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THE STONE-WEIERSTRASS THEOREM FOR
VALUABLE FIELDS

P. R. CHERNOFF, R. A. RASALA, AND W. C. WATERHOUSE

Let F be a topological field, which means in particular
Hausdorff and commutative. The "Stone-Weierstrass" theorem
for F would state that if X is a compact space and Ssf an
algebra of continuous functions from X to F which contains
the constant functions and separates points, then Sf is uni-
formly dense in the algebra of all continuous functions from
X to F. This is true for the reals but false for the complexes,
and is commonly regarded as a special property of the reals.
In fact, however, it is the complex field which is exceptional:
the Stone-Weierstrass theorem and its characteristic corollaries
hold for all valuable fields other than the complex numbers.

A subset B of a topological field F is called bounded if for every
neighborhood U of 0 there is an a Φ 0 in F with a BQU. The field
F is valuable if for every neighborhood V of 0, the set {aru.a$ V)
is bounded. Kaplansky originally called this condition "Type V";
Bourbaki [1] uses the term "local retroboundedness." All the topologi-
cal fields usually encountered are valuable.

Lacking a unified proof of the Stone-Weierstrass theorem for
valuable fields, we have to rely on a classification theorem: the valuable
fields are precisely those whose topologies are induced either by a
(Krull) valuation or an Archimedean absolute value [1, p. 181]. We
treat these cases separately.

Case I. Suppose the topology of F is defined by a valuation v
with value group Γ. We denote by A the valuation ring of F:

A = {aeF: v(a) ^ 0} .

If S is a subset of F and 7 e Γ , we set

Sr = {se S: v(s) > 7 } .

We recall t h a t the ideals Fγ for 7 ^ 0 form a basis of neighborhoods

of 0 in F.

We first prove two technical lemmas.

LEMMA 1. Let KQF be compact with OgK. Let aeΓ be such
that Fa Π K= 0 and let β>0. Then there is a polynomial f(T) e F[T]
such that

(1) /(0) = l
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(2) f(F
a
)SA

(3)

Proof. K can be covered by a finite number of sets of the form
y + Fa where y e K. Since v(y) ^ a for every y e K, v(y + F) = {v(y)}.
Hence v assumes only a finite number of values on K, say

(Xi < oc2 < < am ^ a .

We write K = Kx U K2 U U Km1 where K{ = {x e K: v(x) = α j . The
proof will proceed by induction on m. Note that we may assume
β ^ a; this just decreases the size of Fβ.

First suppose that m = 1. Cover K — Kγ by open sets z,- + jP2i9,
j = l, --,n, with zdeK. Everything necessary is done by the
polynomial

f(T) = Π (1 - T/z,) .

Certainly (1) holds, while (2) follows since if v(t) > a then t\zά e A
because v(z5) ~ a^ a. To verify (3), write any given x e K as z{ — b
for some index i and b e F2β. Then

this is in Fβ because each v(x/Zj) — v(x) — v(z3) = 0 (v being constant
on K), so that 1 — x/z3- e A.

Next, the induction step. Set K' = K2 U U Km. By induction
there is a polynomial g such that

9(0) = 1

g(K')SFβ.

Now choose 7 e Γ so that giKJ Fγ C ί7 .̂ Using the case m = 1 choose
a polynomial Λ, such that

Λ(0) = 1

Then /(Γ) = g(T)h(T) does what is wanted. Since h(Fa)QA, (2) is
obvious, and only (3) needs checking. Observe that K'QFai, so that

^Faj then /(JQ Q g(KMKd S ί/( î) ̂ S ^ , while
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LEMMA 2. Let K^F be compact and let a be a nonzero element
of F. Then there is a polynomial f(T) such that

(1)
(2)
(3) f(K)QA.

Proof. Choose β ^ 0 such that a$Fβ and {1 — arι K) Fβ£iA.
By Lemma 1 there is a polynomial g(T) such that

9(0) = 1

g(K\Kβ)^Fβ.

Set f(T) = 1 - (1 - a~ιT)g(T). Then obviously /(0) - 0 and f(a) = 1.
To verify (3) we observe that if xeKβ then (1 - arιx) e A and g(x) e A
so that f(x) e A. On the other hand, if x e K\Kβ then g(x) e Fβ so
that (1 — a~1x)g(x) e A by the choice of β.

The next lemma may be regarded as the "Weierstrass" part of
our generalized Stone-Weierstrass theorem.

LEMMA 3. Let Kbe a compact subset of F. Then the polynomials
are uniformly dense in the continuous F-valued functions on K.

Proof. The compact set K is totally disconnected, and therefore
its topology has a basis of clopen (i.e., simultaneously closed and open)
sets. Let g: K—+F be continuous and let U be a neighborhood of 0
in F. K may be covered by finitely many clopen subsets Vt on each
of which any two values of g differ only by an element of U.
Moreover, because the intersection of finitely many clopen sets is
clopen, we may take the Vi to be disjoint. Choose x{ e Vt and set
ai — g(Xi). Define gv — 2^%^. Then gv is continuous on K because
the Vi are clopen. Moreover it is obvious that gu(x) and g(x) differ
only by an element of U for every x e K; thus gυ approximates g
uniformly within U on K. To approximate g by polynomials, it will
therefore suffice to approximate all the characteristic functions χv for
V a clopen subset of K.

Let 7GΓ be given. For any xeV and yeK\V there is a poly-
nomial gxy such that gxy(x) = 1, gxy{y) — 0, and gxy{K) g i ; this follows
from Lemma 2 applied to x — y, K — y. By continuity, gxy maps some
neighborhood of x into 1 + Fr. Cover V by finitely many such neigh-
borhoods and take the product of the corresponding polynomials; this
is a polynomial hy with hy(y) = 0, hy(K) £ A, and hy( V) S 1 + Fγ. Now
do it again: hy lies in Fr on some neighborhood of y, so covering K\V
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with finitely many of these neighborhoods and multiplying we get a
polynomial which maps K\V into Fr and V into 1 + Ft. That is, it
is within Fr of χv on K.

PROPOSITION 1. Let F be any totally disconnected field. Suppose
that the polynomials are uniformly dense in the continuous F-valued
functions on every compact subset of F. Then the Stone-Weierstrass
theorem holds for F.

Proof. Let X be a compact space and j ^ = {/,-} a separating
family of continuous F-valued functions on X. Let f£X) = Kiy a
compact, totally disconnected subset of F. The map ΏJi\X—±Y' =
ΠiKi is a homeomorphic embedding, since X is compact and j ^ ~
separates the points of X. We may therefore regard X as a subset
of Y; what we must then prove is that every continuous i^-valued
function on X can be uniformly approximated by polynomials in the
basic coordinate functions of Y.

By a basic covering of Y we mean a partition of Y into clopen
"rectangular" sets obtained by partitioning finitely many of the Kι
into clopen sets and taking products. The Lebesgue covering theorem
then implies that any open covering of X is refined by the restriction
to X of some basic covering of Y. Hence, just as in Lemma 3, to
approximate any continuous function on X it is enough to be able to
approximate every χF, where the clopen set V is an element of a
basic covering. By definition, χv is a product of finitely many
characteristic functions depending on only one coordinate; and by
hypothesis, each of these factors can be uniformly approximated by
polynomials in the corresponding coordinate. The product of these
polynomials is a polynomial in the coordinate functions which uniformly
approximates χF.

Proposition 1 and Lemma 3 together prove the Stone-Weierstrass
theorem in Case I. This case was proved for the p-adics by Dieudonne
[3], and later independently for the p-adics by Mahler [5]. It was
proved for fields with rank one valuations by Kaplansky [4]; the
deduction of Lemma 3 from Lemma 2 follows his treatment.

We might also remark that every discrete field trivially satisfies
the hypothesis of Proposition 1, the compact subsets being finite.
Hence the Stone-Weierstrass theorem holds for these fields.

Case II. Suppose the topology of F is defined by an Archimedean
absolute value. These fields, as is well known, have been completely
classified.

First suppose that F is a dense subfield of R. Then we can
regard F-valued functions as R-valued. The Stone-Weierstrass theorem



THE STONE-WEIERSTRASS THEOREM FOR VALUABLE FIELDS 237

for R then implies that if j ^ ~ is a separating family of F-valued con-
tinuous functions on the compact space X, then any l?-valued con-
tinuous function on X may be uniformly approximated by real-coefficient
polynomials in the elements of J^. But the real coefficients of these
polynomials may be approximated by elements of the dense subfield
F. (This argument shows that, more generally, any field with the
Stone-Weierstrass property bequeaths it to its dense subfields.)

We are left finally with the case of a proper dense subfield F of
C. We first need

LEMMA 4. Let G be a proper subgroup of the additive group of
C. Then no compact subset of G disconnects the plane.

Proof. Suppose, on the contrary, that Kξ^G is a compact set
disconnecting the plane. The same is then true of some one of its
components [6, p. 123], so we may assume that K is connected. Let
U be a bounded component of its complement, and let V be the union
of all the other components. Choose an integer n large enough that
the diameter of n-K is larger than the diameter of U. We assert
that n-K + U^n-K + K.

Indeed, take any x = a + u with aen-K,ue U. We shall show
that x — K meets n-K. For if it does not, then n-K is contained
in the union of the two disjoint open sets x — U, x — V; being
homeomorphic to K, it is connected, and hence contained in some one
of the two. But aen-KΠ (x — U), so we must have n Kξ^x — U;
this, however, is impossible because n-K has a larger diameter.

Thus we have shown that G contains the open set n-K + U,
which implies that G = C, contrary to hypothesis.

Returning to our proper dense subfield F of C, we now know
that if KξΞ F is compact then K has no interior and does not separate
the plane. Therefore we can invoke Mergelyan's theorem [7, p. 386]
to show that every continuous complex function on K can be ap-
proximated by polynomials over C, and therefore by polynomials over
F. In particular, zv-+z can be so approximated.

Now let X be a compact space and jzf a separating algebra of
continuous F-valued functions containing the constants; we regard
them as complex-valued functions. If fej&,f(X) = KSF is a
compact subset. Since z can be uniformly approximated on f(X) by
polynomials over F, f is in the uniform closure of s%f. Therefore
the ordinary Stone-Weierstrass theorem implies that every complex-
valued continuous function, and in particular every F-valued one, is
in the uniform closure of s$f. Thus, F has the Stone-Weierstrass
property. This completes the proof of the
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THEOREM. Let F be any valuable topologίcal field except C. Then
the Stone-Weierstrass theorem holds for F.

REMARK. An analysis of our argument shows that it can be
generalized to the following situation. Assume that the topological
field F has a basis {N} of neighborhoods of 0 satisfying the following
conditions: for every compact KQF and every open covering of K
there is a family of continuous functions fi'.K—>F subordinate to
the covering and satisfying (1) Σif — 1 and (2) for arbitrary ε{ in N,
the values of J^β;/; are in N. (This is a generalized partition of
unity; the condition (2) replaces the usual positivity condition for
real-valued partitions of unity.) Then if the f are approximable by
polynomials, an argument along the lines of Proposition 1 shows that
the Stone-Weierstrass theorem holds for F.

Moreover, this argument is valid even if {N}, the values of the fi9

and the coefficients of the approximating polynomials are in the com-
pletion of F (a topological ring, though not always a field). For it
yields approximation by polynomials over the completion, which can
in turn be uniformly approximated with polynomials over F by
approximating all their coefficients.

Corollaries and further results. Our theorem can be significantly
strengthened by eliminating the requirement that the algebra j y
contain the constant functions. To this end we prove

PROPOSITION 2. Let F be any topological field except C. Let
j>f be an algebra of F-valued continuous functions on a compact space
X having no common zeros. Then j y contains a function vanishing
nowhere on X.

Proof. The usual compactness argument gives us finitely many
functions f e SZ and compact sets Xi such that \J X{ = X and f is
nowhere zero on Xi% We can proceed inductively if we can show that
there is a function in the algebra generated by fγ and f2 vanishing
nowhere on I j U I 2 ; thus we may assume Xλ U X2 — X.

Since fx and f2 are never both zero, fjf2 defines a continuous
function from X to the protective line over F, P^F). If the image
of X omits at most one point, Pγ{F) must be compact, whence F is
locally compact. So if F is not locally compact, there is an a e FczP^F)
not in the image of X, which means that /,. — α/2 is nowhere zero
on X.

Suppose, then, that F is locally compact. If F — R, ft + fl never
vanishes. If F is discrete, then </x, /2> maps X onto a finite subset
S of F x F which does not contain <0,0>. It is easy to find a
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polynomial P in two variables over F which has no constant term and
is identically 1 on S. Then P(fuf2) is identically 1 on X.

Finally, suppose that F is locally compact and has a non-Archi-
medean absolute value. We may multiply fx by a constant and so
assume that \fx\ < 1 everywhere. Now let C = {x:f2(x) = 0}, and let
Un = {x: \f2(x) I <£ 1/n}. If /i has a zero in each Un, then it has one
in f|n ^n = C, contrary to assumption. So say that /i never vanishes
on Uk; since Uk is compact, there is an ε > 0 with I/J ^ ε on Uk.
Because the valuation is discrete, we can find an α e F such that
Uk — {x: I af2(x) \ < 1}. If r is a sufficiently large integer, | α/2 \

r is
smaller than ε on Uk, and of course still ^ 1 off Uk. Hence/1 + (α/2)

r

can vanish neither on Uk nor oίf it, and the proof is complete.

COROLLARY. Let F be any field for which the Stone-Weierstrass
theorem holds. Let s%f be an algebra of F-valued continuous func-
tions on the compact space X, not necessarily containing the constants.
If sf separates points and does not vanish identically at any point,
it is uniformly dense in the ring of all continuous F-valued functions.

Proof. By Proposition 2, szf contains a function / vanishing
nowhere. The function 1// is then continuous; by the Stone-Weierstrass
theorem for F we can approximate it by ba + ga9 with baeF and
gaessf. Hence baf+gaf—>l, so that 1 is in the closure of j ^ %
and the Stone-Weierstrass theorem applies to it.

REMARK. Proposition 2 is definitely false for C. For example,
let X be the unit sphere | z11

2 + | z2 \
2 = 1 in C2. The polynomials in

z1 and z2 with no constant term form an algebra on X having no
common zero; yet since each vanishes at the origin it must vanish
somewhere on the sphere, as follows, e.g., from a well-known theorem
of Hartogs.

PROPOSITION 3. Let jzf be a closed subalgebra of the ring of
continuous F-valued functions on a compact space X. Suppose the
Stone-Weierstrass theorem holds for F. Then j ^ is determined
precisely by the set of relations f{x^ = f(x2) and f(x) — 0 satisfied
by all its members.

Proof. Set x~y if, for all fej^,f(x)=f(y). The quotient
space under this equivalence relation is a compact space X\ and j y
is canonically identified with a separating closed subalgebra of the
ring of continuous functions on X'. If jzf has no common zeros it
is all of that ring, i.e., consists of all functions on X satisfying the
relations defining X'. Suppose, on the other hand, that f(x) = 0 for
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all / G J / , and let g be any continuous function on X' vanishing at
x. Adjoining the constant functions to sz? and using the Stone-
Weierstrass theorem for F, we can find functions fa e s^ and baeF
with ba + fa —> g. But since g(x) = 0 = fa(x), ba -> 0. Thus fa -> g,
g e jzf, and j y contains all functions on X' vanishing at x.

From this result it follows that the closure of any subalgebra
is the set of all continuous jF-valued functions satisfying the same
relations f(x^ — f(x2) and f(x) = 0 as s/ does. Also, suppose j y is
a closed ideal in the ring of continuous F-valued functions. Then
/(&i) = / ( O for all / e j y if and only if either (1) /(α^) = f(x2) = 0
for all / e j y or (2) ^(ajj = g(x2) for all continuous g: X—> F; otherwise
we could multiply an / e j y having /(a^) = f(x2) ^ 0 by a continuous
g having g(x1) Φ g(x2). In either case the relation f{χ^ = f(x2) is
unnecessary for determining j ^ , and we get

COROLLARY. The closed ideals are determined by their zero sets.

We could go on to generalize such things as the extension of the
Stone-Weierstrass theorem to locally compact spaces, or Dieudonne's
theorem concerning the approximation of functions on product spaces.
However here the proofs as well as the statements remain valid with-
out change, so we simply refer the reader to Stone's article [8].
Similarly, all of the theorems of Cantor [2], stated for fields with
rank one valuations on the basis of [4], extend immediately to fields
with arbitrary valuations. Doubtless many other results can also be
generalized.
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