A QUASI-DECOMPOSABLE ABELIAN GROUP WITHOUT PROPER ISOMORPHIC QUOTIENT GROUPS AND PROPER ISOMORPHIC SUBGROUPS

JOHN M. IRWIN AND TAKASHI ITO

All of the group in this paper are abelian p-groups without elements of infinite height. A group is said to be quasi-indecomposable if whenever H is a summand of G then either H or G/H is finite. The p-socle of G is the sub-group consisting of all the elements x in G such that px=0.

In this paper it is shown that there are conditions that can be imposed on the socle of G which are sufficient for G to (a) have no proper isomorphic subgroups; (b) have no proper isomorphic quotient groups; and (c) be quasiindecomposable. Furthermore, it is shown that groups which make these results meaningful actually exist.

Let the cardinality of a group G be either \aleph_0 or greater than $c=2\aleph_0$. Then, as is well known, G has a proper isomorphic subgroup and a proper isomorphic quotient group. However P. Crawley [3] showed that the cardinality c is exceptional. He gave an example G_0 of cardinality c which has a standard basic subgroup and no proper isomorphic subgroups. After Crawley's example appeared, it was clear that a group, of cardinality c and with a standard basic subgroup, supplies examples of groups with strange but interesting properties. In fact R. S. Pierce [7] gave an example G_1 which has no proper isomorphic subgroups and no proper isomorphic quotient groups. And he gave also in [7] an example G_2 which is quasi-indecomposable, that is, every direct summand H of G_2 is either finite or G_2/H is finite.

The relationship between the above three properties (no proper isomorphic subgroups, no proper isomorphic quotient groups and quasi-indecomposability) of a group G with the cardinality c and a standard basic subgroup seems to authors an interesting problem. In this paper we shall give some results about this problem. In our approach the topological structure of the p-socle of the torsion completion of G will be used in an essential way. Theorem 1 tells us that the situation of the p-socle of G in the G-socle of the torsion completion of G gives us sufficient conditions for these three properties of G. In some sense it shows a relationship between the three properties. Theorem 2 shows the existence of a group which has all three properties. Theorem 3 shows the existence of a group which has no proper isomorphic subgroups and no proper isomorphic quotient groups but which is quasi-decomposable.

Now we want to add a simple proof of the following fact which

was mentioned in the opening of this section.

Let G be an infinite reduced p-group with card $G = \aleph_0$ or card G > c. Then G has a proper isomorphic subgroup and a proper isomorphic quotient group.

Proof. For simplicity we divide the proof into

Case 1; Suppose G is bounded. Then $G = \sum_{k=1}^{n} B_k$ where B_k is a direct sum of cyclic groups of order p^k , $B_k = \sum C(p^k)$. Now clearly one of these B_k 's is infinite and throwing out a cyclic summand of B_k yields the desired subgroup and quotient group.

Case 2. Suppose card $G = \bigotimes_0$ and G is unbounded. Then $G = H \oplus K$ where H is an unbounded direct sum of cyclic groups (Exercise 19 (a), p. 143 in [4]). It is easy to find a proper subgroup A of H which is isomorphic to H and a non-zero subgroup B of H such that $H/B \cong H$. Whence we obtain our proper isomorphic subgroup $A \oplus K$ and our proper isomorphic quotient group G/B.

Case 3. Suppose G is unbounded with card G > c, and $B = \sum_{k=1}^{\infty} B_k$ is a basic subgroup where $B_k = \sum C(p^k)$. Then $G = B_1 \oplus B_2 \oplus \cdots \oplus B_n \oplus G_n$ for all n (Theorem 29.3 in [4]). But as is well known (card $B)^{\aleph_0} \ge \operatorname{card} G > c$ so that some B_n must be infinite. Now throwing out a cyclic summand of B_n yields the result as in Case 1 and the proof is complete.

2. Sufficient conditions for the three properties. Let p>1 be a fixed prime number, $C(p^n)$ be a cyclic group of order p^n , Σ be the direct sum of cyclic groups $C(p^n)$, Π be the direct product of cyclic groups $C(p^n)$ and C be the torsion group of Π , that is, Σ is the standard basic group and C is the torsion completion of Σ .

The *p*-socle C[p] of C is a vector space over the prime field of characteristic p and can be topologized as a totally disconnected compact topological group, because Π is clearly a totally disconnected compact topological group with respect to the product topology of compact discrete topologies and the p-socle C[p] of C is the closed subgroup $\{x \mid x \in \Pi, px = 0\}$ of Π . Actually $U_n = \{x \mid x \in C[p] \text{ and } h(x) \geq n\} = (p^n C)[p] \ (n = 1, 2 \cdots)$ are open compact subgroups of C[p] and $\{U_n\}$ is a fundamental system of 0-neighborhoods in C[p]. These two structures on C[p] which are a vector space and a totally disconnected compact group are used in an essential way in this paper.

Every continuous group homomorphism T on C[p] defines compact subgroups $E_q(T) = \{x \mid x \in C[p] \text{ and } Tx = qx\} \ (0 \leq q < p)$ and the compact subgroup $E(T) = E_0(T) \oplus E_1(T) \oplus \cdots \oplus E_{p-1}(T)$. We can define naturally two types of continuous group homomorphism on C[p] as follows. T is a singular homomorphism if E(T) is an open compact subgroup of C[p]. For instance a continuous projection on C[p] is

singular. T is a strongly singular homomorphism if for some $q E_q(T)$ is an open compact subgroup. If a continuous group homomorphism T on C[p] has a dense subgroup which is invariant under T and on which T is one to one, T is called a semi-isomorphism on C[p].

We have the following theorem which is fundamental to the ideas in what follows.

THEOREM 1. Let G be a pure subgroup of C which contains Σ and G[p] be the p-socle of G.

- (1) If G[p] is not invariant under any nonsingular onto homomorphism on C[p], then G has no proper isomorphic quotient groups.
- (2) If G[p] is not invariant under any nonsingular semi-isomorphism on C[p], then G has no proper isomorphic subgroups.
- (3) If G[p] is not invariant under any nonstrongly singular projection on C[p], then G is quasi-indecomposable.

Proof. Suppose φ is a homomorphism of G into G. The purity of G in C implies $\varphi(G[p] \cap U_n) \subset U_n$ for all $n=1,2,\cdots$. This means that the restriction of φ to G[p] is continuous on G[p]. since $G[p] \supset \Sigma[p]$ and $\Sigma[p]$ is dense in $C[p], \varphi|_{G[p]}$ has a unique continuous homomorphism extension T on C[p]. Clearly G[p] is invariant under T and $T(U_n) \subset U_n$ for all $n=1,2,\cdots$. If this T is singular, then there exists a positive integer N such that

$$T(U_N) \subset U_N \subset E(T)$$
.

Then we have the following decomposition of G[p],

$$egin{aligned} G[p] &= (G[p] \cap U_{\scriptscriptstyle N}) \bigoplus R_{\scriptscriptstyle N} = (E_{\scriptscriptstyle 0}(T) \cap G[p] \cap U_{\scriptscriptstyle N}) \ & \oplus (E_{\scriptscriptstyle 1}(T) \cap G[p] \cap U_{\scriptscriptstyle N}) \bigoplus \cdots \bigoplus (E_{\scriptscriptstyle p-1}(T) \cap G[p] \cap U_{\scriptscriptstyle N}) \bigoplus R_{\scriptscriptstyle N} \ , \end{aligned}$$

where R_N is a finite subgroup of G[p].

Because $C[p]/U_N$ is finite and $G[p]/G[p] \cap U_N$ is isomorphic to a subgroup $C[p]/U_N$, so the dimension of $G[p]/G[p] \cap U_N$ as a vector space over the prime field of characteristic p is finite. Hence there exists a finite subgroup R_N of G[p] such that $G[p] = (G[p] \cap U_N) \bigoplus R_N$. The decomposition of $G[p] \cap U_N$ can be shown as follows. For each x in $G[p] \cap U_N$ x is the sum of $z_q \in E_q(T)$ $(0 \le q < p)$; $x = \sum_{l=0}^{p-1} z_q$. Then we have $\varphi^{\nu}(x) = \sum_{q=0}^{p-1} T^{\nu}z_q = \sum_{q=0}^{p-1} q^{\nu}z_q$ for $0 \le \nu \le p-1$. Since the determinant of Vandermonde's matrix is not zero mod p, each z_q $(0 \le q \le p-1)$ is a linear combination of $x, \varphi(x), \cdots, \varphi^{p-1}(x)$. This means $z_q \in E_q(T) \cap G[p] \cap U_N$ for $0 \le q \le p-1$.

Proof of (1). Suppose φ is an onto homomorphism of G. Then

the continuous extension T of $\varphi |_{G[p]}$ is clearly an onto homomorphism of C[p] and G[p] is invariant under T. By our assumption T must be singular, so we have the above decomposition of G[p]. Put $Q_N = (E_1(T) \cap G[p] \cap U_N) \bigoplus (E_2(T) \cap G[p] \cap U_N) \bigoplus \cdots \bigoplus (E_{p-1}(T) \cap G[p] \cap U_N)$, clearly $\varphi(Q_N) = Q_N$ and φ is an isomorphism on Q_N , and

$$(E_0(T) \cap G[p] \cap U_N) \bigoplus R_N \cong G[p]/Q_N = \varphi(G[p])/\varphi(Q_N) \cong \varphi(R_N)$$

but $\dim \varphi(R_N) \leq \dim R_N < +\infty$. This implies that $E_0(T) \cap G[p] \cap U_N = \{0\}$ and R_N is isomorphic to $\varphi(R_N)$ by φ . Therefore $\varphi \mid_{\sigma[p]}$ is an isomorphism on G[p]. Let $0 \neq x \in G$ and the order of $x = p^n > 1$, then $0 \neq \varphi(p^{n-1}x) = p^{n-1}\varphi(x)$, so $\varphi(x) \neq 0$. Thus φ must be an isomorphism on G.

Proof of (2). Suppose φ is an isomorphism of G into G. We have to show $\varphi(G) = G$. The continuous extension T of $\varphi \mid_{G[p]}$ is a semi-isomorphism and G[p] is invariant under T. By our assumption T must be singular, so we have the same decomposition of G[p] as above. First of all we can see $\varphi(G[p]) = G[p]$. Automatically

$$E_{\scriptscriptstyle 0}(T)\cap G[p]\cap U_{\scriptscriptstyle N}=\{0\}$$
 ,

because φ is one to one, therefore $G[p] = Q_N \oplus R_N \cong \varphi(Q_N) \oplus \varphi(R_N) = Q_N \oplus \varphi(R_N) \subset G[p]$ but $\dim R_N = \dim \varphi(R_N) < +\infty$, this implies $\varphi(G[p]) = G[p]$. Next we can see $\varphi(G) \supset G[p^2]$. The group $H = \{x \mid x \in G \text{ and the first } N-1 \text{ coordinates in } \Pi \text{ are zero} \}$ is a direct summand of G and

$$egin{aligned} H[p] &= G[p] \cap U_{\scriptscriptstyle N} = Q_{\scriptscriptstyle N} \ &= (E_{\scriptscriptstyle 1}(T) \cap Q_{\scriptscriptstyle N}) \oplus (E_{\scriptscriptstyle 2}(T) \cap Q_{\scriptscriptstyle N}) \oplus \cdots \oplus (E_{\scriptscriptstyle p-1}(T) \cap Q_{\scriptscriptstyle N}) \; . \end{aligned}$$

We can take a finite group L such that $G = H \oplus L$. We have to show first $\varphi(G) \supset H[p^2]$. For arbitrary x in $H[p^2]$ $px = \sum_{q=0}^{p-1} z_q$ for some $z_q \in E_q(T) \cap Q_N$ $(1 \leq q \leq p-1)$, then each z_q is a linear combination of $p\varphi(x)$, $p\varphi^2(x)$, \cdots , $p\varphi^{p-1}(x)$. This means that there exist $x_q \in G$ $(1 \le q \le p-1)$ such that $z_q = p\varphi(x_q)$ for $1 \le q \le p-1$. Therefore $px=\sum_{q=1}^{p-1}parphi(x_q), \text{ so } x-arphi(\sum_{q=1}^{p-1}x_q)\in G[p], \text{ but } G[p]=arphi(G[p]) \text{ implies}$ $x \in \varphi(G)$. Now $\varphi(G) \supset G[p^2]$ can be shown. For $x \in G[p^2]$ there exists a positive integer M and integers r_i , $0 \le r_i \le p-1$ (at least one of them is not zero) such that $\sum_{i=0}^{M} r_i p \varphi^i(x) \in Q_N = H[p]$, because $G[p]/Q_N$ is finite dimensional. Since $\varphi(Q_N) = Q_N$, we can assume $r_0 = 1$ without loss of generality. Then we find $z \in H[p^2]$ such that $p \sum_{i=0}^{M} r_i \varphi^i(x) = pz$. But $H[p^2] \subset \varphi(G)$ has been shown, so $z = \varphi(z')$ for some $z' \in G$, therefore $x + \sum_{i=1}^{M} r_i \varphi^i(x) - \varphi(z') \in G[p] = \varphi(G[p])$, this implies $x \in \varphi(G)$. Now we can see $\varphi(G) \supset G[p^n]$ for all $n = 1, 2 \cdots$ by induction. Namely in general $\varphi(G)\supset G[p^n]$ and the special form of φ on Q_N imply $\varphi(G)\supset H[p^{n+1}]$. And $\varphi(G) \supset H[p^{n+1}]$ and the finiteness of L imply $\varphi(G) \supset G[p^{n+1}]$.

Proof of (3). Suppose G is the direct sum of two subgroups G_1 and G_2 and φ is the projection onto G_1 . The continuous extension T of $\varphi|_{G[p]}$ is also a projection defined on C[p], therefore $C[p] = E_0(T) \oplus E_1(T)$ and $G[p] = (E_0(T) \cap G[p]) \oplus (E_1(T) \cap G[p])$. Since G[p] is invariant under T, T must be strongly singular by our assumption about G[p]. Suppose $E_1(T)$ is open, then $E_0(T)$ is finite, hence $G_2[p] = E_0(T) \cap G[p]$ is finite. The finiteness of $G_2[p]$ implies the finiteness of G_2 .

The following is a direct corollary of Theorem 1.

COROLLARY. Let G be a pure subgroup of C which contains Σ . If G[p] is not invariant under any nonstrongly singular homomorphism on C[p], then G has the three properties stated in (1), (2) and (3) in Theorem 1. Namely G has no proper isomorphic quotient group and no proper isomorphic subgroup, and G is quasi-indecomposable.

3. Existence theorem

THEOREM 2. There exists a pure subgroup G of C which contains Σ and satisfies three properties;

- (1) G has no proper isomorphic quotient groups,
- (2) G nas no proper isomorphic subgroups,
- (3) G is quasi-indecomposable.

And an arbitrary pure subgroup H of C such that H contains Σ and H[p] = G[p] satisfies above three properties.

This theorem comes from the corollary of Theorem 1 and following two lemmas. Lemma 1 is known as the purification property, so we omit the proof of Lemma 1 (see more general form in [6]).

- LEMMA 1. For an arbitrary subgroup Q between $\Sigma[p]$ and C[p] there exists a pure subgroup G of C such that G contains Σ and G[p] = Q.
- LEMMA 2. For any family $\{T_{\lambda} | \lambda \in \Lambda\}$ of nonstrongly singular homomorphisms on C[p] there exists a subgroup Q between $\Sigma[p]$ and C[p] such that Q is not invariant under any $T_{\lambda}(\lambda \in \Lambda)$.

The existence of such Q can be shown by transfinite induction which is Crawley's idea in [3]. We need following lemma which is also essentially Crawley's.

LEMMA 3. Suppose T is a nonstrongly singular homomorphism on C[p]. Then there exists a one-parameter family $A(T) = \{x_t | 0 \le t \le 1\}$ of elements in C[p] such that four elements x_s, x_t, Tx_s and Tx_t are

linearly independent for arbitrary $s \neq t$.

Proof. The proof can be divided into two cases (a) and (b).

- (a) T is singular but not strongly singular. In this case, by Baire's category theorem (C[p]] is a complete metric space) there are at least two q and q' such that both $E_q(T)$ and $E_{q'}(T)$ are infinite compact groups, so card $E_q(T) = \operatorname{card} E_{q'}(T) = c$ (for instance, see [5], p. 31). Therefore $\dim E_q(T) = \dim E_{q'}(T) = c$. Let $\{y_t \mid 0 \le t \le 1\}$ be a basis of $E_q(T)$ and $\{y_t' \mid 0 \le t \le 1\}$ be a basis of $E_{q'}(T)$. Then $A(T) = \{y_t + y_t' \mid 0 \le t \le 1\}$ is the desired family.
- (b) T is not singular. In this case, by Baire's category theorem $U_n/E(T) \cap U_n$ are infinite compact groups for all $n=1,2\cdots$, so as above dim $U_n/E(T) \cap U_n = c$. Hence $U_n = (E(T) \cap U_n) \oplus D_n$ with dim $D_n=c$ for all $n=1,2,\cdots$. Take $0\neq x_0\in D_1$, then x_0 and Tx_0 are linearly independent. Let $\{z_0, z_1, \dots, z_{p^2-1}\}$ be the group generated by x_0 and Tx_0 , then by the continuity of T we can find U_M such that $z_i + U_{\scriptscriptstyle M} + \mathit{T}(U_{\scriptscriptstyle M})$ $(0 \leq i \leq p^{\scriptscriptstyle 2} - 1)$ are mutually disjoint. For this Mwe take a basis $\{y_t | 0 \le t \le 1\}$ of D_M . Then $\Delta(T) = \{x_0 + y_t | 0 \le t \le 1\}$ is the desired system. Because, suppose $n_1(x_0 + y_t) + n_2(Tx_0 + Ty_t) =$ $n_1'(x_0 + y_s) + n_2'(Tx_0 + Ty_s)$ for $s \neq t$ where n_1, n_2, n_1' and n_2' are integers, then $n_1x_0 + n_2Tx_0 + n_1y_t + n_2Ty_t = n_1'x_0 + n_2'Tx_0 + n_1'y_s + n_2'Ty_s$, and $n_1x_0 + n_2Tx_0$ must be some z_i and also $n'_1x_0 + n'_2Tx_0$ must be some z_j , but $z_i = z_j$ by our choice of U_M . This implies $n_1 = n_1' \mod p$ and $n_2 = n_2' \mod p$, therefore we have $n_1 y_t + n_2 T y_t = n_1 y_s + n_2 T y_s$, whence $n_1(y_t-y_s)=-n_2T(y_t-y_s)$. However $0
 eq y_t-y_s \in D_M$ and $D_M \cap E(T)=$ $\{0\}$, hence $n_1 = n_2 = 0 \mod p$.

Proof of Lemma 2. $\{T_{\lambda} \mid \lambda \in \Lambda\}$ is given, then card Λ is at most c (note that the cardinality of the set of all continuous homomorphisms on C[p] is at most c, because C[p] is a separable compact group). We assume that Λ is a well ordered set of ordinal numbers which are less than Ω , where Ω is the first ordinal number whose cardinality is c. Choose $e \in C[p]$ but $e \notin \Sigma[p]$, then we can construct a family of subgroups $R_{\lambda}(\lambda \in \Lambda)$ by transfinite induction as follows:

- (a) $\Sigma[p] = R_0 \subset R_\lambda \subset R_\mu \subset C[p] \text{ if } 0 \leq \lambda < \mu \ (\lambda, \mu \in \Lambda),$
- (b) $\operatorname{card} R_{\lambda} \leq \operatorname{card} \lambda \cdot \aleph_0 < c \text{ for all } \lambda \in \Lambda,$
- (c) $e \notin R_{\lambda}$ but there exists $x_{\lambda} \in R_{\lambda} \cap \Delta(T_{\lambda})$ such that $e T_{\lambda}x_{\lambda} \in R_{\lambda}$. Suppose R_{λ} has been constructed for all $\lambda < \mu \in \Lambda$. Let $R'_{\mu} = \bigcup_{\lambda < \mu} R_{\lambda}$. Then card $([e] + R'_{\mu}) \leq \text{card } \mu \cdot \mathbf{X}_{0} < c$, where [e] is the group generated by e. The property of $\Delta(T_{\mu})$ in Lemma 3 guarantees the existence of $x_{i0} \in \Delta(T_{\mu})$ such that $([e] + R'_{\mu}) \cap ([x_{i0}] + [T_{\mu}x_{i0}]) = \{0\}$. Then $R_{\mu} = R'_{\mu} + [x_{i0}] + [e T_{\mu}x_{i0}]$ is the desired subgroup. Let $Q = \bigcup_{\lambda \in A} R_{\lambda}$, then by (a) Q is a subgroup of C[p] which contains $\Sigma[p]$ and by (c) Q is not invariant under any $T_{\lambda}(\lambda \in \Lambda)$.

4. A quasi-decomposable group without proper isomorphic quotient groups and proper isomorphic subgroups.

THEOREM 3. There exists a pure subgroup G of C which contains Σ and satisfies properties;

- (1) G has no proper isomorphic quotient groups,
- (2) G has no proper isomorphic subgroups,
- (3) G has a decomposition $G_1 \bigoplus G_2$ such that G_1 and G_2 are not bounded.

The following lemma is essential for our proof of this theorem.

LEMMA 4. For any family $\{T_{\lambda} | \lambda \in A\}$ of nonsingular homomorphisms on C[p] there exists a subgroup Q between $\Sigma[p]$ and C[p] such that Q is not invariant under any $T_{\lambda}(\lambda \in A)$ but invariant under the canonical projection P_{ϵ} onto even coordinates.

The outline of the proof of this lemma will be given later.

Proof of Theorem 3. Every element of C has countable coordinates as an element of the product space $\prod_{n=1}^{\infty} C(p^n)$; $x \in C$ is called an even (odd) element if all odd (even) coordinates are zero. For a subset A of C $A^e(A^0)$ means the set of all even (odd) elements in A. Then clearly $C = C^e \oplus C^0$ and $\Sigma = \Sigma^e \oplus \Sigma^0$. By Lemma 4 there exists a subgroup Q between $\Sigma[p]$ and C[p] such that Q is not invariant under any nonsingular homomorphisms on C[p] but is invariant under P_e , therefore $\Sigma^e[p] = \Sigma[p]^e \subset Q^e \subset C[p]^e = C^e[p]$, $\Sigma^0[p] = \Sigma[p]^0 \subset Q^0 \subset C[p]^0 = C^0[p]$ and $Q = Q^e \oplus Q^0$. With exactly the same proof as that of Lemma 1 we can show that there exists a pure subgroup $G_1(G_2)$ of $C^e(C^0)$ which contains $\Sigma^e(\Sigma^0)$ and $G_1[p] = Q^e(G_2[p] = Q^0)$. Clearly G_1 and G_2 are not bounded. Let $G = G_1 \oplus G_2$, then G is a pure subgroup of C which contains Σ and $G[p] = G_1[p] \oplus G_2[p] = Q^e \oplus Q^0 = Q$. By Theorem 1 G has the properties (1) and (2) in Theorem 3.

The outline of the proof of Lemma 4. In order to prove Lemma 4 we can apply a similar method to the construction of Q in Lemma 2. However before doing it we have to prepare some reformation of Lemma 3. Precisely our reformation is as follows, hereafter we shall use notations $A^e = P_e(A)(A^0 = (I - P_e)(A))$ for a subset A of C[p] and $x^e = P_e x(x^0 = x - P_e x)$ for an element x in C[p].

For an arbitrary nonsingular homomorphism T we can find a one-parameter family $\Delta(T) = \{x_t | 0 \le t \le 1\}$ of elements in C[p] which has one of the following six properties; $1^0, 2^0, 3^0, 1^e, 2^e$ and 3^e ,

 1° x_t , $Tx_t \in C[p]^{\circ}$ for all $0 \leq t \leq 1$ and four elements x_s , x_t , Tx_s and Tx_t are linearly independent for arbitrary $s \neq t$,

2° there exists $q, 0 \leq q \leq p-1$ such that $x_t \in C[p]^0$ and

$$Tx_t - qx_t \in C[p]^e$$

for all $0 \le t \le 1$ and four elements $x_s, x_t, Tx_s - qx_s$ and $Tx_t - qx_t$ are linearly independent for arbitrary $s \ne t$,

 3° $x_t \in C[p]^{\circ}$ for all $0 \leq t \leq 1$ and six elements $x_s, x_t, (Tx_s)^{\circ}, (Tx_s)^{\circ}, (Tx_t)^{\circ}$ and $(Tx_t)^{\circ}$ are linearly independent for arbitrary $s \neq t$.

 1° , 2° and 3° are dual properties 1° , 2° and 3° by exchanging odd for even.

In the proof of this we have some difficulty coming from non-commutativity of nonsingular homomorphism and $P_{\rm e}$. The proof in our original manuscript needs a long computation, in this paper we omit our detailed computation according to referee's suggestion but authors can supply the detailed proof to interested readers.

Using above $\Delta(T)$ the existence of Q in Lemma 4 can be shown as follows. Let $\{T_{\lambda} | \lambda \in A\}$ be a given family of nonsingular homomorphisms on C[p]. We assume that A is a well ordered set of ordinal numbers which are less than the first ordinal number whose cardinality is c. Choose $c \in C[p]$ but c^0 , $c^e \notin \Sigma[p]$. By transfinite induction we can construct the following family of subgroups $R_{\lambda}(\lambda \in A)$;

- $(a) \quad \Sigma[p] = R_0 \subset R_{\lambda} \subset R_{\mu} \subset C[p] \text{ if } 0 \leq \lambda < \mu(\lambda, \mu \in \Lambda),$
- (b) card $R_{\lambda} \leq \operatorname{card} \lambda \cdot \aleph_0 < c \text{ for all } \lambda \in \Lambda$,
- (c) R_{λ} is invariant under P_{e} for all $\lambda \in \Lambda$,
- (d) c° and $c^{\circ} \notin R_{\lambda}$ but there exists $x_{\lambda} \in R_{\lambda} \cap \Delta(T_{\lambda})$ such that $c^{\circ} T_{\lambda}x_{\lambda}$ or $c^{\circ} T_{\lambda}x_{\lambda}$ or $c T_{\lambda}x_{\lambda} \in R_{\lambda}$ for all $\lambda \in \Lambda$.

Suppose R_{λ} has been constructed for all $\lambda < \mu \in \Lambda$. Let $R'_{\mu} = \bigcup_{\lambda < \mu} R_{\lambda}$. Then card $R'_{\lambda} \leq \operatorname{card} \lambda \cdot \bigstar_0 < c$ and R'_{λ} is invariant under P_e and c^0 and $c^e \notin R'_{\lambda}$. Let $\underline{A}(T_{\mu})$ be one having one of properties $1^{\circ} \sim 3^{\circ}$ and $1^{\circ} \sim 3^{\circ}$. Suppose $\underline{A}(T_{\mu})$ has property 1° , then we can find $x_{\mu} \in \underline{A}(T_{\mu})$ such that $(R'_{\mu} + [c^{\circ}] + [c^{\circ}]) \cap ([x_{\mu}] \oplus [T_{\mu}x_{\mu}]) = \{0\}$. Let

$$R_{\mu} = R'_{\mu} + [x_{\mu}] + [c^{\scriptscriptstyle 0} - T_{\mu} x_{\mu}]$$
 ,

then clearly R_{μ} satisfies above (a), (b) and (c). And c° and $c^{\circ} \in R_{\mu}$ also holds. Suppose $c^{\circ} \in R_{\mu}$, then $c^{\circ} = x + nx_{\mu} + m(c^{\circ} - T_{\mu}x_{\mu})$ for some $x \in R'_{\mu}$ and some integers n and m, so $-x + (1-m)c^{\circ} = nx_{\mu} - mT_{\mu}x_{\mu}$, but by our choice of x_{μ} , $nx_{\mu} - mT_{\mu}x_{\mu} = 0$ and $x + (m-1)c^{\circ} = 0$. This implies $n = m = 0 \mod p$ and $c^{\circ} = x \in R'_{\mu}$ which is a contradiction. Suppose $c^{e} \in R_{\mu}$, then $c^{e} = x + nx_{\mu} + m(c^{\circ} - T_{\mu}x_{\mu})$ for some $x \in R'_{\mu}$ and some integers n and m, but x_{μ} and $T_{\mu}x_{\mu} \in C[p]^{\circ}$, so $c^{e} = x \in R'_{\mu}$ which

is also a contradiction. Suppose $\measuredangle(T_\mu)$ has property 2° , then we can find $x_\mu \in \measuredangle(T_\mu)$ such that $(R'_\mu + [c^\circ] + [c^e]) \cap ([x_\mu] \bigoplus [T_\mu x_\mu - q x_\mu]) = \{0\}$. Let $R_\mu = R'_\mu + [x_\mu] + [c^e - T_\mu x_\mu + q x_\mu]$, then clearly R_μ satisfies above (a), (b) and (c). And c° and $c^\circ \notin R_\mu$ also holds. Suppose $c^\circ \in R_\mu$, then $c^\circ = x + n x_\mu + m (c^e - T_\mu x_\mu + q x_\mu)$ for some $x \in R'_\mu$ and some integers n and n, but $x_\mu \in C[p]^\circ$ and $T_\mu x_\mu - q x_\mu \in C[p]^e$, hence we have $c^\circ = x^\circ + n x_\mu$, that is, $-x^\circ + c^\circ = n x_\mu$. Our choice of x_μ implies $n x_\mu = 0 = -x^\circ + c^\circ$, so we have $c^\circ = x^\circ \in R'_\mu$ which is a contradiction. Suppose $c^e \in S_\mu$, then $c^e = x + n x_\mu + m (c^e - T_\mu x_\mu + q x_\mu)$ for some $x \in R'_\mu$ and some integers n and m. Hence $-x + (1 - m)c^e = n x_\mu - m (T_\mu x_\mu - q x_\mu)$, but by our choice of x_μ we see $-x + (1 - m)c^e = 0 = n x_\mu - m (T_\mu x_\mu - q x_\mu)$. This implies $n = m = 0 \mod p$, so $c^e = x \in R'_\mu$ which is also a contradiction. Suppose $a_\mu = a_\mu + a_\mu = a_\mu + a_\mu + a_\mu = a_\mu + a_\mu + a_\mu = a_\mu + a_\mu +$

$$R_{\mu} = R'_{\mu} + [x_{\mu}] + [c^{\scriptscriptstyle 0} - (T_{\mu}x_{\mu})^{\scriptscriptstyle 0}] + [c^{\scriptscriptstyle e} - (T_{\mu}x_{\mu})^{\scriptscriptstyle e}]$$
 .

Then R_{μ} clearly satisfies (a), (b) and (c). And c° and $c^{e} \notin R_{\mu}$ can be seen as follows. Suppose $c^{\circ} = x + nx_{\mu} + m(c^{\circ} - (T_{\mu}x_{\mu})^{\circ}) + m'(c^{e} - (T_{\mu}x_{\mu})^{e})$ for some $x \in R'_{\mu}$ and integers n, m and m', then

$$c^{\circ} = x^{\circ} + nx_{u} + m(c^{\circ} - (T_{u}x_{u})^{\circ}),$$

so $-x^{\circ}+(1-m)c^{\circ}=nx_{\mu}-m(T_{\mu}x_{\mu})^{\circ}$. This implies $nx_{\mu}-m(T_{\mu}x_{\mu})^{\circ}=0=-x^{\circ}+(1-m)c^{\circ}$ by our choice of x_{μ} . Hence m=0 and $c^{\circ}=x^{\circ}\in R'_{\mu}$ which is a contradiction. We can see also $c^{e}\notin R_{\mu}$ for same reason. And x_{μ} and $c-T_{\mu}x_{\mu}\in R_{\mu}$ is clear. The construction of R_{μ} for $\Delta(T_{\mu})$ having one of properties $1^{e}\sim 3^{e}$ is exactly similar by exchanging odd for even.

Let $Q = \bigcup_{\lambda \in A} R_{\lambda}$. Then the above properties (a) \sim (d) for all R_{λ} guarantee that Q is a subgroup between $\Sigma[p]$ and C[p] not invariant under any $T_{\lambda}(\lambda \in A)$ but invariant under P_{ϵ} .

REFERENCES

- 1. G. Baumslag, *Hopficity and abelian groups*, Topics in abelian groups, Proceedings of the New Mexico Symposium on Abelian Groups, 1962, 331-335.
- 2. R. A. Beaumont and R. S. Pierce, Partly transitive modules and monules with proper isomorphic submodules, Trans. Amer. Math. Soc. 91 (1959) 209-219.
- 3. P. Crawley, An infinite primary abelian group without proper isomorphic subgroups, Bull. Amer. Math. Soc. **68** (1962) 463-467.
- 4. L. Fuchs, Abelian groups, Pergamon Press, Oxford, 1960.
- 5. E. Hewitt and K. A. Ross. Abstract harmonic analysis I, Academic Press, New York, 1963.
- 6. J. M. Irwin, F. Richman and E. A. Walker, Countable direct sums of torsion complete groups, Proc. Amer. Math. Soc. 17 (1966), 763-766.

7. R. S. Pierce, *The endomorphism rings of primary abelian groups*, Topics in abelian groups, Proceedings of the New Mexico Symposium on Abelian Groups, (1962) 215-310.

Received August 22, 1967.

WAYNE STATE UNIVERSITY AND HOKKAIDO UNIVERSITY