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THE MAXIMAL SET OF CONSTANT
WIDTH IN A LATTICE

G. T. SALLEE

A new construction for sets of constant width is employ-
ed to determine the largest such set which will fit inside a
square lattice.

A set W in E* is said to have constant width A (denoted w(W) = \)
if the distance between each pair of parallel supporting lines of W is
A If xebd W we will denote all points opposite x (that is, at a dis-
tance A from z) in W by 0(x).

In what follows we will be most concerned with Reuleaux polygons,
which are sets of constant width A whose boundaries consist of an
odd number of arcs of radius A centered at other boundary points
(see [2], p. 128, for a more complete description).

We say a set S avoids another set X if int SN X = @.

THEOREM 1. Let L be a square planar unit lattice. Then the
unique set of maximal constant width which avoids L is a Reuleauwx
triangle T having width o(T) > 1.545. An axis of symmetry of T
parallels one of the major axex of L and is midway between two
parallel rows of the lattice.

The proof depends upon a variational method for altering Reule-
aux polygons which will be described in §2. A useful lemma is also
proved there. In § 3 the proof of the theorem is given, while various
generalizations are discussed in § 4.

The construction described in the next section was also found in-
dependently by Mr. Dale Peterson.

2. Variants of sets of constant width. Let P be a set of con-
stant width \ and p, a point near P but exterior to it. Suppose that
q and r are the two points on the boundary of P which are at a dis-
tance A from p,. Let @ be the convex set whose boundary is follow-
ing: the shorter arc of the circle C(p,, \) [the circle of radius )\ cen-
tered at p,] between ¢ and », the boundary of P from r to ¢’ (a point
opposite ¢), an arc of C(q,») between ¢’ and p, an arc of C(r,\)
between p, and 7/, and the boundary of P from 7’ to ¢ [see Figure
1]. We call Q the p,variant of P. It is easy to see that Q is a set
of constant width ». In order for the construction to work p, must
be close enough to P so that the boundary arc of P between ¢ and
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7 on the side nearer p, contains two opposite points. It is also pos-
sible to determine the variant by prescribing the two points ¢ and 7.
When this is done, we will refer to @ as the (g, r)-variant of P.

T T

— ~—_

Do

FIGURE 1.

This method gives a way of easily constructing sets of constant
width which seems to be new. In particular, applying this method
to the unit circle leads to a new class of sets of constant width. A
similar construction may be carried out in d-dimensional space, and this
process will be explored more fully in another paper [4].

The following lemma is more general than necessary, but may be
useful for other problems of this nature.

We will say a family of sets in the plane is locally finite if every
bounded set meets only a finite number of them.

LEMMA 1. Let {X,:ae A} be a locally finite family of convex
sets in the plane and let X = U{X,:acA}. If a set P of maximal
constant width avoiding X exists, then it is a Reuleaux polygon with
property (*): each of the open (curvilinear) edges of P contains at
least one point of X.

Proof. Suppose K is a set of maximal constant width )\ which
avoids X. We shall assume that it is not as described and show that
there exists another set having a greater constant width which also
avoids X. First we will show that for maximality K is a Reuleaux
polygon and then that it has property (*).
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Choose 9, in bd K and y, in bd K counter-clockwise as far as pos-
sible from y, but so that the (y,, ¥,)-variant of K avoids X. Call this
variant K,. It is not hard to see that K, = K if and only if K is a
Reuleaux triangle or else y, and y, are opposite some common point
and the set of points opposite ¥,, 0(%.), meets X. In a similar fashion
choose y, in bd K, counterclockwise as far as possible from ¥, so that
the (y,, ¥:)-variant of K, avoids X. Continue in this fashion.

After a finite number of steps this process will lead to a Reule-
aux polygon avoiding X. For the y; are determined either by one of
the X, or else by the fact that two adjacent y; are a distance A apart.
Since the X, are locally finite, each of these cases can occur only a
finite number of times as the y; get further around bd K from y,.
The assertion follows.

We have now constructed a Reuleaux polygon P of the same width
as K which also avoids X. Note that if K itself were not a Reuleaux
polygon satisfying (*), it is possible to modify the construction of P
slightly (by not choosing the y; to be at a maximal distance in some
suitable step) so that P is a Reuleaux polygon, but does not satisfy
(*). We now show that such a P does not have maximal width, con-
trary to our initial assumption.

In fact, we will construct a sequence of Reuleaux polygons P, ---,
P, such that P, = P, P,,, is a variant of P; and P;., has fewer closed
edges than P; which contain a point of X, Since all the P, will have
the same number of edges, the process will produce a Reuleaux polygon
P, disjoint from X. Then a larger homothet of P, will avoid X con-
trary to the assumption that K was maximal.

Suppose that P, has vertices v, v, -+, v,, and suppose that the
open edge (v,,, v,) contains no point of X, but that v, or v,, may be-
long to X. Let v, be a point on the arc between v, and v,,,, and let
P, be the (v,_,, v,) variant of P,. The vertices of P, are

’ ’
Voy =2y UVp1y Uny Untay **y Vanyy Voy o

If v, is close enough to v,, P, will avoid X and in particular the half-
open edge [v},, v] contains no points of X, Now choose ¢ on the arc
of P, between v,_, and v, and P, be the (v}, v,.,) variant of P,. The
other new vertex of P, will be v}, near v,. If v} is sufficiently close
to v}, P, will also avoid X and the closed edge [v.,, ¥]] will contain
no point of X.

Note moreover that in the obvious correspondence between P, and
P,, every closed edge of P, containing a point of X corresponds to a
closed edge of P, containing a point of X, In addition, we may re-
peat the above construction on the two open edges of P, (v,_,, v7) and
(v, v,+1) to produce Reuleaux polygons with at least two open edges



672 G. T. SALLEE

and more closed edges avoiding X.

Continuing the process through at most 2n steps will lead to a
Reuleaux polygon of width » disjoint from X. By our earlier remarks
this completes the proof.

3. Proof of theorem. The following lemma is needed.

LEMMA 2. Let L be a planar lattice and K a strictly convex
set (its boundary contains no line segment) avoiding L. Then the
boundary of K contains at most four points of L.

Proof. Let Z= KN L. Since K is strictly convex, Z contains
only two points in any one direction and these two points have no
point of I between them.

Coordinatize the plane (not necessarily with perpendicular axes) so
that L corresponds to the integer points of the coordinatization, so
that every point of Z lies in the upper half plane, and so that the
points (0, 0) and (1, 0) belong to Z. Now suppose (k, n) € Z for some
7 = 3. Then taking a suitable convex combination of the three points
(0, 0), (1,0) and (k, n) which all lie on bd K shows that (m, 1) ¢ int K,
where m = [k/n] + 1 (Jx] being the greatest integer in z). Then
K does not avoid L contrary to hypothesis. Hence every point of Z
has y-coordinate 0 or 1. Since no more than two points of Z can be
in either of the rows, the assertion is proved.

We can now prove the theorem. By the Blaschke Selection Theo-
rem it is clear that a set of maximal constant width avoiding X exists.
Since every set of constant width is strictly convex, and since every
lattice is locally finite, the results of Lemmas 1 and 2 imply that the
maximal width \ is attained by a Reuleaux triangle 7. It only re-
mains to establish the orientation of T,

By Lemma 1, each of the three edges of T contains a lattice point
of L and it is clear that they must belong to a unit square of L. So
suppose a = (0,1), b = (1,1) and ¢ = (1, 0) belong to 7. We wish to
show d = (0, 0) also belongs to 7. If TN L consists of exactly three
points, it follows from Lemma 1 that there is one vertex between
each pair of lattice points. Let these vertices be a’, b’, and ¢’ where
a' is opposite a, etc.

Suppose x(¢’) [the z-coordinate of ¢’] > 1/2. Rotate 7' a small dis-
tance counter-clockwise to 7% so that T* still contains e and b on its
boundary. If the rotation is small enough, d ¢ T* and the distance
between ¢ and ¢’ is increased (this latter statement is proved in [1]
§ 2 where it is shown that the curve R(z; l; M) defined there is strict-
ly convex). Then it is clear that a larger homothet of 7* will avoid
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L contrary to the choice of T. In a similar way we see that the y-
coordinate of o’ < 1/2.

Now if d¢ T either ¢’/d >N or a'd >\, If ¢'d > ¢’c =\ then
2(c¢’) > 1/2 in contradiction to what was proved in the last paragraph.
We arrive at a similar contradiction by assuming a’d > ». Hence de T.

Hence two lattice points are opposite the same vertex of T and
thus are equidistant from it. Without loss of generality, suppose ¢
and d are both opposite ¢’. Then z(¢’) = 1/2 and T is as described in
the theorem.

We may compute w = w(T) as follows. If T is in the orientation
just described, and we let

@ = (), £ = ¥(@) = y¥), 8(@) = - + 7, o) = R
we Ssee:
(1) v = w/2
(2) o = 1/4 + @
(3) B=a—13 w2
(4) (—é—+%)2+(1—,6’)2:w2,

Untangling (2), (3) and (4), we obtain:
(5) 20+ @*2V3 —1) + (-2 —-V3) +w(-1-3V3) —-2=0.

Solving (5) leads to the stated value for w(T).

It is clear that the techniques used in proving this theorem can
be extended to other similar problems. In particular, if L is any
planar lattice the set of maximal constant width is again a Reuleaux
triangle. In general, Lemma 1 ensures that the maximal figure is a
Reuleaux polygon and makes it fairly easy to determine the number
of sides, but it is more difficult to determine the exact orientation.

4. Remarks. Let _# be any 2-dimensional Minkowski space
with unit ball S. We may define W to be a set of constant width N
relative to S if w(W, u) = M@(S, ) for any direction %. In analogy
to the Euclidean case, we say R is a relative Reuleaux polygon if R
is of constant relative width and is the intersection of a finite number
of (properly chosen) translates of AS.

With only slight changes, the proof of Lemma 1 may be seen to
be valid in _# (where, of course, an “arc of radius A” is an arc of
AS, ete.). However, sets of constant width relative to S only satisfy
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the hypotheses of Lemma 2 if _# is rotund—that is, if S is strictly

convex.
So we have, in fact, proved the following:

LEMMA 3. Let {X,:ac A} be a locally finite family of convex
sets in any 2-dimensional Minkowski space and let

X=U{X,;acd}.

Every set of maximal constant relative width avoiding X is a rela-
tive Reuleaux polygon with property (*).

THEOREM 2. Let L be a planar lattice in a rotund, 2-dimensional
Minkowski space. Ewvery set of maximal constant width avoiding L
s a relative Reuleaux triangle with property (*).

The author wishes to thank G. D. Chakerian for calling this pro-
blem to his attention and for interesting discussions. It seems to have
originally appeared as a problem in the American Math. Monthly [3].
The author also wishes to thank the referee for his suggestion
strengthening the statement of Lemma 1.
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