> gel
(3) lgj.

Then there is a point xoe A with I — {fe S \ f(xQ) = 0}.
Assuming this proposition the main theorem of this note is quickly

proved.

THEOREM. Let X be compact Hausdorff and let S be a point-
separating collection of lower semi-continuous functions f: X—+[Q, +
oo], Assume that S is closed under addition and is a loiver semi-
lattice with respect to the partial order ^ (where f ^ g if g — f -f
h, for some h e S.)

The Silov boundary of S coincides with A — {x | v/, g e S, (fAg)(x)
= min {f(x)y g(x)}} if S satisfies properties (a), (b) and (c).

In particular this is the case if S satisfies (a), (b) and the
cancellation law.

Proof. Since A is a closed subset of dS it suffices to show that
each feS with finite minimum a attains a on A. Let M = {x(f(x) =
a}. Then, since / Λ a = a there exists a function heS with / =
a + h which vanishes on M. Let Io be the set of functions in S
which vanish on M. Then /0 satisfies conditions (1), (2) and (3) of
Proposition 2. Since Io can be embeded in a set / e S maximal with
respect to these properties, it follows from Proposition 2 that Mf]
AΦ φ.

EXAMPLE 4. Let X = {1, 2, 3} and let S be the semigroup of
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positive real-valued functions / with /(I) ^ /(2) and 3/4/(2) - 1/4/(1)
Ξ> /(3). Then S satisfies all the hypotheses of the theorem except
(b). Here A = {1} and dS = {1, 3}.

4- Proof of proposition 2. Let B = {x \fel=$f(x) = 0}.
Then, since / satisfies (1), (2) and (3), B Φ 0 and furthermore, if
0 Φ KQζ B is compact there exists he I with min f̂t > 0. The
maximality of I implies that if h e S vanishes at a point of B, then
he I.

Define ψ: S—>R+ by setting ψ(f) = minBf. Then ψ has the
following properties:

( i ) Ψ(f) — sup ίλ I for some fee/, λ <̂  / + ft}
( i i )
(iii)
(iv)

( i ) Let λ < ψ(/). Then iΓ = {a; | /(a;) ^ λ} is compact and dis-
joint from B. If K Φ 0 , there exists he I with min^ & ̂  λ and so λ
^f+h. IfX <:f+ h then λ ^ ^(/) as h vanishes on B.

( ii ) Clear.
(iii) ψ{f A ψ(f)) ^ Ψ(f) anyway. Let λ < ψ(f) and let ft e I

with λ ^ / + h. Now λ ^ ψ(f) + ft implies by (c) that λ ^ /Λ f (/)
+ ft and so λ ^ f{f A Ψ(f)).

(iv) Assume ψ(f) < + co as it is trivial if ψ(f) = + oo. Then
/ = / Λ ψ(/) + ff for some <? e S. Now ^(/) ^ ^ ( / Λ ψ(f)) + ψ'(flf) -

+ Ψ(9) and so (̂flr) = 0. Consequently, f\B = fΛ ψ{f) I B and hence

Property (iv) implies that B — {x0} for some x0 e X. It remains
to show that x0 e A. Let f,geS and let λ = f(x0) A g(x0). If λ ^
(/ Λ ^)(^0) then λ = (/ Λ g)(x0) and so α;0 e A.

Let α < λ. Then there exist functions ft and A: in I with a ^
/ + ft and a ^ g + k. Property (c) implies that a <̂  a + (ft Λ k) =
(α + ft) Λ (α + fe) ̂  (/+ ft + fc) Λ (g + ft + k) = (/Λ flr) + (ft + &). Hence,

g)(χ0).

REMARKS. This arguement, due to the referee, is a shortened
version of an argument of the author which showed that A could be
identified with the additive functions ψ: S-+R+ that preserve finite
meets and for which ^(λ) = λ if λ is a constant, (c.f. Bauer [1]).

5* Upper semi-lattices* Examples 1, 2 and 3 show that when
S is an upper semi-lattice with respect to ^ there is no particular
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relationship between dS and B = {x | (/V g)(x) = max {/(a?), g(x)} V/,
geS}.

Assume that S is an upper semi-lattice with respect to ̂ . Then,
if S is also a lower semi-lattice with respect to ^ and if S satisfies
the hypotheses of the theorem, dSQB whenever the identity / + g =
fVg + fΛg holds for all f,geS (for example, this is the case if
f+(gVh) = (f+g)V(f+h) for all f,ghe S). However, as the
following example shows, dS can be distinct from B.

EXAMPLE 5. Let X = {1, 2} and let S be the set of nonnegative
functions / with /(I) finite and /(I) = /(2) or /(2) = + oo. Then S
is a lower semi-lattice. Here <3£ = A = {1}. However, 5 = X since
for f,geS max (f,g)=fVg.

If S is an upper semi-lattice but not a lattice with respect to ̂
then 5 can be a proper subset of dS as shown by the next example.

EXAMPLE 6. Let X = {1, 2, 3} and let S be the set of nonnegative
real-valued functions /with /(3) ^ 4/3/(2)-1/3/(I). Then S contains
the nonnegative constant functions λ and λ <̂  / implies λ ^ /. S is
an upper semi-lattice.

Here, B = {1, 2} and 3S = X. Consequently, S is not a lower
semi-lattice with respect to ^ . For example, there is no function in
S which is the meet of / = (1,1,1) and g = (1,1/4,1/2).

Putting Examples 5 and 6 together, as was done before to obtain
Example 3 from Examples 1 and 2, we see that for upper semi-lattices
S, even those which satisfy hypotheses analogous to those of the
theorem on lower semi-lattices, there is no particular relationship
between dS and B.

6* The case of a vector space* Let X be compact and let
HξZ C(X, R) be a point-separating set of continuous functions f: X~-> R
which is a lattice with respect to the partial order / <; g if f(x) g;
g(x) for all x e X. Assume that H has the following properties:

(1) if fe H, then R(f) = {x\\ fix) | < + ̂ } is dense;
( 2 ) if /, g eH there is a function he H with h(x) = fix) + g(x),

for x e Rif) n R(g);
( 3 ) if fe H and Xe R there is a function k e H with k(x) =

λ/(α;) for xeR(f); and
( 4 ) if contains the constant functions.
These properties imply that H is a vector lattice. Denote by S

the positive cone H+ of if. Then S is an additive semigroup with
cancellation which is a lattice with respect to the partial order f^g
it g = f + h, for some he S. Clearly, the hypotheses of the theorem
are satisfied by S, and so the Silov boundary of S is the set of points
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in X such that (/ Λ g)(x) = min {/(#), g(%)} for all f, g e S. Since
f+g^fAg + fAg, this is the set of points at which the lattice
operations hold pointwise.

Denote by H* the set {feH\ for some n,n^\f\}. Then if* is
the subvector lattice of H consisting of bounded functions.

If J B £ X is closed, it will be called a boundary for H* if (1)
each function in H* attains its maximum on B, and (2) if x e B and
f(x) = f(y)9 for all feH*, then ί/eΰ. It is well known that H* has
a unique minimal boundary if H* separates the points of X (c.f. [1]).
By passing to an identification space Y of X and taking inverse images
of sets in Y, it then follows that H* has a unique minimal boundary

in X. This set will be called the Silov boundary of H*.

PROPOSITION 3. The Silov boundary of H+ is the Silov boundary
of H*.

Proof. Let A denote the Silov boundary of H+. Then, A is a
boundary for H*.

It is clear that each function in if* attains its maximum on A.
It remains to show that if xeA and f(x) — f(y), for all feH*, then
ye A.

Assume x e A and y Φ x. Then, since f = f+ — f~ there exists
fe H+ with either λ = f(x) > /(#) ^ 0 or λ = f(x) < f(y) ^ 0. In the
first case let g = f A ^ and in the second case let g = f V λ. Then,
since a e i , flr(a ) = λ and g(y) ^ /(?/) or g(y) ^ /(?/). Hence, in either
case, g(x) Φ g(y). Since geH*, it follows that A is a boundary for
H*.

The Silov boundary A of H^ is the set of points in X at which
the lattice operations hold pointwise. Since H* | A separates the points
of A it is dense in C(A, R). Hence, A is the Silov boundary for H*.

EXAMPLE 1. Let H be the vector lattice of differences of positive
harmonic functions on some open set Ω g RΛ Let X be the compacti-
fication of Ω determined by H ([2] p. 97). Viewing H+ as a cone of
functions on X, it follows that the Silov boundary of H+ coincides
with the Silov boundary of if*, which in this case consists of the
bounded harmonic functions on Ω. Further, if H^ denotes the func-
tions on Ω. Further, if Hx

+ denotes the functions / in H^ with / Λ
1 φ 0, the Silov boundary of H^ coincides with that of H+.
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