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^-DIMENSION, II. SEPARABLE SPACES
AND COMPACTIFICATIONS

DAVID W. HENDERSON

This paper continues the discussion of a new transfinite
dimension which was introduced by the author in " Zλ dimension,
I. A new transfinite dimension," Pacific J. Math. vol. 26. In
the first part of this paper we show that, for a metric space
X, D(X) is an ordinal if and only if each closed subset F c X
contains a dense open (in Y) subset each of whose points has
a finite-dimensional neighborhood. It follows that if X is
complete and separable, then Xis weakly countable-dimensional
(i.e. the union of a countable number of closed finite-dimen-
sional subsets) if and only if D(X) is an ordinal. It is also
shown that, if Ind(X) exists, then lnά(X)<D(X); furthermore,
if X is compact and Ind(X) does not exists, then D(X) is not
an ordinal. In the second part, it is proved that each weakly
infinite-dimensional separable metric space has a compactifica-
tion with the same D -dimension; an example is given to show
that this is not true for all separable metric spaces.

1* Separable spaces* Although the theorems in this section apply-
to all metric spaces, the principle results (the corollaries) apply only
to certain classes of separable spaces. The notation and definitions
of [1] will be used.

THEOREM 1. Let X be any metrizable space. Then D{X)ΦΔ if
and only if each closed subset YaX contains a dense open (in Y)
subset each point of which has a finite-dimensional neighborhood.

Proof. Let R be any space, where Ώ(R)ΦΔ. Then R has a JD-

representation, R = \J {Aa | 0 <£ a <̂  7}. If /S is the first ordinal such
that Zβ = Aβ — (J {Aβ I β + 1 <̂  a ^ 7} is nonempty, then Zβ is a finite-
dimensional open subset of R. Thus every space of Z)-dimension < Δ
contains a finite-dimensional open subset. Define

S = {x e R I x has a finite-dimensional neighborhood} .

Clearly S is open. Suppose that S is not dense in iϋ, then there is
an open set OaR such that O f ] S = 0 ; but then, since D-dimension
is monotone, 0 is a space with D-dimension < Δ, and thus 0 contains
a finite-dimensional open (in 0 and therefore also in R) subset, which
contradicts the definition of S. Therefore, since D-dimension is
monotone, we have proved the "only if" part of the Theorem.

We now prove the "if" part of the Theorem. Let
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Sn = {x e XI x has a neighborhood of dimension (<Z n)} .

Then each Sn, n = 0,1, 2, , is open and S = U {Sw} is dense. Define
Λ = 0 and

4 , = SΛ - [(l/w)-neighborhood of X - Sn] , % > 0 .

Then U {An \0^n<ω} = S. Now repeat the same with X — S in place
of X and call the closed (in X — S and therefore in X) subsets so
obtained, Aω+n, w = 0,1, 2, . If R2ω = X - \J {Aa | 0 ^ a ^ 2ω} is
finite-dimensional, then, setting iϋ2ω = A2ω, X = \J {Aa | 0 ^ α <; 2ω} is
a D-representation of X; and if R2ω is not finite-dimensional, then
repeat the above process with R2ω in place of X and call the closed
sets so obtained, A2ω+n, n = 0,1, 2, . We can repeat this procedure
for each limit ordinal, 7, if X — U {Aa | 0 <J α < 7} is not finite-dimen-
sional, and obtain X = (J {̂ 4α | 0 ^ α < 7 + ω}U ̂ γ+ω which fails to be a
D-representation, if at all, only because Ry+ω is not finite-dimensional.
Since at the 7-th stage, for each limit ordinal d < 7, the sets,
U {Aa I δ ^ a < 8 + ω} are each nonempty and disjoint, it must be
true that 7 has cardinality at most equal to the cardinality of X.
(In fact, Theorem 10 of [1], implies that the cardinality of 7 is less
than the weight of X.) Thus at some stage the above process
terminates and we obtain a D-representation for X, and thus D(X) < A.

DEFINITION. A space X is weakly countable-dimensional if it is
the union of a countable number of closed finite-dimensional subsets.
Some authors call this strongly countable-dimensional, but I am stick-
ing to what seems to me to be the most widely used term.

COROLLARY. Let Xbea complete separable metric space. D(X)Φ A
if and only if X is weakly countable-dimensional.

Proof. If D{X) Φ J , then D(X) is countable ([1], Th. 10); and
thus its D{X)-D -representation gives X as the countable union of
closed finite-dimensional subsets. If X is weakly countable-dimensional
then the Baire Category Theorem easily leads to the conclusion that
has a dense open subset, each point of which has a finite-dimensional
neighborhood. Since each closed subset of X is also complete and
weakly countable-dimensional, the corollary follows.

REMARK. The space, g% in §2 of [4] is weakly countable-
dimensional, but D{&) — A.

THEOREM 2. Let X be any metric space. If Ind (X) exists, then
Ind(X) S D(X).
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Proof. The proof will be by transfinite induction on Ind(X). By
Theorem 1 of [1], Ind (X) = D(X), if Ind (X) is finite. Assume that
the theorem is true for all β < a, and let X be a space such that
Ind (X) = a. We shall show that D{X) >̂ a in one of two cases
depending on whether a is or is not a limit ordinal.

If a is a limit ordinal, then for each β < a there is a closed
subset Xβ c X such that Ind (Xβ) = β. By induction, D(Xβ) ̂ > β, for
each β < a. It follows that D(X) ^ α.

If a is not a limit ordinal then a = 7 + n, where 7 is a limit
ordinal and n is a positive integer; and there are in X two disjoint
closed sets, E and F, such that every set which separates E from F
has dimension at least 7 + (n — 1). Let 7 be the collection of all
closed subsets of X which have D -dimension 7 + (n — 1). For each
F G ^ , pick a reduced D(F ^-representation (see Theorem 6 of [1])
and let A(V) be the last (or 7-th) set in this representation. Thus
the closure of each open (in V) set which intersects A(V) has D-
dimension at least 7. Let closure (\J{A(V) \ Ve 5 }̂) = A. Then
Theorem 7 of [1] will give us that D(X) 7> a = 7 + n, if we show
that A contains a closed ^-dimensional subset. Since Ind(X) exists,
so does Ind (A), and thus it suffices to show that Ind (A) ^ n. The
latter will follow if we show that every set S that separates E f) A
from F 0 A in A has dimension at least n — 1. Let S be such a
separating set, then there is a set S' which separates E from F in
X and such that S = S' Π A. (The existence of such an S' follows
easily from the fact that X is completely normal.) Thus Ind (£>') >̂
7 + (n — 1) and, by the induction hypothesis, D(S') ^ 7 + (n — 1). If
JD(S') ^ 7 + w = α, then the theorem follows because D-dimension is
monotone. If D(S') = Ύ + (n-l), then S' e 5^ and A(S') c S ' n i ^ S ;
therefore, Ind(S) ^ Ind(A(S')) = n - 1. This finishes the proof.

REMARK. Let X be the disjoint union, \J{In | n = 1, 2,3, •}.
Then by Axiom II of [1] D(X) = ω; but, Ind (X) does not exist (see
[3], p. 177).

COROLLARY. If X is compact, then Ind(X) ^ D(X), where we
let Ind (X) — Δ if Ind (X) is not an ordinal.

Proof. The inequality is clearly true if D(X) = A. If D(X) φ A,
then, by the corollary to Theorem 1, X is weakly countable dimen-
sional, but then it is well known (see [4], Th. 4) that Ind (X) exists

and thus the corollary follows from Theorem 2.

REMARK. Smirnov ([4], Th. 3) describes a compact metric space,
X, which is not weakly countable-dimensional such that Ind (X) exists.
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Therefore, D(X) = A, but Ind(X) < A.

2. Compactifϊcations*

DEFINITION. A space X is weakly infinite-dimentsonal if, for
every countable number of pairs {Fif GJ, i = 1, 2, of disjoint closed
subsets of X, there exist open sets Uifi = 1, 2, such that
FidUidX- Gi9 and

f|{boundary (17,) | i = 1, 2, .. ., k} = 0 ,

for some k. (See [3], p. 161.)

THEOREM 3. Every weakly-infinite-dimensional separable metric
space is contained as a dense subset of a compact metric space of the
same D-dimension.

Proof. Let X be a weakly-infinite-dimensional separable metric
space. We now make use of a theorem of Sklyarenko, [3], Th. VI. 6,
which asserts that X is equal to the union Y U {An | 0 ^ n < ω}, where
Y is compact (and weakly-infinite-dimensional), each An is open and
finite-dimensional, and each sequence of points in X — Y without a
cluster point is eventually contained in one of the An. Define Fif

0 <: i < α>, to be the set of all points which are at least a distance
of (1/20 from Y. Clearly each Ft is closed in X Suppose that Fζ

is not finite-dimensional, then for each positive integer j there is a
point peFi — \J {An | 0 ^ n <J j} because U {An | 0 ^ n g j} is finite-
dimensional. The sequence {pά} must have a cluster point, p, because
it is not eventually in any of the An. But, since E{ is closed, p e F{

and thus, for some k, peAk; but this contradicts the fact that Ak

is open. Thus each F{ must be closed and finite dimensional. Let
X = U {Ca I 0 ^ a ^ 7} be a D(X)-Z>-representation of X if D(X) Φ A,
and define G, = Fζ U C<; if ΰ(X) = Δ, let G, = £/,-. According to [2],
(§40, VII, 5), X can be considered as a dense subset of a compact
metric space X* such that, if G* denotes the closure of G* in X*,
then Gt* has the same dimension of G{. Every sequence of points in
X either has a cluster point in Y or is eventually contained in Gjy for
some j . Therefore, X* = U {G% | 0 ^ i < ω} U Γ. For essentially the
same reason U {G*; \n ^ i < ω} {J Y is compact, for each n. Thus
^ * = U {GT I 0 ^ i < ω) U U {C* U F | α> ̂  α ^ 7} is a D(X)-D-repre-
sentation of X* and therefore D(X*) = D(X).

REMARK. Let Qω = {p} \J\J {In \0 < n < ω} be the one-point-com-
pactification of the disjoint union of w-cells, one for each n. Let X
be the subset of Qω+1 = [0,1] x Qω, defined as
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({1} x M ) U ({0} x {p}) U ([0,1] x U {/* I 0 < n < ω}) .

It is easy to show that D{X) = ω. Let X* be any compact metric
space that contains X as a dense subset. Then each of the closed
sets X* - ([0,1] x U {/» I 0 < n < k}) connects {0} x Qω to {1} x Qω

in X*. Therefore their intersection X* - ([0,1] x U {In | 0 < n < ω})
also connects and is therefore at least 1-dimensional. It can now be
checked that X* satisfies the hypothesis of Theorem 7 of [1] with
the conclusion that D(X*) > ω + 1. Also note that Qω+1 is a compactifi-
cation of X and that D(Qω+1) = ω + 1 ([l], Th. 12). This leads to
the following.

CONJECTURE. Every separable metric space X is contained as a
dense subset of a compact metric space X*, such that D(X*) = D(X)
or D(X) + 1.

A proof of the conjecture might be constructed as follows, for
spaces with have a D(X)-D-representation X = Uί^-α I 0 ^ a ^ co}
(i.e. ω <̂  D{X) < 2ω). Embed Aω in a contractable compact space
B with Ind (B) ^ Ind (Aω) + 1 (e.g. B might be the cone over a
compactification of Aω of dimension Ind (Aω)) in such a way that
Y = (J {Aα \0 ^ a < ω} \J B is weakly-infinite-dimensional.

The author wishes to thank the referee for his helpful suggestions.
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