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VECTOR VALUED ORLICZ SPACES GENERALIZED
N-FUNCTIONS, I.

M. S. SKAFF

The theory of Orlicz spaces generated by JV-f unctions of
a real variable is well known. On the other hand, as was
pointed out by Wang, this same theory generated by ^-func-
tions of more than one real variable has not been discussed
in the literature. The purpose of this paper is to develop and
study such a class of generalized iV-functions (called GN-
functions) which are a natural generalization of the functions
studied by Wang and the variable iV-functions by Portnov.
In second part of this study we will utilize GiV-functions to
define vector-valued Orlicz spaces and examine the resulting
theory.

This paper is divided into five sections. In §2, we define and
examine some basic properties of GN-functions. A generalized delta
condition is introduced and characterized in § 3. In § 4 and § 5 we
present, respectively, the theory of an integral mean for GiV-functions
and the concept of a conjugate GN-ίunction. A complete bibliography
on Orlicz spaces, JV-functions, and related material can be found in
[4, 8]. The study of variable iV-f unctions by Portnov can be found
in [6, 7] and the study of nondecreasing iV-f unctions by Wang in [9].

2* GiV-functions* In what follows T will denote a space of
points with σ-finite measure and En n dimensional Euclidean space.

DEFINITION 2.1. Let M{t, x) be a real valued nonnegative function
defined on T x En such that

( i ) M(t, x) = 0 if and only if x = 0 for all teT,xeEn,
(ii) M(t, x) is a continuous convex function of x for each t and

a measurable function of t for each x,

(iii) For each teT, Iim |g|Bίe.
 M&' x) - oo, and

\x I

(iv) There is a constant d ^ 0 such that

( * ) inf inf k(t, c) > 0

where

«, c) = | M , M(t, c) = sup M(t, x) ,
M(t, C) l*l=e

M(t, c) = inf M(t, x)
\x\=e
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and if d > 0, then M(t, d) is an integrable function of t. We call a
function satisfying properties (i)—(iv) a generalized N-function or a
GN-function.

GiV-functions are coordinate independent and are not necessarily
symmetric. Therefore, such functions as M(t, x) = x\ + x\ + (xλ — x2)

2

which are not nondecreasing (as defined in [9]) are allowed in the class
of GN-ίunctions. The next theorem illustrates this point.

THEOREM 2.1. If M(t, x) is a GN-function and A is an orthogonal
linear transformation defined on En with range in E%, then M(t, x) =
M(t, Ax) is a GN-function.

Properties (i)—(iv) when applied to M(t> x) follow immediately from
the same properties for Λf(ί, x) (see [8, Th. 8.1]).

The next theorem characterizes a part of property (iv) in Defini-
tion 2.1 and provides a means of comparing function values at different
points for GN-functions when | x | is large.

THEOREM 2.2. A necessary and sufficient condition that (*) hold
is that if \x\ <̂  \y\, then there exist constants K ^ 1 and d ^ 0 such
that M(t, x) ^ KM{t, y) for each te T and \x\^d.

If (*) is true, then there exists a constant d ^ 0 such that l(t) =
infc^d k(t, c) > 0 for each t in T. By definition of k(t, c) this means

(2.2.1) j | f ( ί , y) ^ M(t, \ y \ ) ^ l(t)M(t, | y |)

for any y such that | y \ = c >̂ d. On the other hand, if d <£ | x \ ^
\y\, then the convexity of M(t, x) and M(t, 0) = 0 yields

(2.2.2) M(t, I y |) ^ sup Jlf(t, 2) .

Combining (2.2.1) and (2.2.2) we arrive at

Λf(ί, y) ^ i(t) sup M(t, z) ^ K-'Mit, x)
•\χ\

whenever d^\x\^\y\ where K~γ = inf, Z(ί) > 0
The converse follows easily from the condition in the theorem.
It is interesting to note that if M(t, x) is a GN-ί unction, then

2M(t, x) = M(t, x) + M{t, x) is also a GiV-function where M(t, x) is de-
fined as in Theorem 2.1. This means we can construct a symmetric
(in x) GiV-function from one which does not possess this property.
For, if M(t, x) = M{t, —x), then M(t, x) is clearly symmetric in x.

Property (iv) of Definition 2.1 provides the condition which allows
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a natural generalization from iV-functions of a real variable to those
of several real variables. Let us observe that the function M(t, c) is
also a GiV-f unction of a real nonnegative variable c. On the other
hand, M(t, c) need not even be convex in c.

Since M(t, c) ̂  M(t, x) ^ M(£, c) for each x such that | x \ = c, we
would like to find a GN-tunction which bounds M(t, c) from below for
all c. If d = 0 in Theorem 2.2, then K~ιM{t, c) would do.

One might accomplish the construction of such a function by taking
the supremum of a class of convex functions bounding M(t, c) from
below. This function would be convex. However, this class may be
empty. The next theorem shows that this is not the case whenever
M(t, x) is a GN-ΐunction. The construction employed can be applied
to more general settings than exist here.

THEOREM 2.3. If M(t, x) is a GN-functίon and M(t, c) is defin-
ed as above, then there exists a GN-function R(t, c) such that R(t, c) fg
M(t, c) for all c ^ 0.

Since M(t, c) satisfies property (iii) of Definition 2.1, given any
d > 0 there is a c0 > 0 such that M(t, c) ^ dc whenever c ^ cQ. Let
us define the function

sup M(t,
Jo<wa w

P(tyc) = )c^co
[M(t, c) if 0 ^ c < c0 .

Then it is easy to show that (i) P(t, ac) ̂  aP(t, c) for 0 ^ a ^ 1, (ii)
{P(t, c)/c} is a nondecreasing function of c, and (iii) P(£, c) is finite
for each c. We now obtain the desired function R(t, c) by defining

R(t,c) =

where

Q(t,c)= J
τ< c°> if 0 < c

We have immediately that

Λ(ίf c) ^ cQ(ί, c) = P(ί, c) S M(t, c) .

If is not difficult to show that R(t, c) is also a GN-ΐ unction.
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3* Delta condition* In this section a generalized growth con-
dition is defined for GiV-f unctions. This growth or delta condition
generalizes that definition usually given for a real variable N-function
(e.g., see [4, 6, 7]).

DEFINITION 3.1. We say a GiV-function M(t, x) satisfies a A-con-
dition if there exist a constant K ^ 2 and a non-negative measurable
function δ(t) such that the function M(t, 2d(t)) is integrable over the
domain T and such that for almost all t in T we have

(**) M(t, 2x) ^ KM(t, x)

for all x satisfying | x | ;> δ(t).
We say a GiV-function satisfies a A0-condition if it satisfies a Δ-

condition with δ(t) — 0 for almost all t in T.

In Definition 3.1 we could have used any constant I > 1 in place
of the scalar 2 in (**). This is the basis of the next theorem which
gives an equivalent definition to that employed in 3.1.

THEOREM 3.1. A GN-function M{t, x) satisfies a Δ-conditίon if
and only if given any I > 1 there exists a constant Kx ^ 2 and a
nonnegative measurable function δ(t) such that M(t, 2δ(t)) is integra-
ble over T and such that for almost all t in T we have

(3.1.1) M(t, Ix) ^ KxM(t, x)

whenever \ x \ ̂  δ(t).

Suppose M(t, x) satisfies a J-condition and I > 1. We choose m
so large that 2m ^ I. Then by convexity and our assumption of a
J-condition there is a K ^ 2 and measurable δ(t) ^ 0 such that for
almost all ί in Γ

M(t, Ix) ^ AΓ(ί, 2mx) ^ KmM(t, x)

whenever \x\ ^ <?(£). Therefore (3.1.1) holds with Kx = i ί m . The con-
verse follows as easily.

Whenever we deal with convex functions of several variables the
concept of a one sided directional derivative plays an important role.
The next result utilizes such a function, so we define it now.

DEFINITION 3.2. For each t m T the directional derivative of a
GN-function M(t, x) in a direction y is defined by

M'(t, x; v) = lim
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The important properties of directional derivatives of convex func-
tions of several variables which will be needed can be found in [3, 8].
Using the directional derivative defined above, the next result charac-
terizes the delta condition and generalizes similar results given in
[4, 6, 7].

THEOREM 3.2. A GN-function M(t, x) satisfies a J-condition if
and only if there exists a nonnegative measurable function δ(t) such
that M(t, 2δ(t)) is integrable over T and a constant c > 1 such that
for almost all t in T

/o o i\ ikZ (t, X] X) ,
( 3 ' 2 Λ ) M(t, x) < C

whenever \ x | ^ δ(t). Moreover, if (3.2.1) holds, then for almost all
t in T and for each x such that \x\*z δ(t) we have

(3.2.2) M(t, px) < M(t, x)pc

for all p > 1.

Suppose M(t, x) satisfies a J-condition. Then, by convexity (see,
[8, Th. 5.3]), we must have for some K ^ 2 and δ(t) ^ 0

KM(t, x) ^ M(t, 2x) ^ M(t, x) + M'(t, x; x)

whenever \x\ ^ δ(t). This means (3.2.1) holds with c — K.
Conversely, suppose (3.2.1) holds. We choose s such that s ^ 1.

Then, by assumption, there is a constant c > 1 and δ(t) > 0 such that
for almost all t in T

(3.2.3) M'^ s x ; sx) > c
M(t, sx)

whenever | a? | Ξ> δ(t). On the other hand, we have

._ . ,. A- M(t, sx) = lim M«> s x

\oΔΛ) fa += M'(t, sx; x) .

Since M'{t, sx; sx) — sM'(t, sx; x) for all s ^ 0, we obtain from (3.2.3)
using (3.2.4) that

(3.2.5) log M(t, sx) |:=? = Γ M'(t>sx'>χ) ds <c[-^- = log 2C .

Ji M(t, SX) Ji S

Therefore, upon simplifying the last inequality, we arrive at

M(t, 2x) < 2cM(t, x)
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whenever \x\ ^ δ(t) proving the first part of the theorem.
The last inequality (3.2.2) in the theorem is obtained from (3.2.5)

whenever we integrate over 1 ^ s ^ p, p > 1.
Inequality (3.2.2) states that GiV-functions which satisfy a J-con-

dition do not grow faster than a power function along any ray pass-
ing through the origin. Let us also observe that any function M(t, x)
defined on T x En which is either subadditive or a positive homogene-
ous (of degree one) convex function always satisfies a J0-condition.

4* Generalized mean functions* In this section an integral
mean will be defined for GiV-f unctions. We will show under what
conditions the mean function is a GiV-function and satisfies a J-con-
dition. Moreover, we examine how the minimizing points in the de-
finition of the mean function affect a basic property of the ordinary
integral mean.

Let us begin with a definition.

DEFINITION 4.1. For each t in T and h > 0 let

Mh(t, x) = \ M(t, x + y)Jh(y)dy

where Jh(y) is a nonnegative, c°° function with compact support in a

ball of radius h such that I Jk(y)dt = 1. Moreover, let x0 be any

point (depending on h, t) which satisfies the inequality

Mh(t, Xo) ^ Mh(t, x)

for all x in En. Then the function Mh(t, x) defined for each ί in Γ
and h > 0 by

Mh(tf χ) = Mh(t, x + x0) - Mh(t, x0)

is called a mean function for M(t, x) relative to the minimizing point

The next theorem shows under what condition Mh(t, x) is a GN-
f unction.

THEOREM 4.1. // M(t, x) is a GN-function for which M(t, c) is
integrable in t for each c, then Mh(t, x) is a GN-function.

We will show this result by justifying conditions (i)—(iv) of De-
finition 2.1. By hypothesis and the choice of xQ, we have for each h,
Mh(t, x) ^ 0 and Mh(t, 0) = 0. On the other hand, if x Φ 0, then
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M(tf x) > 0, and hence there is constant h0 such that

a = inf,,l:s:λoΛf(ί, α + z) > 0 .

However, since M(t, x) = 0 if and only if x = 0, the minimizing points
x0 tend to zero as h tends to zero. Therefore, we can choose g0 ^ h0

such that if h ^ gQ, then M(£, a?0 + l/) < a f ° r all 7/ for which \xo + y\ <h.
For this #0 we obtain the inequality

M(t, x + Xo + y) ^ inf Λf(ί, a; + z) ^ α > Af(ί, x0 + y)

whenever \x0 + y\ ^ 9o» This means for some h ^ g0 we have

JlfA(ί, a? + Xo) > Mh(t, x,)

or Mh(t, x) > 0 if x ^ 0 which proves property (i).
Properties (ii) and (iii) for Mk(t, x) follow easily from the same

properties for M(t, x). Let us now show (iv). By assumption, there
is a constant d >̂ 0 such that

(4.1.1) l(t)M(t, c) ^ M(t, c)

for all c ^ d. Furthermore, it is not difficult to show that for all c
we have

(4.1.2) M(t, c) ^ sup M(t, x)
\χ\£c

and for some fixed z,

(4.1.3) inf M(t, x + z) ^ inf M(t, x + z) .
| z | £ e | * | = c

Using (4.1.2), we obtain for each t in Γ that

l(t) sup M(ί, j?) ^ l(t) sup ilf(ί, w)

^ l(t) sup Λf(ί, w)
|w|=c+|xo+J/il

where z = x + x0 + y. On the other hand, by (4.1.1) and (4.1.3), we
achieve

l(t) sup M(t, w) ^ inf M(t, w)
|w|=c+|a?o+^ll l«Ί=c+!α?o+2/i I

(4.1.5) < inf M(t, x + xQ + y)

< inf M(t, x + Xo + y) .
| » |=c

If we combine (4.1.4) and (4.1.5), then for all c >̂ ώ we arrive at

Z(ί) sup ikf(£, a? + α;0 + y) ^ inf M(ί, x + x0 + y).
\x\=c
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From this inequality we obtain

(4
inf Mh(t, &) έ \ inf {M(t, x + x0 + y) - M(t, x0 + y)}Jh(y)dy

. 1 . 6 ) lx]=c ^En ]x]==c

^ ί {Z(ί) sup M(ί, x + xo + y)-M(t, xQ + y)}Jh(y)dy
j £ * |*|=c

and

(4.1.7) sup MA(£, a?) <̂  1 sup ikf(ί, a? + x0 + y)Jh(y)dy .
|x|=β J # % |»|=c

Moreover, since limea=eesupie |=e M(t, x + x0 + y) = °° for fixed x0, y such
that 11/| ^ λ, given ίΓ^ί) = 2 sup,^^ M(£, £0 4- i/Vinft l(t) there is a
di > 0 such that if c ^ d lf then sup | a ; | = c M(ί, a; + xQ + y) ^ J£Ί. There-
fore, using (4.1.6) and (4.1.7), we achieve the inequalities

inf Mh(t, x) sup M(t, x0 + ?/)
(4.1.8) W ϊ ^ ' ^

sup MΛ(ί, a?) inf sup M{t, x + x0 +y)
\v\£h \x\=c

for all c ^ dQ — max (d, (Ẑ  | x01). Taking the infimum of both sides of
(4.1.8) over t, shows the first part of property (iv). To show the
latter part, assume d0 > 0. Then &vp]x]=doMh(t,x) is integrable over
ί in Γ since it is bounded by the integrable function M(t, d2) where
d2 = dQ + I x01 + h. This proves property (iv) and the theorem.

In the next theorem we show under what condition Mh(t, x) satisfies
a ^-condition.

THEOREM 4.2. If M(t, x) is a GN-function satisfying a Δ-condi-
tion and for which M(t, c) is integrable in t for each c, then Mh(t, x)
satisfies a d-condition.

It suffices to show that Mh(t, x) satisfies a J-condition. For, Mh(t, x)
is the sum of a constant and a translation of Mh(tf x) and neither of
these operations affects the growth condition. Let us observe first
that if I x I ̂  2, | y \ ̂  h ^ 1, then | 2a? + y \ ̂  3 | x + y \. Hence, by
Theorem 2.2, there are constants K ^ 1 and dt ^ 0 such that

Mh(t, 2x)^κ\ M(t, 3(a? + y))Jh{y)dy

for all x such that | x \ ̂  d2 = max (dl9 2). On the other hand, by
Theorem 3.1, there is a constant Kz i> 2 and δ(t) :> 0 such that for
almost all ί in Γ
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[ M(t, 3(x + y))Jh(y)dy g

for all x, y such that | x + y | ;> δ(t) where \y\ <Zh. Combining the
above two inequalities we achieve

Mh(t, 2x) ^ KKBMh(t, x)

for all I x \ > max (d2, δ(t) + h) = δ^t). _Since M(ί, 231(t)) is integrable
over T, this yields the integrability of Mh(t, 2<51(£)) proving the theorem.

For each t in T and each x in J5"1 it is known that limΛ=0 Mh(t, x) =
M(t, x). However, the same property does not hold in general for
Mh(ty x)\ This is the point of the next theorem.

THEOREM 4.3. For each h > 0 let x% be the minimizing point
of Mh(t, x) defining Mh(t, x). Then for each t in T and each x in
En, there exists K(t, x) such that

lim Mh(t, x) = M(t, x) + K(t, x) lim | x* \ .

By definition of Mh(t, x) we can write

I Mh(t, x) - M(t, x) I
(4.3.1) f

S I M(t, x + x% + y)- M(t, xh

Q + y)-M(t, x) \ Jh(y)dy .

However, we know that

I M(t, x + x* + y) - M(t, xh

0 + y) - M(t, x) \

(4.3.2) ^ I M(t, x + xh

Q + y) - M(t, x) \

+ I M(t, xh

0 + y) - M(t, y)\ + \ M(t, y) \ .

Moreover, since ikf(ί, x) is a convex function, it satisfies a Lipshitz
condition on compact subsets of E* (see, [8, Th. 5.1]). Therefore, there
exist Kx(t9 x) and K2(t, x) such that

(4.3.3) I M(t, x + xi + y ) - M(t, x) \ ̂  Kx(t, x ) \ x h

Q + y \

a n d

( 4 . 3 . 4 ) I M(t, xh

0 + y ) ~ M(t, y) \ ̂  K2(t, x) j x* | .

If we combine (4.3.3) and (4.3.4) with (4.3.2) and if we substitute tha
resulting expression into (4.3.1), we achieve the inequality

I Mh(t, x) - M(t, x) I ̂  I xt I (K&, x) + K2(t, x))

+ \ Kt(t, x)\y\ Jh(y)dy + ί |M(t, y) \ Jh(y)dy .
JEn JEK
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Since the last two integrals on the right side tend to zero as h tends
to zero, we prove the theorem by setting K(t, x) — K^t, x) + K2(t, x).

COROLLARY 4.3.1. Suppose M(t, x) is a GN-function such that
M(t, x) — M(t, —x). Then for each t in T and x in En,

lim Mh(t, x) = M(t, x) .

This result is clear since limA=01 αtf \ — 0 if M(t, x) = M(t, —x). In
fact, if M(t, x) is even in x then the x$ — 0 for all h.

For each t in T let Ah denote the set of minimizing points of
Mh(t, x) and let B represent the null space of M(t, x) relative to points
in En, i.e.,

B = {y in En: M(t, y) = 0} .

If M(t, x) is a GiV-function, then B — {0}. For the sake of argument,
let us suppose that M(t, x) has all the properties of a GN-ίunction
except that M(t, x) = 0 need not imply x = 0. We will show the re-
lationships that exist between Ah and B. This is the content of the
next few theorems.

THEOREM 4.4. The sets B and Ah are closed convex sets.

This result follows from the convexity and continuity of M(t, x)
in x for each t in T.

THEOREM 4.5. Let Be = {x: M(t, x) < e} for each t in T. Then
given any e > 0, there is a constant hQ > 0 such that Ah £ Be for
each h :g h0.

Since BSBe, we can choose h0 sufficiently small so that if x is
in B, then x + y is in Be for all y such that | y \ ̂  hQ. Let z be an
arbitrary but fixed point in Ah, h ^ h0. Then

Mh(t, z) ^ Mh(t, x)

for all x. Therefore, if x is in J5, we have by our choice of h0 that
Mh(t, z) < e. Letting h tend to zero yields M(t, z) < e, i.e., z in Be.

We have commented above that Ah = {0} if M(t, x) — M(t, —x).
It is also true if M(t, x) is strictly convex in x for each t in T.

THEOREM 4.6. Suppose M(t, x) is a GN-function which is strict-
ly convex in x for each t. Then for each h, Ak = {0}.

Suppose there exists y0 Φ x0 such that x0, y0 are in Ah. Let z —
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(%o + yo)β Then, since M(t, x) is strictly convex, Mh(t, x) is strictly
convex in x. Therefore, we have

(4.6.1) Mh(t, z)< - i - Mh(t, Xo) + 4 " Mh(t, Vo) .

Δ Δ

However, xOi y0 being in Ah reduces (4.6.1) to the inequality

Mh(t, z) < Mh(t, x)

for all x. This means z is in Ah and x0, y0 are not in Ah which is a
contradiction. Hence, x0 = y0. Since M{t, x) is a GN-function, B = {0}.
In this case x0 = y0 = 0.

5* Conjugate GiV-f unctions* In the study of Orlicz spaces the
concept of a conjugate iV-fuction plays a significant role. In particular,
the definition of these linear spaces may involve a conjugate function.
The study of convex functions of several variables and their related
conjugate functions can be found in [1, 2, 3, 5].

In this section the concept of a generalized conjugate function is
defined and some of its important properties are examined. Many of
the standard results which hold for iV-functions and conjugate func-
tions of a real variable will be generalized here.

We begin with the main definition.

DEFINITION 5.1. Let M(t, x) be a GJV-function. Then we call
ikf *(£, x) the conjugate function of M(t, x) if for each ί in Γ

( + ) M*(t, x) = sup {zx - M(t, z)} .
z in En

The notation zx represents the scalar product of the vectors x and z.
Let us observe that if zx^O in ( + ), then zx — M(t,z)^0. This

means we could, equivalently, restrict the definition to those z for
which zx >̂ 0. Moreover, the equation ( + ) yields immediately for each
t in T that

( + + ) zx£ M(t,z) + M*(t,x)

for all z, x in En. Inequality ( + + ) could have been used as a defini-
tion of the conjugate function.

Fenchel [3] states that to every z in En such that M'(t, z;y)<°°
for all y for which it is defined, there is at least one point x in En

such that equality holds in ( + + ) . However, by [8, Th. 5.2] when
applied to GN-f unctions, we know for z in En that M'(t, z; y) < oo
for all y. Therefore, the supremum in ( + ) is attained for at least
one point.
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The next theorem gives a necessary and sufficient condition in
order that equality hold in ( + + ) .

THEOREM 5.1. Let M(t, x) be a GN-function for which M'(t, x; y)
is linear in y. Then, given any x0, z

i — M'(t, xo; e{) for all i = 1,
• , n if and only if zx0 — M(t, x0) + ikf *(£, z) where {ej is a basis
for En.

Clearly, if

zx0 = M(t, xQ) + M*(t, z)

for each t in T, then zi — M'(t, xo; e{) for each i. On the other hand,
suppose zι — M\t, xo; e^ for each i = 1, , n. Then, by convexity
of M(t, x) and linearity of M'(t, x; y), we have for ί in Γ

(5.1.1) M{t, x) ^ M(t, Xo) + z(x - x0)

for all x in En. Rewriting (5.1.1) we obtain for all x in En

xoz — M{t, x0) ^ xz — M(t, x) .

Therefore, we have

xoz - M(t, x0) ^ sup {xz - M(t, x)} = M*(t, z)
X

or

(5.1.2) xQz ^ M(t, x0) + M*(t, z) .

Since ( + + ) always holds, combining (5.1.2) with (+4-) shows that
equality holds in (5.1.2).

The properties of GN-functions possessed by M*(t,x) are give in
the next result.

THEOREM 5.2. Let M(t, x) be a GN-functions for which

lim Mlt> χ ) - 0
l i m ! a ; | = 0 j j U

\x\
for each t in T. Then M*(t, x) satisfies properties (i)—(iii) of De-
finition 2.1. Moreover, if M(t, x) — M(t, —x), then

M*(t,x) = Af*(ί, -x) .

Condition (i) for M*(t,x) follows directly from the same condition
for M(t, x) and the equation in the hypothesis. Convexity follows
from the inequality
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ilf *(£, ax + by) = sup {axz — aM(t, z) + byz + bM(t, z)}

^ aM*(ί, x) + δilf *(£, i/)

where a + 6 = 1, a ^ 0, 6 ^ 0. Measurability in £ also follows from
the same property for M(t, x). Finally, if we substitute z = kx/\ x |
into (+ +) we arrive at

Mίt k x

(5.2.1) M*(t, x) M

However, M(t, kx/\ x\) is bounded on every compact set in En (see
[8, Th. 2.5]). Letting | x | tend to infinity in (5.2.1) results in proper-
ty (iii).

Suppose M(t, x) is an even function of x. Then

M*(t, x) = sup {-zx - M(t, -z)}
z

= swp{z(-x) - M(t, z)} = M*(t, -x) .
z

Finally, we give conditions when M{t, x) is the conjugate function
of M*(t, x).

THEOREM 5.3. Suppose M(t, x) is a GN-function for which M'{t,
x; y) is linear in y. Then M(t, x) is the conjugate function of M*(t> x).

Since M{t, x) is convex in x and M'(t, x; y) is linear in y, we
achieve for any x, x0 in En.

M(t, x) - M(t, x0) ^ M'(t, xo; x - Xo)

^ M'(t, xo; x) — M'(t, xo; x0)

from which it follows that

(5.3.1) M'{t, xQ; x0) - M(t, x0) ^ sup {xy - M(t, x)}
X

where yι = M'(t, xo; et) for each i = 1, , n and {e^ basis vectors for
En. On the other hand, it is clear that

(5.3.2) M'(ί, xo; x0) - M(t, x0) ^ sup {xy - M(t, x)}
X

since M'(t, xo; x0) = xoy. Combining (5.3.1) and (5.3.2) we obtain the
equation

(5.3.3) xoy - M(t, x0) - Λf *(t, y).

However, by ( + + ) , we know that

(5.3.4) xQz ^ M(t, Xo) + M*(t, z)
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for all xOJ z in En. Rewriting (5.3.4) yields

(5.3.5) M(t, x0) ^ supz {xQz - M*(t, z)} .

Since (5.3.3) holds for some y, it follows that

(5.3.6) M(t, x0) = XoV - M*(t, y) ^ sup, {xoz - M*(t, z)} .

Therefore, combining (5.3.5) and (5.3.6) produces the desired result that

M(t, xQ) = sup {xoz - M*(t, z)} .
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