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THE PRODUCT FORMULA
FOR THE THIRD OBSTRUCTION

ROBERT E. MOSHER

Let ξ be an SO(w)-bundIe with n > 3; let p: E->B be the
projection in the associated (n — l)-sphere bundle. In this note
we express the third obstruction to a cross-section of p as a
tertiary characteristic class and prove a product formula for
the behavior of this class under Whitney sum.

The first obstruction is the Euler class χ(ξ) e Hn(B; Z). χ is a
primary characteristic class and satisfies χ=j*(U), where j:B—>T
is the inclusion into the Thorn space and UeHn(T;Z) is the Thorn
class. Whenever χ(ξ) = 0, a secondary characteristic class

a(ξ) e Hn+1(B; Z2)/(Sq2 + w2^)Hn~ι(B; Z)

is defined, a is the second obstruction and satisfies

a = (Sq* + Wt-

Thus a is obtained by applying a twisted functional primary operation
to U. The third obstruction y(ξ), defined whenever a(ξ) = 0, will be
expressed as the value Φj(U) of a certain twisted functional secondary
operation.

It is immediately plausible to consider as (n + l)-ary characteristic
classes the values of certain functional twisted w-ary operations on U,
defined when appropriate w-ary characteristic classes vanish. We hope
to deal with such classes systematically in a future paper, but the
treatment is expected to be more complicated technically; hence y(ξ)
is presented here as an illustrative example in a straightforward
setting.

The paper is organized as follows. Section 2 is a statement of
results, while in §3 we define 7(f). The Peterson-Stein formula and
the proof of (2.2) appears in §4; the product formula is obtained in
§ 5. We conclude in § 6 with an example.

Throughout the paper all cohomology is taken with Z2 as coef-
ficients unless otherwise indicated.

2* Statement of results* Suppose ξ is an SO(w)-bundle with
n > 3 and suppose χ(ξ) = 0. Let

a(ξ) e Hn+1(B)/(Sq2 + w2^)Hn~\B) Z)

be the secondary characteristic class given by a(ξ) = (Sq2 + w2^
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[5, 6, 7, 9]. By [9], a(ξ) is the second obstruction to a cross-section
in the associated sphere bundle.

Suppose now a(ξ) = 0. Then in § 3 is defined a tertiary charac-
teristic class 7(ξ)eHn+2(B) modulo an indeterminacy Q, given in (3.6).
7 is natural in the following sense.

PROPOSITION 2.1. /:£'—•£ be a map of SO(w)-bundles. Suppose
7(f) is defined. Then τ(f') = /*(τ(£)) mod Q(£').

In § 4 we establish the following.

PROPOSITION 2.2. 7(£) is the third obstruction to a cross-section
of p.

For product farmulas we now assume £ and £' are SO(w) and SO(n')-
bundles over B and Br respectively such that a(ξ) and a{ζ') are defined.
Let £ φ £' be the external Whitney sum over B x B'. By the Whitney
formula for secondary characteristic classes [9], α(£ φ £') Ξ 0 and thus
7(£ φ £') is defined. In § 5 we prove the following.

PROPOSITION 2.3. τ(ί 0 £') = α(ί) (g) α(ί') modulo the total in-
determinacy.

Taking B = J5r and writing £ + £' for the internal Whitney sum,
we obtain the following corollary to (2.1) and (2.3).

PROPOSITION 2.4. γ(£ + £') = α(£) ̂  α(£') modulo the total in-
determinacy.

3* Definition of τ(£) Let A be the mod 2 Steenrod algebra. In
the semi-tensor product H*(BSO) ® A [3] we have, in the terminology
of [11], the relation

(3.1) (1 0 Sq2 + w2 ® 1)(1 ® Sg2 + ^ 2 (g) 1) = 0

over ^. Let /3 = 1 (g) Sg2 + w2 ® 1. According to [4] and [11], (3.1)
defines for each n sufficiently large (n > 2 suffices in this case) a
twisted secondary operation Φ{n). Φ{n) is defined on an ^-dimensional
integral cohomology class x of a space X, where βx = 0 and H*(BSO)xA
acts on the cohomology of X via a vector bundle. The indeterminacy
of Φ{n)(X) is the subgroup βHn+ί(X) of ίP+ 3(X). While Φ{n) is not
uniquely determined by (3.1), computation in the universal example
verifies the following for n > 2.

PROPOSITION 3.2. For each nf there exist precisely two distinct
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operations Φ[n) and Φ[

2

n) associated with (3.1); these operations are
related by Φ[n)(x) + Φ[n)(x) = Sq*x = wz ^ x.

Let Un be the Thorn class of the universal SO(w)-bundle yn. An-
other calculation checks the following.

PROPOSITION 3.3. For each n, there is a unique choice of Φ{n)

such that Φ{n)(Un) = 0.

We now assume that Φ{%) are so chosen and further note that
Φ{n) so chosen are compatible with coboundary, as is verified by con-
sideration of the natural map Γ(7»-i + 1) —• T(yn) of Thorn spaces.

Suppose now the SO(w)-bundle ζ satisfies χ(ζ) = 0 and a(ξ) = 0.
Then U satisfies j*(U) = 0, β(U) = 0, βs(U) = 0, and Φ(U) = 0 with
zero indeterminacy. Under these circumstances one defines Φj(U) by
the analogue for twisted operations of Peterson's generalization [8] of
Steenrod's basic method [10], detailed below; one then defines τ(β) as
follows.

DEFINITION 3.4. τ(f) = 0,(17).

To define Φ^U), following Massey [2], consider the cohomology
sequence of the pair (B, E) where B replaces the mapping cylinder of
p. Since χ(ξ) = i*(£7) = 0, we may choose aeHn"\E;Z) such that
δ*(a) = U. Since a(ξ) = 0, a may be further assumed to satisfy
β(a) = 0. Then Φ(a) is defined and satisfies

<5*Φ(α) = Φ(b*(a)) = Φ(U) = 0 .

DEFINITION 3.5. p*(Φ3(U)) = U φ ( α ) a s α ranges over elements
aeHn-\E; Z) such that δ*(α) - C7 and (S^2 + w2^)(α) = 0.

PROPOSITION 3.6. The indeterminacy Q of τ(ί) is given by

Q = {Φ(b) + β(c)} ,

where beHn~ι(B;Z) such that Φ(6) is defined and ceH%(B).

(3.6) and (2.1) are now evident.

4* The Peterson-Stein formula and the proof of (2.2)* Twisted
secondary operations satisfy the usual Peterson-Stein formulas. Stated
as (4.1), for simplicity in terms of absolute cohomology classes, is the
one to be used.
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PROPOSITION 4.1. Let / : Y—>X be a map compatible with the
given structures of Y and X as spaces obtained from vector bundles.
Let x 6 Hn(X; Z) satisfy β(f*(x) = 0. Then

Φ(f*(x)) Ξ βfβ(x)eHn+*(Y) mod βHn+1(Y) + f*Hn+z(X) .

The proof of (4.1) is postponed to the end of this section. The
functional operation βf appearing in (4.1) is defined by the generali-
zation of Steenrod's method as given in [7].

We now turn to the proof of (2.2). Consider the portion of the
Moore-Postinkov tower for the associated sphere bundle to the universal
SO(n)-bnnd\e yn displayed in (4.2).

Diagram 4.2. „ fa τrci „ \ <>\

1"
• K(Zt, n + 1)

BS0(n) -^-> K(Z, n) .

Let ίj = g*(7«) and ξ2 = g£(£i). It then suffices to show k2ey(ζ2) By
[9] ^ e α ί f i ) , while, by [1], k2eβqz{k^).

Consider now (4,3), induced by the bundle map gy £2—• fi

Diagram 4.3. ^ n Ώ

Since / ^ e α ^ ) , we may write pf (k±) = /S(αx) for an appropriate
a, G Hn~\Eύ such that δ * ^ ) = C/(f J . Let a2 = g2*(αx). Then (pί
represents 7(f2)

On the other hand, since kzeβqz{k^, by naturality

The result follows by (4.1), which yields βqβ{ax) = Φ(a2).

Proof of (4.1). For this proof we adopt the notations of [11].
Let p: E, Y-+Y x K, Y be the universal example for Φ. Then a
representative φ of Φ(p*(cn)) is defined in [11] by means of a certain
relative transgression sequence for p by a formula φ e /«~1αr~1/3(^%).
However, it is proved in [12] that this transgression sequence, in the
range of dimensions considered, is equivalent to the cohomology
sequence of the triple (M, E, Y), where M is the mapping cylinder of
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p. Let j : Y x K, Y-+M, E be the inclusion. Translating the defini-
tion of φ to this sequence, we have φ e (S*)"1^'*)-1/?^). But this
last is precisely the definition of a representative of βpβ(cn). Thus (4.1)
is valid in the universal example, and hence in general.

5* Proof of (2.3), We now consider bundles £ and £' such that
a(ξ) and α(f') are defined; let £" = £©£' . Denote by Z the mapping
cylinder of p. The following is proved in [7].

PROPOSITION 5.1. There is a natural homeomorphism of pairs Z",
E"-+Zx Z',Ex Z1" w ZxEr extending the identity of B" = B x Bf

and inducing a natural homeomorphism Γ - > Γ Λ T ' .

Now consider (5.2), in which the rows and the middle triangle
are exact. The top row of (5.2) is obtained by splicing (0 —• H*(B) —>
£i \JOJ) —> Jti (1 ) -—>• U) Q$) ΓL \Jΰ ) W l t n Jti (1 ) Q9 (U — ^ i i \t> ) —+ ri (jb ) —•

iί*(T r)-^0), while the triangle is the exact sequence of the pair E",
Ex Zf.

Diagram 5.2.

0 > H*(B") _ ^ l ® i _ H*(E) ® H*(B') —-?-* H*(T) ® ^*(£") -- w — - H*(T") > 0

-?.'- > H*(£" r) -'-* > H*(Γ") > 0

The proof of (2.3) is based on (5.2) as follows. Choose a! e Hn'~\Er)
such that δ'*(αr) - Uf. Let α" =/*(Z7®αO. Then 8"*(a") - *7".
Further, (Sq2 + wί' ^)(α") = 0, as calculation checks. Thus (p"*)~ιΦ(a")
is a representative of τ(ς + £')•

On the other hand, Φ(a") = Φ(f*(U®af)) may be evaluated by
(4.1). Computing, using the Wu formula [9] (Sq2 + w2

 w)(β) = 0 and
denoting by α any class in Hn~ι(E; Z) such that δ*(α) = 17, we have
the following, in which a(a) is the representative of a determined by α.

= (P*
a!(a')

modulo indeterminacies.
This completes the proof of (2.3) and in fact of the following

sharpening.
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COROLLARY 5.3. Under the hypotheses of (2.3), let a(a) and α'(α')
be representatives of a(ξ) and a(ξ') respectively. Then a(a) (g) α'(α')
is a representative of y(ζ 0 £').

6* An example* Let ζ + 1 be the tangent bundle of S4q+1 and
£' + 1 the tangent bundle of S4qf+ί for <?,<?' ̂  1. By [9], a(ξ) Φ 0 mod 0
in H4q+ί(S4q+1) and similarly for f'. It follows by (2.3) that τ(ί 0 £')
is nonzero in H4q+4qf+2(S4q+1 x S4q/+1); the indeterminacy again vanishes.
Thus ξ 0 ζ' has no nonvanishing section.

This result can be obtained without the use of twisted operations,
for the Whitney classes here vanish. That a(ξ) Φ 0 reflects that
Sq2a generates p*Hiq+1(S4q+1) in H4q+ι{E), while y(ξ + ξ') Φ 0 reflects

t h a t Φul(a") generates p"*Hiq+iq/+2(Siq+ι x S4 g / + 1) in H4q+4q'+2(E"), where

Φ1;1 is the ordinary secondary operation associated with the Adem rela-
tion Sq2Sq2 = 0, valid on integer classes.
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