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MEROMORPHIC MINIMAL SURFACES

E. F. BECKENBACH AND G. A. HUTCHISON

Meromorphic minimal surfaces are defined in this paper,
and some of their differential-geometric properties are noted.
The first fundamental theorem of Nevanlinna for meromorphic
functions of a complex variable is extended so as to apply to
these surfaces, as is the Ahlfors-Shimizu spherical version of
this theorem. For these results, the classical proximity and
enumerative functions of complex-variable theory are gener-
alized, and a new visibility function is introduced. Convexity
properties of some of these functions are established.

For plane meromorphic maps, the visibility function vanishes
at all points on the plane but is positive at all other points of
space. In general, in the present development, the sum of
the enumerative function and the visibility function corresponds
to the enumerative function in the classical theory.

Let a surface S be given by

( 1 ) S:x3' = xd(u9v)f j = 1 , 2 , 3 .

Then S is said to be given in terms of isothermal parameters (u, v)

if and only if the representation (1) is such that

(2) E=G = \(u, v) , F = 0 ,

where

Such an isothermal representation is conformal, or angle-preserving,

except at points where X(u> v) — 0.

According to a theorem of Weierstrass [13, p. 27], a necessary

and sufficient condition that a surface S, given in terms of isothermal

parameters, be minimal is that the coordinate functions be harmonic,

that is, that for all (u, v)eD the functions x^u, v), j = 1, 2, 3, satisfy

the equation

( 4 ) Δxάu, v) = 0,

where Δ denotes the Laplace operator,

< 5 > '-ir. + Tf
du2 dvz

Then in any simply connected part of D, the functions given by (1)
17
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are the real parts of analytic functions of a complex variable,

( 6 ) Xj = &f,{w) , w = u + iv ,

and (2) is equivalent to

(7) Σ Γ dfAw) T = o
J = I L COT J

If, in an isothermal representation (1) of a minimal surface S, one
of the coordinate functions is identically zero, say x3(u, v) = 0, then
the map lies on a plane, and either

x^u, v) + ix2(u, v) or x2(u, v) + ^ ( u , v)

is an analytic function of the complex variable w = u + iv. Then
x^u, v) and cc2(w, v) are said to form a couple of conjugate harmonic
functions. By analogy, the coordinate functions (1) of any minimal
surface S in isothermal representation are called a triple of conjugate
harmonic functions [7]. The generalization to /^-tuples of conjugate
harmonic functions Xj(u,v), j = 1,2, ---, μ, as isothermal coordinate
functions of a minimal surface S in ^-dimensional Euclidean space, is
rather direct and will not be pursued further in this paper.1

The analogy here indicated between analytic functions of a complex
variable and isothermal representations of minimal surfaces has often
been noted, and since the time of Weierstrass it has served as a
guiding principle in the study of minimal surfaces. It is the purpose
of the present paper, as announced earlier [6], to pursue this analogy
in the direction of the classical Nevanlinna theory [10] of meromorphic
functions of a complex variable. Applications [4] to rational minimal
surfaces and a generalization [2, 3] of the second fundamental theorem
of Nevanlinna to meromorphic minimal surfaces will appear elsewhere.

2* Meromorphic minimal surfaces* Let the real-valued func-
tion x(u, v) be harmonic for (u, v) in a deleted circular neighborhood

of a point Po: (u0, v0), that is, for (u, v) satisfying

0 < (u - u0)
2 + (v - vQ)2 < e2 .

Then x(u, v) can be represented [12] in ^ ε*(P 0) by a series of the form

( 8 ) x(u, v) = c log r + Σ rk(ak cos kθ + bk sin kθ) ,

where (r, θ) are polar coordinates with pole Po:

1 By request, the results of this paper will be summarized elsewhere for minimal
surfaces in ^-dimensional Euclidean space, μ ^ 2.
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u — u0 — r cos θ , v — v0 = r sin 0 .

The constant δ0 is arbitrary; throughout this paper, we shall assume
that it has been assigned the value 0,

( 9) δo = 0 .

Otherwise, the constants c,ak(k = 0, ± 1 , ± 2 , •••), and bk (k — ± 1 ,
± 2 , •••) are uniquely determined by the function x(u,v).

We then have, for ω — w — w0 = (u + iv) — (u0 + iv0),

x(u, v) = &[clogω + f(ω)] , ω = r(cos θ + ίsinθ) ,

where

f(ω)= ± (ak-ibk)ωk

A=-oo

is an analytic function of ω in ^
By (7), three such functions,

xs(u, v) = c, log r
oo

(10) + Σ rk(aj,k cos &# + 6y,fc sin

log ω + fj(ω)] , i = 1, 2, 3,

harmonic in ^ ε * ( P 0 ) , are a triple of conjugate harmonic functions there
if and only if

Now

fά(ω) = Σ (a,-,* - ibj>k)ωk ,
A ; = — o o

so that

where for j — 1, 2, 3 we have

(13) α i f 0 - cy , βj,0 = 0 ,

and

{14) aJtk = kaitk , βilk = kbjtk , k = ± 1 , ± 2 , . . . .

By (11) and (12), then, the functions (10) are a triple of conjugate
harmonic functions in ^ ε *(P 0 ) if and only if
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Σ Σ Σ (ccj,, - iβ,.ι) («/.*-« - iβj,k-ι)ωk-2 = 0 .
3=1 &=—oo l=—oo

Accordingly, the functions (10) are a triple of conjugate harmonic
functions in ^ e *(P 0 ) if and only if

Σ Σ (<*i,ι - iβi,ι)(<*i.k-ι - iβs,k-ι) = 0
Z=—co y = i

for all k,k = 0, ± 1 , ± 2 , , that is, if and only if

(15) Σ Σ («/.!«/,*-! - βj,ιβi.k-i) - o

and

(16) Σ Σ ((*3.ιβi*-ι + ocitk^βjtl) = 0

for all fe, k = 0, ± 1 , ± 2 , •••.

Condition (16) is equivalent to

(17) Σ Σ ociΛβith^ = 0 ,

so that the functions (10) are a triple of conjugate harmonic functions
in ^y(Po) if and only if (15) and (17) hold for all k, k = 0, ± 1 , ± 2 , . . . .

In terms of the original coefficients ciy aj>k, and bj)k, by (13) and
(14) the relation (15) can be written (cf. [5]) as

(18) 2k Σ aj9kcs + Σ l(k - I) Σ (αy.,^,^, - 6^,5^^,) = 0
j = l Z = -oo j = l

for fc = ± 1 , ± 2 , , and as

(19) Σ 4 - Σ I2 Σ (αy.iαy.-, - 6if,δyf-,) = 0

for k — 0, and (17) can be written as

(20) k Σ &y,*cy + Σ ί ( i - ! ) Σ «y,i6/,*-i = °
i=l Z=-oo j=l

for fe = 0, ± 1 , ±2, . . . .
Thus, (18), (19), and (20) are necessary and sufficient conditions-

for the functions (10) to be a triple of conjugate harmonic functions.
If for some ε > 0, the functions (10) are a triple of conjugate

harmonic functions in ^ * ( P 0 ) , that is, if the functions (10) are the
coordinate functions of a minimal surface S in isothermal representation
for (u, v) e %f*(P0), then [unless Po turns out to be a regular point of
S (see p. 21)], we shall say that Po is an isolated singular point of £L
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If S has an isolated singular point at Po, and for an infinitude
of negative indices I we have

(21) Σ (cήtl + b)a) Φ 0 ,

then we say that the singularity of S at Po is essential; otherwise,
we say that it is nonessential.

If S has a nonessential isolated singularity at Po, and the lowest
index I — t for which (21) holds is negative, then we say that S has
a pole of order 11 | at Po. By definition, then, the poles of S are
isolated.

We note by (19) that if (21) does not hold for any negative value
of I, that is, if for j — 1, 2, 3 we have

α i f ϊ = δ i f l = 0 , i = - 1 , - 2 , . . . ,

then

(22) Σ C 5 = 0 '

or <?! = c2 = c3 = 0. Hence, a minimal surface given in isothermal
representation by functions Xj(u9 v) cannot have an isolated singularity
that is merely logarithmic.

If (21) does not hold for any I < 0, then we say that S has a
removable singularity at Po. In this case, we adjoin to S the point

(23) α0 = (α1)0, α2,0, α3)0)

corresponding to Po, if indeed this correspondence was not already
given in the definition of S. Then the functions (10) determine an
isothermal map of the neighborhood ^ e (P 0 ) , that is, of the set of
values (u, v) satisfying

( u - u0)
2 + ( v - vQy < ε 2 ,

onto the (extended) surface, which we again denote by S. We then
say that S is regular at Po.

If S is regular at Po, then either each xs(u, v) satisfies

Xj(u, v) = α i f0 , j = 1, 2, 3 ,

and S reduces to a point, or there is a lowest positive index I — t for
which (21) holds. In the former case, we say that S is a constant
minimal surface. In the latter case, we say that S has an appoint
of order t at Po; in particular, if α0 = 0 = (0, 0, 0) then we say that
S has a zero of order t at Po.

If S has a pole or order — t > 0 or an α0-point of order t > 0 at



22 E. F. BECKENBACH AND G. A. HUTCHISON

Po, then for k = 2£, (18) and (20) reduce respectively to

so that,

(24)

f

since

3

V (π*

3

^-ι aj t
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Σ
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ί
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o ,

3
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=

0
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•

In what follows, we shall frequently use the notation

o(f(r)) or O(ψ(r))

to indicate a function (not always the same function) φ(r, θ) such that,
uniformly with respect to θ, we have

lim ^ ( r > θ) = 0 or ΠE
()

, fl)

respectively.
If S has a pole of order -t > 0 at Po, then from (10) and (24)

we obtain

Σ ί»i( ] ίΣ

(25) + 2 Σ ^ ,t&i,ί cos tθ sin

= ί 2 t Σ «},« + o(r2ί) .

Similarly, if S has an α0-point of order t > 0 at Po, then

(26) Σ K (^, v) - α i>0]
2 = r2 ί Σ α}ft + o(r2i) .

By (24) and (26) we thus see that if S does not reduce to a point,
then not only the poles but also the finite a-points of S are isolated [5].

In analogy with complex-variable theory, for the present develop-
ment we extend Euclidean 3-space by postulating a single ideal point
at oo. In this space, the transformation

x* " i — ^ 3 - λ * ό

effects an inversion in the unit sphere with center at the origin, and
the transformation is isothermal (see § 6, below). If S has a pole of
order — t > 0 at Po, then the surface
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S* : Xj = x*(u, v) = Xj^u' v' , j — 1, 2, 3 ,

has a zero of order | ί | at Po. The surface S* will not ordinarily be
a minimal surface; for example, if S is a plane not passing through
the origin, then S* will be a sphere. Since the transformation is
isothermal, however, we say that angles between curves on S* at the
origin correspond to angles of the same measure on S at oo,

Suppose that S has a pole of order — t > 0 at Po: (uQ, v0), let
Pi (uu #i) a n d PziUz, v2) be nearby points at which S does not have a
zero, with

( % — u0, Vj - v0) = {rά cos θj, Tj s in θά) , j = 1,2 ,

and consider the vectors from Po to Pι and from Po to P2. An angle
from the first of these to the second has measure θ2 — θγ. The corres-
ponding space vectors joining points on S* meet at an angle Θ, 0 ̂
Θ <£ π, which, by (25), satisfies

3

l^j\tol9 VijjlΛj \iλ,2, v2)\

COS Θ = ^ ^

Σ ^K α i , ί c o s ^ i + bj,t sin tΘJrKaj.t cos ί#2 + δy^ sin ί^2) +

rf Σ α?,ί + o(r") P rf Σ α?« + °(r2*) r

By (24), this reduces to

/ 3 \

( Σ α?,ί )(cos tθ1 cos tθ2 + sin ί^i sm ί^2) + o(l)
cos 0 = -^i=i

3

3=1

= cos ί(tf2 - 00

so t h a t if #2 — 0X has a limit #0 as rι —> 0 and r 2 —> 0,

lim (6>2 - θ,) = θ0 ,

then

rγ-*0
r2-»0

lim cos θ — cos tθ0 .
ro-*0
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Hence the magnitudes of angles at Po are multiplied by 11 | in the map
on /S* at the origin. Therefore, by the convention given above, they
are multiplied by \t\ in the map on S at oo,

Similarly, by (24) and (26), if S has an α-point of order t > 0 at
Po, then the magnitudes of angles at Po are multiplied by t in the
map on S at α.

If, except for poles, S is a regular minimal surface given in
isothermal representation by (1) for (u, v) in a finite domain D, then
we say that S is a meromorphic minimal surface for (u, v) in D.
In particular, if D is the entire finite plane, then we say simply that
S is a meromorphic minimal surface. If D is the entire finite plane
and S has no poles in D, then we say that S is an entire minimal
surface.

For example, the functions

w

( 2 7 )

— + w) = (— + r) cos θ ,
w / \r /

x2 = &i(±- -w) = (±- + r) sin θ ,
\w / \r /

w) = 2 log r , w = r(cos ι9 + i sin 0) ,

are the coordinate functions of a meromorphic minimal surface (actually
a catenoid) in isothermal representation. Its single pole in the finite
plane is at the origin and is of order 1.

The minimal surface of Enneper [11, p. 221] is given in isothermal
representation by

Xl = &(Sw - w3) = 3r cos θ - r3 cos Sθ ,

(28) x2 = &i{Zw + wz) = - 3 r sin θ - r3 sin 30 ,

= 3r2 cos 20 , w = r(cos θ + i sin θ) .

This is an entire minimal surface. Its single zero is at the origin and
is of order 1.

The relations

x1 = ^ ( l o g w — iw2) = log r — | r 2 cos 20 ,

(29) x2 = ^ i ( log w + iw2) = -iθ - ir2 sin 20 ,

= 2rcosθ , w = r(cos ^ + i sin θ) ,

give an isothermal representation of a minimal surface with a singu-
larity of a different sort at the origin. The second of the relations
(29) is not a (single-valued) function of w = u + iv, however, so that
this surface is not included in the class of surfaces presently under
consideration.

The subclass of meromorphic minimal surfaces (1) for which the
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Cj are restricted to have the value 0 in the representation (10) for each
PQ is somewhat more tractable than the unrestricted class. The re-
striction is not needed for the validity of the results of this paper,
however, and accordingly we shall not make it here.

3* Formulas* In this section, we shall develop some formulas
that will be needed later. These formulas are concerned with the
differential geometry of meromorphic minimal surfaces.

Let the functions (10) be the coordinate functions of a nonconstant
meromorphic minimal surface S in isothermal representation in ̂ £*(P0)>
and let τ denote the lowest index I for which we have

(30) Σ a),ι * 0
3=1

By (9) and (24), τ is then also the lowest index for which (21) holds.
Equation (10) can accordingly be written as

σo

xά(u, v) = Cj log r + Σ r\as,k c°s kθ + bjtk sin kθ)
(31) k=v

= &[c, log ω + f3{ω)] , j = 1, 2, 3 ,

where

(32) Σ <r Φ 0

and

(33) fj(ω) = £ (Vs.* - ihSth)ωk .
k = τ

If τ = 0, let t denote the lowest positive index I for which (21)
holds; if τ Φ 0, let t — τ. Then t ^ τ, with inequality if and only if
τ = 0. Recalling that (22) holds if τ ^ 0, we see that:

If τ < 0, then t — τ and S has a pole of order — t at Po.
If r = 0, then ί > τ and S has an α0-point (α0 ^ 0) of order t
at Po.
If τ > 0, then ί = r and S has a zero of order t at Po.

If r < 0, then t = τ, so that (25) can be written as

(34) Σ [**(", ^)Γ = ^2Γ Σ a).r + <>{r*τ) .
3=1 3=1

If τ = 0 then, because of (22), (34) follows from (31) by direct compu-
tation. If τ > 0, then again t = τ; since now α0 = 0, (26) can be
written as (34) in this case. Hence (34) holds in all cases.
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From (31) and the definition of ί, by differentiating we obtain

(35) ψi - iψi = °l + Σ k(aJfk - ibj.k)ω*-i .

Equating real parts, and equating imaginary parts, in (35), we therefore
have

(36) d n r ^

+ Σ kΊf*-\aiΛ cos (ft - l)θ + bjΛ sin (k - 1)0],

(37) 9V r _

+ Σ ^ " Ί δ i , * cos (fc - l)θ - ajlh sin (fc - 1)6>] .

From (2), (3), (24), and (36), we obtain

(38) \(u, v) = t2r2t~2 Σ αj .* + 0{r2t~ι) .
i = i

It follows from (24) and (38) (cf. [5]) that for a nonconstant
meromorphic minimal surface S given in terms of isothermal parame-
ters (u, v), the zeros and infinities of the area-deformation ratio
X(u, v) are isolated.

At points where X(u,v) Φ 0 and X(u,v) Φ oo, S has a tangent
plane. The direction cosines X3-(u, v) of its normal are given [11,
p. 147] by

dxk(u, v) dxt(u, v) _ dXj(u, v) dxk(u, v)
d u dv

X(u, v)

where j , k, I — 1, 2, 3 in cyclic order. For the functions (31), let ε > 0
be so small that X(u, v) Φ 0 and X(u, v) Φ CO in ^ ε * ( P 0 ) . Then for
(u,v)e ^*{P,), from (36), (37), (38), and (39) we obtain, by a computation,

(40)

By (40), we see that

3

Σ



MEROMORPHIC MINIMAL SURFACES 27

(41) lim X3-(u, v) = α * A * ~ β» A,« f
r->0

3

i , k, I — 1, 2, 3 in cyclic order, even if λ(w0, v0) = 0 or \(u0, v0) = oo.
We take this limiting value (41) as the definition of Xj(uOJ v0) if λ(wo» ô) =
0 or X(u0, v0) = oo. With this extended definition of the functions
-Σi(w> v), we see by (24) that a nonconstant meromorphic minimal
surface S given in terms of isothermic parameters (u, v) has a
continuous unit normal vector function

X(u, v) = (Xάu, v), X2(u, v), Xd(u, v))

throughout the domain in which S is meromorphic.
The next formula we shall develop is fundamental for the present

investigation. It is an expression [7] for the Laplacian of the logarithm
of the distance function

(42)

for a nonconstant meromorphic minimal surface given in isothermal
representation.

For the isothermal coordinate functions (31) of a nonconstant
meromorphic minimal surface S, let e > 0 be so small that in ^£*(P0)
the distance function (42) and the area-deformation ratio X(u, v) have
no zeros or infinities. They might or might not vanish or be infinite
at Po.

Using vector notation, for (u, v) e %s*(P0) we obtain, by a compu-
tation,

Δ

(43) == (x-x)(x Jx + xu-xu + xυ-xv) - 2Γ(X-ΛΓ,)8 + (x xv)
2]

(x-xY

where the subscripts indicate partial differentiation. By (2) and (3)
we have

xu-xu = xΌ xv — \(u, v) ,

and from (4) we obtain

Δx - 0 .

Hence (43) reduces to

(44) A log (* .*)* = % ( ) * ( J ( r \
(x xf

Since X(u, v) Φ 0 in <g/*(P0), xu and .*:„ are nonnull vectors there.
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Further, these vectors lie in the tangent plane to £ and therefore are
perpendicular to the unit normal vector X(u, v); and since F = 0, they
are perpendicular to each other. Accordingly, for any (u, v) e ^
there are scalars a, β, 7 such that

(45) x = axu + βxv + yX .

From (45), we obtain

x x = a2λ + /92λ + 72 ,

x xu = aλ ,

x xυ = βX ,

x X - 7 .

Hence (44) can be written as

- 2(α2λ2 + /32λ2 + 72λ - α 2λ 2 - /32λ2) = 2γ2λ

(x x)z (x-x)2Δ loir ίx

or, finally, the fundamental formula

(46) Jlog(x x)i=
(ΛΓ Λ:)2

In obtaining an estimate of the behavior of the right-hand member
of (46) as r —* 0, we can use the expressions (34) and (38) for x x and
λ, respectively. For x X, by (31) and (40) we have

(47) x X =

τ Σ
Lid

bj,τ sin τθ)(akιtblιt —alιtbk,t)
+ o(rτ) ,

where y, Λ, ϊ = 1, 2, 3 in cyclic order in the sum in the numerator.
If r - 0, then by (24), (32), (34), (38), and (47) we have

^ 0 ,lim λ = t2 % cήtt lim r2ί~2

with equality if and only if t > 1, and

Σ a,*'
lim(jc Z ) 2 = • "

Since each of these three limits exists and is finite, and the limit of
(x x)2 is not 0, it follows from (46) that //log (x x)* is continuous at
(uQ, vQ) in this case.
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If r ^ O , then t = τ, and the sum in the numerator of the first
term in the right-hand member of (47) vanishes identically. We then
have, by (31) and (40),

(48) χ.X=0(rτ+1)

unless

(49) τ = -1 and Σ c ^ O .
3 = 1

In the exceptional case (49), we have

(50) x-X=O(\ogr) .

If (48) holds, then from (34), (38), (46), and (48) we get

(51) Δ log (ΛΓ.JC)* = O(r2t-2)[O(r*+1)]a ^ = O ( r 2 t _ 2 + 2 t + 2 - 4 ί ) = 0 ( 1 ) ^

so that J log(jc x)* is bounded in the neighborhood of Po. Notice, how-
ever, that it is not necessarily continuous at Po. For example, for
the minimal surface of Enneper (28), we have

Δ log (ΛΓ.JC)* = 2 cos2 2Θ + o(l) ,

so that the limiting behavior of Δlog(x-x)^ depends on the limiting
behavior of θ. Thus i f 0 - + O a s r - * O then Λ log (x •*)*-> 2, but if
θ ~* π/A as r —• 0 then Δ log (JC xψ —• 0.

In the exceptional case (49), in place of (51) we have, by (32) and (50),

x)*- ° r ) [ O ( l o g r ) ] 2
Λiogfrx) r ,

(52) [r- 2 Σ α},-i + o(r~2)J

= O[r-4+4(logr)2] - O[(logr)2] .

For example, for the catenoid (27) we have

J log (*.*)* = 8(logr)2[l + o(l)] .

Thus in the exceptional case (49), we see that Jlog(jc-jc)* becomes
infinite as r —> 0. As we shall see in the next section, however, it
does not become infinite too rapidly for the applications we shall be
making.

4* An application of Green's theorem* Let w = u + iv; let
Ar(wQ) denote the closed circular disc | w — w0 \ ^ r; and let dAr(wQ)
denote the boundary, | w — w0 \ = r, of Ar(w0).

Let the functions (1) be the coordinate functions of a nonconstant
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meromorphic minimal surface S in isothermal representation for (u, v)
in a finite domain D, and for a given fixed R > 0 let AR(0) be contained
in D.

If S has a zero at the origin, let s0 denote the order of this zero;
otherwise, let s0 = 0. Similarly, if S has a pole at the origin, let n0

denote the order of this pole, and otherwise let n0 — 0. Of course, at
least one of s0 and n0 must be equal to 0, and both might be equal
to 0.

Let s0 be denoted by n(0,0; S), and n0 by n(0, oo; S). Then by
(34) and the definition of τ, if τ0 is the value of τ, and t0 that of t,
for the functions (31) representing S when Po is the origin, we have

(53) x - x = r2τo Σ a),τ0 + o(r2τo) , r = \w\ ,

with

(54) Σ α 5 . r 0 * 0

and

(55) r0 = s0 - n0 = n(0, 0; S) - w(0, oo; S) .

For any ô, 0 < p <Ξ JS, there can be only a finite number of zeros
and poles of S in A^O), since the zeros and poles of a nonconstant
meromorphic minimal surface are isolated. In the punctured disc
0 < I w I ίS p, let the zeros of S be at the points

w = zu z2, -*-,zk , A; = fc(/o) ̂  0 ,

with

and let the poles be at

with

0 < I p x l ^ l f t l ^ •••

Let the orders of these zeros and poles be, respectively,

«i, s 2 y •••,»* a n d n l 9 n 2 > ' " y n l 9

and denote the sum of the orders of the zeros and poles of S in Ap(0)
by n(ρ, 0; S) and ^(/?, oo; S), respectively:

(56) ^ , 0; S) = So + Si + + sk ,

(57) (̂/>, oo; S) = π0 + n, + + %ι
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Then n(ρ, 0; S) ^ 0, with s3- > 0 for j = 1, 2, , k, and similarly
n(p, co; S) ^ 0, with wff > 0 for g = 1, 2, , I.

Now let ô, 0 < p ^ JS, be chosen so that S does not have a zero
or pole on dAp(0). Since there are only a finite number of zeros and
poles of S in ^ ( 0 ) , we can choose r > 0 so small that the k + I + 1
closed circular discs Ar{O), Ar{zά), j = 1,2, •••,&, and -4 r(^), g =
1,2, •••, ϊ, are disjoint from one another and interior to ^ ( 0 ) . Let
Ωr denote the domain interior to the circle 9^(0) and exterior to the
circles 3Ar(0), dA^Zj), and 3Ar(pς), j = 1, , & and g = 1, 2, , I.

In Ωr, the function

(58) 0(tt,v) = log(x x)*

has continuous derivatives of all orders. Hence we can apply Green's
theorem to g{u, v) in Ωr:

(59)

where v refers to the normal directed outwardly from Ωr.
By the definition of Ωr, we have

(60)

Γ dg(u, v)ds=[ *Lpdθ-\ ^L
JdΩr dV J9AA0) dO JdAr(0) OT

=i jdAr(zj) dr 9=i JdAr(pq) or

From (31), (53), and (55), by a computation we find that on 3Ar(0) we
have

dr r

so that

1 -β- rdθ = 2πτ0 + o(l) = 2π(s0 — w0)
jdAr(o) or

Similarly, on the dAr(zs) and dAT(pq) we have, respectively,

M. = i£ + 0 ( r-1)

and

dg _ - n q _iv

so that
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and

f dϊLrdθ = -2πnq + o(l)

By (56), (57), and (60), we accordingly have

dAp(0> dp

2π Σ n

= t JϊlLpdθ - 2πn(ρ, 0; S)
)dAow dpdp

,oo;S) + 0(l) ,

whence

( 6 1 )
= \ _£±L pdθ — 2πn(p, 0; S) + 2πn(p, oo; S)

)dΛp(o) dp

By (51) and (52), for any Ar{w)aD we have

\ \ Δg(u, v)dA = ΓTθ(l)<7 dσ d^
J jAr(w) JO JO

or at worst, in the exceptional case (49),

ί ί Δg(u, v)dA = Γ"θ[(log σ)2]σ dσ dθ ,
J J ^4r(w) JO

Since

σθ(l) = o(l) and σθ[(log σf] = o(l) ,

in either case we have

lim 11 Δg(u, v)dA = 0 .
r-»0 JJAr(w)

Therefore, by the definition of Ωr,

(62) lim ([ Δg(u, v)dA = \ [ Δg(u, v)dA .
r->0 JJΩr JJAp(0)

From (59), (61), and (62), we obtain
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\ ifLpdθ - 2πn(ρ, 0; S) + 2πn(ρ, oo; S) = ί ί J#(t6, <y) cL4 ,

Jθ^(O) dp JJAp(0)

whence

1 f dg d θ _ n(PfO;S) - n(ρ, QQ; S)

2π Jθii-(o) dp p
(63) /= - ! - Ag{u,v)dA.

2πp jjApW2πp

Now (63) can be written as

1 [2πjhLdθ _ n(O,Q;S) - n(O, QQ; S) _ n(ρ, 0; S) - n{0, 0; S)
2π JO dp p p

( 6 4 ) + n(P, <*>; S) - n(0, OQ; S) = _ 1 _ f f Ag(v

Nothing that, by (55),

n(0,0;S)-n(0, oo g) _ -τ 0 _ 3 ,
p p dp

we see from (58) that

-±\ir*r *.

^ 0

2π Jo 3/0
( 6 5 ) 1 f -

Jo 3(0

By (65), we can therefore rewrite (64) as

; s) - xo, o;
2π Jo 3 ^2π ^

+ «p, oo; S) - «0, oo; S) =

By (51) and (52), for any r, 0 < r ^ i2, the right-hand member
of (66) can be integrated from 0 to r with respect to p. The numer-
ators in the second and third terms on the left vanish in an interval
0 ^ p ^ r0, r0 > 0, so these terms also can be integrated. For the
first term in the left-hand member of (66), by (53) we have
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2π

= —— I log (x xψdθ — τQ log r
2π jdAp{o)

\y=i

so that

lim \Ί-L Γ-A-log [(x x)*p-*o]dθ\dp
ε-̂ 0 Jel27Γ JO dp )

= JL ( log (jf.x)*rfi - n(0, 0; S) log r
27Γ Jθ^ r(θ)

+ n(0f oo; S) log r - log ( g α}.r0) .

Hence (66) yields

2TΓ r

_ r n(P, o; S) - mo. o; g) ̂  _ n{0> 0. S ) l o g r

(67) J° ^

\* n(p, oo; S) - n(0, co; S) d

o p
- log ( ί i α}.rβ)* = -i- (T-^-

If for a nonnegative function φ the function log+<p is defined by

(log φ for 9> ̂  1 ,

(0 for O g ^ g l ,

then we have the identity

log φ = logV — log+— .
Ψ '

and (67) can be written, by (46) and (58), as

2TΓ

< 6 8 >

f-^,°o;g)-^(θ,co;S)^ + n(0 S) l o g r
Jo ,0
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\'n(p,0;S)-n(0,0;S)dp + w ( 0 ) 0 ; S ) l o g r

Jo p

ίTlί( J
joLp JJp AP(O) π(x x)2

5* The Nevanlinna characteristic function* For a nonconstant
meromorphic minimal surface S given in isothermic representation by
the functions (1), and for any given finite

a = ((&!, α2, α3) ,

consider the surface

(69) S - a: xd = xs(u, v) - aά , j - 1, 2, 3 ,

for (u, v) e D. This again is a nonconstant meromorphic minimal surface
in isothermic representation.

Applying (68) to S — α, we obtain

J L ( log+[(x - α). (ΛΓ

+ Γr n(/Q, oo; S - α) - n(0, QQ; g - α) rf

Jo ^0

+ ^(0, oo; S — α) log r

- -^- ( log+ [(x - α) (x - a)]~*dθ

+ fr n(P, 0; S - a) - n(0, O S-a) dp

Jo p

+ ^(0, O S - a) log r

Ί±\\ [(χ-«) ̂ '
o l ^ JJ^(o) TΓ[(JC — α) (jc — α)[(JC — α) (jc — α ) ] 2

where τα is the value of r, and ία that of <0, for the functions (69),
and the α i f Γ are leading coefficients of these functions.

Since the poles of S and the poles of S — a occur at the same
>(u, ^-points, we have

<71) n(p, oo; S) = n(p, oo; S - a) .

Since the zeros of the surface S — a are the α-points of the surface
£, the function n(p,a;S), defined by

<72) n(p, α; S) = n(p, 0; S - a) ,
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gives an expression of the number of α-points of the surface S in
\w\^p.

If the map of Ap(0) on S is projected from a on the unit sphere
with center at α, then the function h{p, a; S), defined by

(73) h{p, a;S)=\\ J(x ~ a)/Xf

jjApw π[(x — a)-(x — a)f

gives a measure of the area of this projection, with the element of
area of the projection weighted by

— I cos (x-a,X)\.
π

Thus h(p, a; S) can be considered as a measure of the visibility of the
surface S for | w \ ̂  ρf as viewed from α.

In particular, we have

(74) h(0, a;S) = 0 .

Since
lim h(ρ, a; S) = 0 ,
α-»oo

we define h(p, oo; S) by

(75) Hp,oo;S) = 0 .

By analogy with the Nevanlinna theory of meromorphic functions
of a complex variable, let us define a proximity function (Schmiegungs-
funktion) for S by

m(r, oo; S) = — [ log+ (x-xfdθ ,
2π J34r(o)

(76)
m(r,a;S) = ^ - log+ [(* - a) (x - o)]-*<W ,

2TΓ J94r(0)

and an enumerative function (Anzahlfunktion) by

oo; S) g, + ^ o o ; 8 ) ] θ B r
( 7 7 ) Λ

N(r, a; S) = \ n(p> a ; S ) ~ n{0> a ; S ) dp + n(Of a; S) log r ,
Jo p

for a finite.
To these we now adjoin a visibility function (Sichbarkeitsfunktion),.

defined by

(78)
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By (74) and (75), the definition (78) of H is quite analogous to the
definition (77) of N, with h in place of n.

Substituting from (76), (77), and (78) into (68) and (70), and using
(71) and (72), we obtain, respectively,

m(r, oo; S) + N(r, oo; S) + H(r, oo; S)
(79) / 3 N i

= m(r, 0; S) + N(r, 0; S) + H(r, 0; S) + log ( g α},rβ)

and

w(r, oo, S - a) + iST(r, oo; S) + H(r, oo; S)
(80) / 3

= m(r, a; S) + N(r, a; S) + H(r, a; S) +log (% a

It is well known that for any two nonnegative numbers, say tyι

and τ2 with 7i ^ 72 ^ 0, we have

(81) log+ (7i + 72) ^ log+ 7i + log+ 72 + log 2 .

To establish (81), notice that for 7i ^ 1 we have

lθg+ (7i + 7a) = log (7i + 7a) ^ log 27i

= Iog7i + log 2 <: log+ 7i + log+ 72 + log 2 ,

while for 7! < 1 we have

log+ (7i + 72) ^ log 2 = log+ 7i + log+ 72 + log 2 .

Hence (81) holds in any case.
By the triangle inequality, we have

[(x - α) (x - a)f ^ (JC JC)4 + {a-af

and

(X JC)4 = [(x - α + α) (jc - α + α)]4

^ [ ( x - α ) . ( x - α ) ] 4 + (α α ) 4 .

Accordingly, from (76) and (81) we obtain

(82) m(r, oo; S ~ a) ^ m(r, oo; S) + log+ (α α)4 + log 2

and

(83) m(r, oo; S) ^ m(r, oo; S - a) + log+ {a-af + log 2 .

From (82) and (83), we have

(84) m{r, oo; S) - m(r, oo; S - a) = JB(r, α; S) ,

with
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(85)

(86)
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I B(r, a;S)\£ log+ (a-af + log 2 .

Substituting for m(ry oo; S — a) from (84) into (80), we get

m(r, oo; S) + N(r, oo; S) + H(r, oo; S)

= m(r, a; S) + N(r, a; S) + H(r, a; S) +C(r, a; S) ,

where

(87)

By (85) and (87), we have

C{r, α; S) = log (± + B(r, a; S) .

I C(r, a;S)\£ log ( Σ «?,rα) + log+ (α α)* + log 2 .(88)

We define the total affinity of S to a in | w \ ̂  r, or the affinity
function for S, by

(89) »(r, α; S) - w(r, α; S) + JSΓ(r, α; S) + fΓ(r, α; S) .

In particular, we call the total affinity of S to oo the Nevanlinna
characteristic function of S and denote it by T(r; S), so that

(90) = m(r, oo; S) + i\Γ(r, oo; S) + fl"(r, oo; S)

= m{r, oo; S) + N{r, oo; 5) .

The first fundamental theorem of R. Nevanlinna [10] concerning
meromorphic functions of a complex variable is generalized by means
of the inequality (88) to meromorphic minimal surfaces:

THEOREM 1. If the functions

Xά = Xj(u, V) , i = 1, 2, 3 ,

are the coordinate functions of a nonconstant meromorphic minimal
surface S in isothermal representation for u2 + v2 < oo, then for each
finite a we have

(91) Γ(r, S) = 2ί(r, α; S) + C{r, a; S) ,

where C(r, a; S) is a bounded function of r for each a:

(92) I C(r, a; log ( g α}.rj)*| + log+ (a-a^ + log 2 .

Thus S has essentially the same affinity for all points a in space,
in the sense that for any two given points a and b the difference
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SI(r, α; S) - 3I(r, 6; S)

is a bounded function of r:

\4ι
I §I(r, a; S) - 2ί(r, 6; S) \ ^

(93)
log ( Σ a)

+ log + log+ (α α)4 + log+ (6.6)* + log 4 .

This is true in particular if S lies on a plane (the complex-variable
case) and the point α, or the point 6, or both, are not on the plane.

6* The hyperspherical characteristic function* Because of the
log+ function in the formulas (76), the value of the proximity function
m(r, a; S) is affected only by the portion of the map of dAr(0) on S
that lies at distance ^ 1 from a for a finite, or at distance >̂ 1 from
0 for a = oo.

In the Ahlfors-Shimizu theory [1,14; 9,15] for the complex-variable
case, the plane of the map S is projected stereographically [8, pp. 119,
120] onto a spherical surface of radius J, and then the chordal distance
is used as a metric. In this metric, each point of the plane is at distance
^ 1 from each other point of the plane, and accordingly all of the
map of dAr(0) on S contributes to the proximity function for each
point a of the plane.

An analogous treatment can be given for isothermal maps on
nonconstant meromorphic minimal surfaces.

In the four-dimensional (xu x2, xd, #4)-space, let S^o be the hyper-
sphere with center

and radius δ0. Then, as in three-dimensional inversion, the points

x = = yXij %2i *̂ 3> »̂ 4/ a n d ΛΓ — \Xιf x%, x$f X4)

are said to be inverses of each other with respect to S^o if and only
if Λ: and x' are on the same ray with endpoint JC° and are such that

δδ' = δl ,

where

δ - [ ( X - J C ° ) . ( X - x0)]4 and 3' = [(x' - x°).(*' - ΛΓ)]4

are the Euclidean distances in four-dimensional space from Λ:0 to Λ: and
from Λ:0 to x', respectively.

By similar triangles, then, x and Λ:' are inverses of each other
with respect to S^o if and only if
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Sft S2
Oΰ — °o η — 1 2 3 4
δ2 δ2

or

As in the three-dimensional case [8, pp. 117-120], inversion in S^Q

maps four-dimensional space in a one-to-one way onto itself, with JC0

corresponding to a unique ideal point, oo, at infinity. A hypersphere
or hyperplane is mapped onto a hypersphere or hyperplane, according
as the given hypersphere or hyperplane does not or does pass through x°.

Further, from (94) we obtain

si/y>' 0 si/y> 0 //y» ^ ^ Ί*"\/7Λ
iΛ/iΛ/ j ~ ~ ~ KΛJiΛJ X \jJji tΛ/j tUjU ,

whence

dsn - dx'-dx'

— 2. /} Y* rj Ύ* —fϊί)(γ* γ•̂^ a Y*

0 0

+ ψ(dδf(x - x°).(x - x°)

= ^dx dx = ^ds*,

or

(95) ds' = -jds ,

so that the transformation is an isothermal one.
For the particular choice

x° - (0, 0, 0,1) and δQ = 1 ,

(94) yields

x'j = — , 3 = 1, 2, 3,
/y»2 I Λ 2 I Λ»2 I //y» ^ ^ 1 \ 2
tΛ/ĵ  Π^ «Λ/2 I «^3 I V ^ i •*"/

r 2 i r 2 _|_ ^2 . ~ (r _ 1 \
/ »Λ/I l^ «*/2 ~ ^ θ l^ »</4 t̂Λ/4 X y

/y»2 I /y»2 I /v»2 I (/γ I \2
*kjγ ~ «t/2 1̂  *V3 î  \™4 •*•/

Under this inversion, the coordinates of the image of a point (xt xZt #a, 0)
on the hyperplane x4 = 0 are given by
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(96)

j

The coordinates (96)

X? + ί

x]

1

x\

1

I 1
L 1

+

! +

+

xl

Ί

X*

xl
'X

JC

satisfy

x?

Xj

+

X

x2

+

X

+

xl 4

xl 4

•

- 1

3

ϊ

- 1

- i

- 1 , 2 , 3

)2 = ar,
so that the image of (xu x2, x3y 0) lies on the sphere £f with center
(0, 0, 0, ί) and radius \. In fact, the stereographic projection of the
hypersphere Sf from its "north" pole (0, 0, 0,1) onto the hyperplane
x4 = 0 tangent to Sf at its " south" pole (0, 0, 0, 0) coincides with the
mapping of S? onto this hyperplane under inversion in ^ 0 .

We shall henceforth call the hyperplane x4 = 0 the (xu x2, ίi?3)-space.
For points

ΛΓ = (xίf x2, x3t) and y = (yu y2, y3)

in the finite (xl9 xif a;3)-space, the line segment joining their images

x' = (x[, x'2, xl, x[) a n d yf = (y[, y2, yϊ, y[)

under the inversion in S^Q described above is a chord of the sphere
£f. If we let χ(x, y) denote the length of this chord,

χ(x, y) = distance (x'f y') = [(x' - y').(* - y')f

then we have

(97) 0 ^ χ(x, y) ^ 1 .

From (96), we obtain

= 1(1 + yy)χ - (l + χ χ)ir] [(i + yy)χ - (l + *.χ)y

+ [(i + wy)(χ-χ) - (1 + χ χ ) ^ ^ ) ] 2

= (1 + χ χ)(l + yy)[(l + yy)(χ χ) + (1 + χ-χ)(yy)

- 2(x-y) - 2(χ.χ)(if.|f)] ,

so that

, ί̂ )]2 = X'X - 2x-y + #•#

= (Λ: - iί) (x - y) ,
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or

(98) χ(χ,y)= \iX y)£")]*
(1 + JC JC)^(1 + yyf '

In the limit, as y-+oo, (98) gives

(1 + ΛΓ X)*

We now define a hyperspherical proximity function for S, analo-
gous to (76), in terms of the chordal distance:

(100) m°(r, α; S) = -±-\ log * dθ .
2π JdAr(o) χ(χf a)

Notice that here the integrand, which in (76) was restricted to
nonnegative values by use of the log+ function, takes on only nonnega-
tive values by virtue of (97).

By (98), (99), and (100), we have

m (r, oo; S) = -A-ί log(l + x-xfdθ ,
2 π Jθ^r(o)

( 1 0 1 > If (Λ 4- v r*(Λ 4- n ntf

m°(r,a;S) =—\ log { "*" x ' x ; ^ ^ a%aζ dθ

for α = (aly α2, α3) finite.
From (76), (101), and the fact that

log φ = log+ φ — log+ — ,
Ψ

for a finite we obtain

m°(r, α; S) = m°(rf oo; S) + m(r, a; S)

^ - m(r, oo; S - α) + log (1 + α α)^ .

Substituting from (102) into (80), we get

(103)

w°(r, oo; S) + N(r, oo; S) + H(r, oo; S)

= m°(r, a; S) + N(r, a; S) + ίί(r, a; S)

+ log ΛΣi^αy.rβ)

(1 + a-a)*

We can write (103) as

ra°(r, oo; S) + N(r, oo; S) + H(r, oo; S) + C(oo; S)
(104)
V ; = m°(r, a; S) + N(r, a; S) + H(r, a; S) + C(a; S) ,
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where the constants C(oo S) and C(a; S) are such that in (104) both
the left-hand member and the right-hand member —* 0 as r —> 0.
Namely, if there is not a pole of S at r = 0 then we have

C(oo; S) = log -

(105) (1 + Σ U α

C(a; S) = log I 2 ^
(l + Σ?-i

while if there is a pole of S at r = 0 then £α = ί0 < 0 is independent
of a,

aj,τa = αy,t0 > i = 1, 2, 3 ,

and we have

(106)
C(a; S) = log

(1 + a-aψ '

It might be noted that in complex-variable theory the equation
analogous to (104) does not include the terms H(r, oo; S) and H(r, a; S),
for then these terms are identically zero. Neither does the complex-
variable equation ordinarily include constant terms C(oo; S) and C(a; S);
here, however, the distinction is only notational, for the constants are
then included in the definitions either [9] of m°(r, oo, S) and m°(r, a; S)
or [15] of N{r, cc; S) and N{r, α; S).

We now define the hyper spherical affinity of S to a in | w \ ̂  r,
or the hyper spherical affinity function for S, by

a°(r, α; S) - m°(r, α; S) + 2SΓ(r, α; S)
( } + ίί(r, a; S) + C(a; S) .

In particular, we call the hyperspherical affinity of S to oo the
hyperspherίcal characteristic function of S and denote it by T°(r; S):

Γ°(r;S)^2ϊ°(r,oo;S)
1 = m°(r, cχ>; S) + 7V(r, oo; S) + H(r; oo; S) + C(oo; S) .

Substituting from (107) and (108) in (104), we have the following
generalization of the Ahlfors-Shimizu spherical form of the first funda-
mental theorem of Nevanlinna to meromorphic minimal surfaces:

THEOREM 2. // the functions

Xj = xs(u, v) , j = 1, 2, 3 ,
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are the coordinate functions of a nonconstant meromorphic minimal
surface in isothermal representation for u2 + v2 < oo, then for each
finite a = (au α2, α3) we have

(109) Γ°(r;S) = a ° ( r , α ; S ) ,

where 21°(r, a; S) is the hyperspherical affinity of S to α, and
T°(r; S) = 21° (r, oo S) is the hyperspherical characteristic function of S.

7* Convexity properties* For

u2 + v2 = I w |2 = I u + ii; |2 < oo ,

let the functions (1) be the coordinate functions of a nonconstant
meromorphic minimal surface S in isothermal representation. For α
finite or infinite, let the α-points of S in 0 < | w | fg r ^ r be at the
points w = Wj , i = 1, 2, , jfc, of moduli rL ^ r2 ^ <g rfc, and let
the respective orders of these α-points be adf j = 1, 2, , k. Then

n(r, α; S) = α0 + «i + + αfc >

where α0 ̂  0 is the order of the α-point, if any, at w = 0.
Evaluating the integral in (77), we obtain

(110) N(r,a;S) =

From either (77) or (110), we see that N(r, a; S) is a continuous
function of log r. Further, by differentiating either (77) or (110), we
get

(111) d N ^ α ; S ) = n(r, a; S)
d log r

except at the points of discontinuity of n{r, a; S). Accordingly, since
n(r,a;S) is a nondecreasing, nonnegative function of logr, we have
the following result:

The function N(r, a; S) is a nondecreasing, piecewise linear,
convex function of log r.

Similarly, for α finite, by differentiating the second equation in
(78) we obtain

(112) h(r,a;S).
d log r

By (73), we have

h{r,a;S) ^ 0 ,

with equality for r > 0 if and only if S is a plane surface and α lies
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in the plane. Further, by (78), we have

H(r, a;S)>0 for r > 0 if h(r, a; S) & 0 .

Hence we have the following result:
The function H(r, a; S) vanishes identically if a is infinite or

if S is a plane surface and a lies in the plane. Otherwise, for
r > 0, H(r, a; S) is a positive, increasing, strictly convex function
of log r.

To determine the behavior of T°(r;S), we integrate (109) with
respect to α over the three-dimensional hyperspherical "surface" SS
and divide by the content

of &" to obtain

α; S ) d V * + v \\\H(r'α; S)dVa

The integrand Γ°(r, S) of the integral in the left-hand member of
(113) does not vary with α, and accordingly the value of this integral
is T°(r;S).

The first integral in the right-hand member of (113) is

41
2π Jθ , α)

and here by geometric symmetry the inner integral in the last expression
is the same for all Λ: G Sf. Accordingly, we can replace χ(x, a) by
χ(x(0, 0), α) in (114). Except at α = x(0, 0), by (105) and (106), we
have

C(α;S) = log χ(x(0,0),α).

Therefore the sum of the first and fourth integrals in the right-hand
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member of (113) is 0.
The function N(r, a; S) has value 0 for all a not on S. It therefore

has value 0 everywhere except at most on a set of three-dimensional
measure 0 on £^. Hence the second integral in the right-hand member
of (113) has value 0.

It follows, accordingly, that (113) can be written as

(115) T°(r;S) = M H(r,a; S)dVa .
V

By (78), then, we have

Jo

By (73), the function

is positive for p > 0 and is a strictly increasing function of log p. It
can be given a quasi-geometric interpretation, as indicated in the
discussion of h(p a; S) in § 5.

From (116) we obtain

(117) dT°{r> S ) - ^(r; S) .
a logr

Since ^(r; S) is positive for r > 0 and is a strictly increasing function
of logr, and since JΓ°(0;S) = 0, we therefore have the following
result:

The function T°(r; S) is positive for r > 0 and is an increasing,
strictly convex function of log r.

It follows from (76), (81), and (101) that

0 ^ m(r, oo; S) < m°{r, oo, S) < m(r, co; S) + log 2* .

Therefore, by (90) and (108), the difference T°(r;S) - T(r; S) is a
bounded function of r. Actually, it can be shown that, like T°(r; S),
the function T(r; S) is an increasing, strictly convex function of logr.

The foregoing convexity properties are useful, in particular, in
the study of problems of order and type [4] in the theory of meromorphic
minimal surfaces.
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