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THE EQUIVALENCE OF GROUP INVARIANT
POSITIVE DEFINITE FUNCTIONS

T. R. CHOW

Let G be a separable locally compact group; o, a positive
definite function; M(G), the set of all finite Radon measures;
and

N, = {ae M(G)| By, a) = S Gsp(t—lsm(ds)a(dt) - o} :

Gx
Let H, be the Hilbert space obtained by completing M(G)/R,.
Similarly define H, as the Hilbert space corresponding to an-
other positive definite function ¢, p and ¢ are said to be
equivalent (symbolically p ~ o) if there is an equivalence
operator T from H, to H, which is induced by the identity
operator on M(G); i.e. a linear homeomorphism from A, onto
H, such that 1 — T*T is Hilbert-Schmidt. Theorem 1 and
Theorem 2 give necessary and sufficient conditions for o ~ ¢
in terms of the unitary representations of (G induced by p
and ¢, We discuss group invariant positive definite functions
on X X X where X is a homogeneous space, and generalize
Theorem 1 and 2 accordingly. The notion of equivalence
operators comes exactly from Gaussian stochastic processes
(ef. J. Feldman [4]). Some statistical applications will be
discussed in a separate paper later in the year,

I. Preliminaries. Let H be a separable Hilbert space; 2, a von
Neumann algebra of bounded operators in H. It has been proved by
von Neumann that H can be decomposed into a direct integral of
Hilbert spaces so that 2 is the (central) direct integral decomposition
into factors (cf. von Neumann [13]). Let 4 and 4, be two separable
metric spaces; ¢ and p, be two finite regular positive Borel measures
on 4 and 4, respectively. Let

®
H = | Hopma)
and
@
H, = | Houpdn)

be two direct integral Hilbert spaces; % and A, be two von Neumann
algebras which have central decompositions

® @
u = [y and 2 = 000 m@n)
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in H and H, respectively. It can be proved (cf. J. T. Schwartz [11])
that 2 and A, are spatially isomorphic if and only if there exist a
pair A, 4, of Borel subsets of 4 and A, respectively such that
24— A) =0 and p(4, — A) = 0 and a Borel isomorphism ¢: 14— 1,
such that 2(x) and A(p(r)) are spatially isomorphic and such that
o @™t is equivalent to g, |4,. Since direct integral decomposition is
uniquely determined up to a set of measure zero, it can be assumed
for our purpose 4 = A and 4, = 4,. Hence the central decomposition
is unique by the identification of 4 and @(A1).

For the general theory, we refer to Dixmier’s book (cf. Dixmier

[1]).

II. The equivalence of positive definite functions on groups.
Let G be a separable locally compact group; M(G), the set of all
finite Radon measures on G.

1. DEFINITION. A continuous function p is said to be positive
definite on G if for any sequence of g;,, © = 1, 2, ---, n and any sequence
of complex numbers ¢;, © = 1, 2, ---, n, the following is always satisfied

@.1) 3 plg7igdes; = 0 .

i,5=1

It can be easily verified that p is positive definite on G if and only if

2.2) 1, Jommanaag = 0
for all ¢ e M(G).

2. The decomposition of a positive definite function: Consider
the functional B, on M(G) X M(G) defined by

(2.3) B(a, B) = SGXGS’)'(S‘it)a(dt)E(ds)

where v is a positive definite function on G, and «, 8e M(G). It is
clear that B, is sesqui-linear and

(2.4) A, = {ae M(G) | B;(a, @) = 0}

is invariant under the left action of the group G. Let H. be the
Hilbert space obtained by completing the quotient space M(G)/N,
with the inner product given by (2.3). On M(G), consider the linear
transform defined by

(2.5) U.a(4) = a(s™'A)
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where « is any element in M(G) and A is any measurable subset of
G; and s, any element of G. %N, is invariant under U,. Let U, be
the unitary transformation on H, which is densely defined (on M(G)/R,)
as the quotient transformation of U,. Then the pair (U, H,) forms
a unitary representation of G.

Let 2 be the von Neumann algebra generated by {U,, seG},
that is {U,, se G}’, the double commutant of {U,,s€G}. Let & be
the element of H, corresponding to d,, the Dirac point mass at the
identity. Then

(2.6) (U.E, &) = SGXGS’r(s;‘t)&(s‘lt)é(sl)dtdsl = 7(s) .

For any te @G, let
2.7) &E=U¢.

Since the smallest closed linear manifold containing {&,¢eG} is H,,
Z & is dense in H,; so & is eyclic. According to the theory of the
central decomposition, there are a separable metric space 4 and a
Radon measure ¢ on A such that

(<)
(2.8) H, = ["Bmma
and

@
(2.9) o = SA 27 ()N

where the decomposition (2.9) is a central decomposition. It is also
easy to see that

(2.10) U, = Sst(x)p(dx)

where ft-almost all of the U, (\) are unitary on H,(\) and that

(2.11) ¢ = [Tevman

where ft-almost all of £(\) are cyclic in their respective Hilbert spaces.

p-almost all of functions s — (U, (ME(N), V), are positive definite.
So v becomes an integral of positive definite functinns as follows:

(2.12) v(s) = S;/;.(s)mdk)

where

(2.13) Ma(s) = (UMEN), §0V)a
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and
(2.13) 7i(e) = GOV, EV) =1
p-almost all \.

3. DEFINITION. We call the measure g normalized according to
(2.12), (2.13) and (2.13’) the central Radon measure of v (with respect
to

®
[ E 0@ .

4. The equivalence operator.

a. Definition. Let G be a separable locally compact group. Two
positive definite functions o and o are said to be equivalent if the
identity operator on M(G) induces an operator T on H, to H, such
that T is an equalence operator (cf. introduction).

b. Let G be as in definition a; 0 and o be two positive definite
functions on G; H, and H, be the corresponding Hilbert spaces as de-
fined in §II. 2. Let (U, H,) and (V, H,) be the unitary representa-
tions of G induced by p and o respectively. The Dirac point mass
0, at the identity of G gives rise to cyclic vectors ¢ and #» in H, and
H, respectively. Let zr = {U,,s€ G}’ and &~ = {V,, seG}’; and

(2.148) % = §®7/ VdN)

(2.14Db) 7 = S?%(M)m(dm

be their central decompositions.

It has been remarked in §I that if % and &~ are spatially iso-
morphie, without real loss of generality we may assume 4 and 4,
are identical. (2.14) thus can be rewritten as

(2.14b") 7 = Sf%(h)%(dx)

if Zr and <" are spatially isomorphic; that is if U and V are uni-
tarily equivalent.

THEOREM 1. Let G be a separable locally compact group; o and
o two positive definite functions on G. If o and o are equivalent
(symbolically p ~ o), then

(a) U and V are unitarily equivalent; and

(b) With (a) permitting the existence of the central decomposi-
tions (2.14a) and (2.14b'), ¢ and v then satisfy the following condi-
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tions, which we shall call the conditions (i), (ii) and (iii) in the rest
of the discussion:

(i) p and v have identical monatomic parts;

(i1) they have the same set of atoms which is countadble; and

(iii) 4f A is the set of all atoms, then p(a) = v(a) unless H,(a)
is finite dimensional, and

5 d@)(1 - L9 < .

aey v(a)

where d(a) is the dimension of Hy(a) 1f H,(a) s finite dimensional
and o= otherwise.

Proof. We shall divide the proof into four steps:

Step 1. To show: If p ~ o, then U and V are unitarily equiv-
alent. Let &£e H, and n < H, be the elements corresponding to 4, so
that

(2.152) o(s) = (U, &),
and
(2.15b) o(8) = (V, 1), .

It o ~ o, then it is immediately seen that 9N, = N,. Hence M(G)/N, =
M(G)/Nt, Let T be the equivalence operator from H, to H, induced
by the identity operator on M(G). We have for all seG

(2.16) TU, = V,T.

Moreover, the center 27, of Z is carried over by T to, the center
%, of 7 Since T is invertible, T* is well-defined on all of H,.
From (2.16)

(2.17) UT*=T*V,

combining (2.16) and (2.17), we obtain

(2.18) (T*TYU, = U(T*T) .

Hence T*T commutes with U, for all seG. Consequently T*7T is in
the center %7, of Z/; i.e. T*T is a diagonal operator (cf. Dixmier [1])
(2.19) 7T — S;Oa(k)l(x) #0V)

where a(\) is a nonnegative function in L=(4, y), and I(\) is the
identity operator on H,(\). Let S = (T*T)"*, and R be the unitary
operator: H,— H, satisfying
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(2.20) T=RS.
Then, for all seG.
V,=TUT* = RU,R* .

Hence (V, H,) and (U, H,) are unitarily equivalent.

Step 2. To show: g and v have the same set of atoms if o ~ o.
If p ~ o0, by step 1, U and V are unitarily equivalent so that 7 and
&~ are spatially isomorphic. As we remarked in the last part of §1I,
# ~ v by the assumption of 4 = 4,. Since atoms are points, g and
v therefore have the same set of atoms. This completes the step 2.

Before we work on step 3, we shall introduce more notations.
Let g, and g, be the atomic and nonatomic parts of s respectively;
v, and v, be those of v. Let

(2.21a) H,, = Spr(x);zc(dx)
and

(2.21b) H,, = S?H,,(x) p(dn)
Then

(2.22a) H,=H,.DH,,,
(2.22b) H,=H,.6bH,,.

It is easy to see that T: H,,—H,,and T: H,,— H,,. If T is an
equivalence operator, then so are the restrictions T|H,, and T|H,,,.
It is also true that ¢=¢,P¢, and p =1, P7n where &, c¢H,,,
§,eH,,ncH,, and 1, H,, and 7, € H,, are cyclic in their respec-
tive Hilbert spaces. Moreover,

(2.23a) (T H,, e =7,
(2.23b) (T H, )80 = 7. -

So o and ¢ decompose into sum of two positive definite functions re-
spectively:

(2.24a) o =p, + 0. = (U, &)+ (Ug, &)
(2.24D) c=0,+06,= V0,7 + (Vi %) -

Step 3. To show: If p ~ o, then g and v have identical non-
atomic parts; ie. p(D) = v (F) for all measurable subsets E of 4.
From above discussion, we may assume ¢ and v having only nonatomic
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parts by passing from the relation o ~ ¢ to p, ~ ¢.. Suppose there
exists a measurable subset E such that p#(E) = y(E). Given a suffic-

iently small ¢ > 0, there exists a measurable subset E of E of positive
measure such that

|1 _ .d_”(x)l > e

e
for all A e E. Since ¢ is nonatomic, we can partition E into a disjoint
union of infinitely many measurable subsets of positive measures

{E, E,, ---}. Since T is an equivalence operator, p(FE;) # 0 implies
V(E;) = 0 for all 4. Normalizing

{Sis(xm(dx)}

we obtain an orthonormal set {z;}. Since by (2.19), the definition of
central Radon measures and g ~ v,

[ 1200 Fdy = (7* T2, 2) = | a2y rdp

= | a(Z2))120v [Fav
for all 2 = g%(k)dyeHm it follows that

a(h)(ﬁ—ﬁ>(x) =1 yv-—ae.

ie. T*T = Sf{(du)/(dy)}z(x)dp )
Hence
S = T lf 2 B @ = T* T 2 et

This estimate increases to infinity as » goes to infinity. This con-
tradicts to the fact that T is Hilbert-Schmidt.
Step 4. To show: If p ~ o, then

= (1 - ;E_gf < oo

As we remarked in step 3, we may reduce to the case where y and
v have only atomic parts. The set U is at most countable, for x and
v are finite. Then
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(2.25) H, = XGBQI H,(\)
and
(2.26) | = g;a Oz (13

for all xc H, and ¢ = @,.9 ®(\) where x(\) € H,(\). Let {p;} be any
orthonormal set in H,. If p ~ o, then

T*T = @ eI -

From a theorem of K. Fan (cf. Fan [3]), it follows that

max [ (1 = T*T)p; | = max 3. [ (1 — T*TYps, i) |

all O.N. {¢;) "3 B

= Tr(l - T*7) = S, Tr (L — T*T(V)*.

If H,(\) is infinite dimensional, then Tr (1 — T*T(\))* is finite only
when a(\) = 1. Hence p(\) =v(\) if p~o and H,(\) is infinite
dimensional. When H,(\) is finite dimensional, then Tr (1 — T*T(\))* =
d(a)(1 — a(\))®. Hence

(2.27) Tr(l — T*T) = 3, d0)(1 — a(\))?
— sdoy(1 — 2
5 dov( o )

1 — T*T is Hilbert-Schmidt, therefore (2.27) is finite. We have proved
Theorem 1.
Theorem 1 has a converse which we shall state in the following:

THEOREM 2. If U and V of the last theorem are wunitarily
equivalent, and if the corresponding central Radon measures, (t and
v satisfy conditions (i), (ii) and (iii), then p ~ o.

Proof is immediate.

II1. Positive definite functions on homogeneous spaces. Let
G be a separable locally compact group; H, a closed subgroup of G;
X, the space of the right cosets; x,, be the point of X which corre-
sponds to the identity coset H; and finally let M(X) be the set of
all finite Radon measures on X. Then positive definite functions on
X x X can be properly defined in the following way:

1. DEFINITION. A continuous function p on X x X is said to be
positive definite if for all o in M(X)
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@.1) ﬁﬁ(ac, ve(dn)a(dy) = 0,

or alternatively,
(3.1) S, plws, @)l = 0

15J=1

for any sequence of points x;,,7=1,2,--.,n and any sequence of
complex numbers ¢;, 7 =1,2, -+, n.

2. DEFINITION. A positive definite function o is said to be
G-invariant if, for any ¢ in G,

(3.2) p(gx, gy) = P(x, ) .

3. Group representations and group invariant positive definite
function: Let 0 be a positive definite function on X x X which is
also group-invariant. Let

(3 N; = {ae MX)| 8, @ = | [, nadna@y) = o} .

Then by completing M(X)/N;, we obtain again a Hilbert space H;
with an inner product given by

(3.4) Bi(@, 8) = ||, an)gay .

With the group-invariance property, N; is invariant under the action
of G, i.e., if @ e N;, then the left translates a, of « also are in N;.
This translation gives rise to a unitary transformation U,,ge€G on
H; in a similar way as in the group case (cf. §II. 2). Moreover,
(U, H;) is a unitary representation of G.

3. DEFINITION. We call (U, H,) the canonical unitary represen-
tation of G associated with p.

4, DEFINITION. Two positive definite functions p and 6 on X x X
are said to be equivalent if the identity operator on M(X) induces an
equivalence operator 7. H; — H.

5. Relation between positive definite functions on groups and
those on homogeneous spaces: By using the same technique as used
in §1I, we may obtain the necessary and sufficient conditions for p
and ¢ to be equivalent. However, we shall establish them through
investigation of the relation between the positive definite functions on
groups and those on the homogeneous spaces.
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Let (U, H;) be the unitary representation of G associated with a
G-invariant positive definite function o on X x X. Let &€ H; be the
element corresponding to d,, the Dirac point mass at x,. Then for
any se(,

@5 (W)= (p@, . @) dy) = plev, 2 .
(3.5) defines a positive definite function ¢ on the group G which
satisfies:

(3.6) 0(8) = P(s%o, %)
Since x, remains fixed under the action of H, p satisfies
(3.7) 0(s) = p(h,sh,)

for all h, and h, in H. We thus have the following lemma.

LeEMMA 3.1. For any G-invariant positive definite function O
on X x X, there corresponds a positive definite function p on G
which is constant on double cosets of H; i.e., (3.7) is satisfied.

We shall prove the following lemma before we can establish a
converse form of Lemma 3.1.

LEMMA 3.2. Let p be a positive definite function on G. Let
(3.8) K ={keG|ok) = o)},
Then K is a closed subgroup of G.

Proof. Since p(e) is positive and finite, it can be assumed that
o(e) = 1. According to the theory of group representations (cf.
Naimark, [10] Godement [5, 6]) there exists a vector & in some
Hilbert space L such that

(3.9) p(s) = (U, €)

where (-, -) is the inner product in the Hilbert space L and (U, L)
is a unitary representation of the group. Let kc K. Then it can be
proved that

(3.10) Us=¢.
So for any h,kec K
UcE=Us=¢.
We have Ut = U, U,é = U =¢; ie., if h,keK, then hke K. If
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heK,oh) = p(h™") =1= p(h™"). Hence h'e K if he K. Moreover,
since p is continuous, we see that K is closed.

LEMMA 3.3. For any positive definite function p on G, there is
a largest closed subgroup K such that o is constant on double cosets
of K. As a consequence, it gives rise to a group-invariant positive
definite function 0 on (G/K) x (G/K).

Proof. Let {e} be the subgroup consisting of only the identity
of G. Then it is clear that o is constant on double cosets of {e}. Let

H = {h|po(gh) = o(hg) = p(g) {for all geG}
K = {k|ok) = o(e) = 1} .

If h € H, choosing g = e, then o(k) = p(e). So HcC K. We now prove
that p is constant on double cosets of K. Let ke K, then as in
Lemma 3.2, U, = & and

p(gk) = (U,U&, &) = (U4, §) = o(9) = (U§, Up8)

ie., o(9) = o(KgK).

So K is the largest closed subgroup such that p is constant on
double cosets of K. (3.6) defines a G-invariant positive definite func-
tion as it can be easily verified. Combining the preceding three
lemmas, we have the following theorem.

THEOREM 3. Let G be a separable locally compact group. Each
positive-definite function o on G gives rise by (3.8) to a G-invariant
positive definite function 0 on (G/H) x (G/H) where H 1is the set of
all © in G such that p(x) = p(e). Conversely, to any G-invariant
positive definite function p on (G/H) X (G/H) there corresponds by
(3.6) a positive definite function p on G such that H = {x: p(x) = p(e)}.

5. Let G and H be the same as before; 7, the canonical mapping
from G to G/H = X. Then a subset E of X is measurable if and
only if z7(F) is measurable in G (cf. Mackey [11]). According to the
theory of decomposition of measure (cf. Halmos [7, 8], von Neumann
[12], Dieudonné [2], Mackey [9]), for any finite Radon measure a on
G, there is a measure @ in X such that for all measurable Ec X

(3.11) a(E) = a(z (K))
and

3.12) [ f@)| s@da(dae) = | fe)aedac)
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where «, is a finite Radon measure on G which only lives on the
coset x; f, a function in LY(X, &); and g, a bounded measurable func-
tion on G. Conversely, & certainly defines a measure on G. If p is
a positive definite function on G which is constant on H, then p(t~'s) =
0(s®,, te,) = P(x,y). By generalizing (3.11) and (3.12) to the two
dimensional product measures (cf. Mackey [9]), it follows that

(3.13) S Sp(t‘ls)a(ds)&(dt)

GXG

= | _|p@ vaumaan|, aidsaae) .

XXX GX@G
Hence a e N, c M(G) if a,(G) = 0. If we let x,e H, be the element
corresponding to a in M(G) and x; e H; be the element corresponding
to a,(G)& in M(X), we conclude from the above discussion that
@: H,— H; satisfying ¢(x,) = x; is a spatial isomorphism which com-
mutes with the transformation induced by translations. There is a
similar mapping +: H, — H; satisfying +(y,) = y; where y,c H,,
ys € H; are the corresponding elements of o and «,(G)&@ respectively.
Furthermore, if T: H, — H, and T: H; — H; are the mapping induced
by the identity mappings on M(G) and M(X) respectively, then it is
clear that

(3.14) T%0 = Ya
(3.15) Tay = i

and the following diagram commutes

-1,
o b
7 -2 m

Hence T is a linear homeomorphism if and only if so is 7. If T is
such, the similar commutative diagram for T'* T* holds

H -2,
¢ l?’f
I},; I, H;
Therefore,
(8.16) pT*T = T*yT = T*Tp
and

@17 (=TTl = ol — T*Dx|P = | — T*Dpx| .
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We immediately conclude that T is an equivalence operator if and
only if so is T, and arrive the following theorem.

THEOREM 4. Two group-invariant positive definite functions p
and ¢ on X = G/H are equivalent tf and only if the corresponding
positive definite functions p and o on G are equivalent.

6. Let X Dbe a separable metric space; G, a locally compact trans-
formation group of X. Let M(X) be the set of all finite Radon
measures on X. The positive definite functions and group invariance
property can be similarly defined as in Definitions III.1 and III.2.
Suppose that X has dense orbits. Let xz,¢ X such that X, = Gz, is
dense in X. Then X, = G/H,, where H, = {heG|hx, = x,}). We now
embed G/H, in X.

COROLLARY 4.1. Let X, G be as above; and suppose that X has
dense orbits. Then two G-invariant positive definite functions p
and & are equivalent if and only if the conditions in Theorem 1 are
satisfied.

Proof. The elements ¢ in H, and n in H, corresponding to the
Dirac point mass at x, are cyclic, by the continuity of positive definite
functions. Hence applying Theorem 4 and Theorem 1, we assert the
corollary.

COROLLARY 4.2. Let X be a separable metric space; G, a locally
compact group acting ergodically on X. Suppose that the ergodic
measure (¢ satisfies p(0) > 0 for any open set 0CX. Then 0 ~ & if
and only if (a) and (b) of Theorem 1 are satisfied.

Proof. It is known that if G acts ergodically on X and satisfies
the above hypothesis, then X has dense orbits; in fact

pw|Gz = X} =0.

Hence applying Corollary 4.1, we prove the corollary.

Thanks are due to Professor J. Feldman for his many valuable
suggestions.
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