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A QUASI-DECOMPOSABLE ABELIAN GROUP WITHOUT
PROPER ISOMORPHIC QUOTIENT GROUPS AND
PROPER ISOMORFPHIC SUBGROUPS

JoHN M. IRWIN AND TAKASHI ITO

All of the group in this paper are abelian p-groups without
elements of infinite height. A group is said to be quasi-
indecomposable if whenever H is a summand of G then either
H or G/H is finite, The p-socle of G is the sub-group consisting
of all the elements x in G such that px = 0.

In this paper it is shown that there are conditions that
can be imposed on the socle of G which are sufficient for G
to (a) have no proper isomorphic subgroups; (b) have no proper
isomorphic quotient groups; and (¢) be quasiindecomposable,
Furthermore, it is shown that groups which make these results
meaningful actually exist.

Let the cardinality of a group G be either YW, or greater than
¢ = 2%, Then, as is well known, G has a proper isomorphic subgroup
and a proper isomorphic quotient group. However P. Crawley [3]
showed that the cardinality ¢ is exceptional. He gave an example G,
of cardinality ¢ which has a standard basic subgroup and no proper
1somorphic subgroups. After Crawley’s example appeared, it was clear
that a group, of cardinality ¢ and with a standard basic subgroup,
supplies examples of groups with strange but interesting properties.
In fact R. S. Pierce [7] gave an example G, which has no proper
isomorphic subgroups and no proper isomorphic quotient groups. And
he gave also in [7] an example G, which is quasi-indecomposable, that
is, every direct summand H of G, is either finite or G,/H is finite.

The relationship between the above three properties (no proper
isomorphic subgroups, no proper isomorphic quotient groups and quasi-
indecomposability) of a group G with the cardinality ¢ and a standard
basic subgroup seems to authors an interesting problem. In this paper
we shall give some results about this problem. In our approach the
topological structure of the p-socle of the torsion completion of G will
be used in an essential way. Theorem 1 tells us that the situation
of the p-socle of G in the p-socle of the torsion completion of G gives
us sufficient conditions for these three properties of G. In some sense it
shows a relationship between the three properties. Theorem 2 shows the
existence of a group which has all three properties. Theorem 8 shows
the existence of a group which has no proper isomorphie subgroups and
no proper isomorphic quotient groups but which is quasi-decomposable.

Now we want to add a simple proof of the following fact which
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was mentioned in the opening of this section.

Let G be an infinite reduced p-group with card G = W, or card
G >c. Then G has a proper isomorphic subgroup and a proper
1somorphic quotient group.

Proof. For simplicity we divide the proof into

Case 1; Suppose G is bounded. Then G = 3»_, B, where B, is a
direct sum of cyeclic groups of order p*, B, = >, C(p*). Now clearly one
of these B,’s is infinite and throwing out a cyclic summand of B, yields
the desired subgroup and quotient group.

Case 2. Suppose card G = W, and G is unbounded. Then G =
H®P K where H is an unbounded direct sum of cyclic groups (Exercise
19 (@), p.143 in [4]). It is easy to find a proper subgroup A of H
which is isomorphic to H and a non-zero subgroup B of H such that
H/B = H. Whence we obtain our proper isomorphic subgroup AP K
and our proper isomorphic quotient group G/B.

Case 3. Suppose G is unbounded with card G >¢, and B = >\, B,
is a basic subgroup where B, = >, C(p*). Then G=B, B, H--- P
B,® G, for all n (Theorem 29.3 in [4]). But as is well known (card
B)% > card G > ¢ so that some B, must be infinite. Now throwing
out a cyclic summand of B, yields the result as in Case 1 and the
proof is complete.

2. Sufficient conditions for the three properties. Let p > 1
be a fixed prime number, C(p") be a cyclic group of order p", X be
the direct sum of cyclic groups C(p"), /I be the direct product of
cyclic groups C(p™) and C be the torsion group of I, that is, ¥ is
the standard basic group and C is the torsion completion of 2.

The p-socle C[p] of C is a vector space over the prime field of
characteristic p and can be topologized as a totally disconnected
compact topological group, because I is clearly a totally disconnected
compact topological group with respect to the product topology of
compact discrete topologies and the p-socle C[p] of C is the closed
subgroup {x|xell,px =0} of [I. Actually U, = {x|xeC[p] and
h(x) = n} = (p"C)[p] (» =1,2 --.) are open compact subgroups of C[p]
and {U,} is a fundamental system of 0-neighborhoods in C[p]. These
two structures on C[p] which are a vector space and a totally dis-
connected compact group are used in an essential way in this paper.

Every continuous group homomorphism 7 on C[p] defines compact
subgroups E,(T) = {x|x e C[p] and Tx = qz} (0 £ ¢ < p) and the compact
subgroup E(T)=E((T)PE(T)PD ---PE,_(T). We can define
naturally two types of continuous group homomorphism on C[p] as
follows. T is a singular homomorphism if E(T) is an open compact
subgroup of C[p]. For instance a continuous projection on C[p] is
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singular. T is a strongly singular homomorphism if for some q E(T)
is an open compact subgroup. If a continuous group homomorphism
T on C[p] has a dense subgroup which is invariant under T and on
which T is one to one, T is called a semi-isomorphism on C[p].

We have the following theorem which is fundamental to the ideas
in what follows.

THEOREM 1. Let G be a pure subgroup of C which contains X
and G[p] be the p-socle of G.

Q) If G[p] is mot inmvariant under any mnonsingular onto
homomorphism on C[p], then G has no proper isomorphic quotient
groups.

(2) If G[p] is not inmvariant under any mnonsingular semi-
isomorphism on C|[p], then G has mo proper isomorphic subgroups.

8) If G[p] is mot imvariant under any mnonstrongly singular
projection on C[p], then G is quasi-indecomposable.

Proof. Suppose @ is a homomorphism of G into G. The purity of
G in C implies p(G[p] N U,) c U, forallw =1,2, -.-. This means that
the restriction of @ to G[p] is continuous on G[p]. since G[p] D Z[p]
and X[p] is dense in C[p], ® | ¢r»; has a unique continuous homomorphism
extension T on C[p]. Clearly G[p] is invariant under T and T'(U,) C U,
for all n =1,2, -... If this T is singular, then there exists a positive
integer N such that

T(Uy)c Uy CE(T) .
Then we have the following decomposition of G[p],

Glp] = (Glp]l N Uy) @ By = (E(T) N Glp] N Uy)
DET)NGPIN U D «-- & E,-(T)NGlp] N Uy) @ Ry ,

where R, is a finite subgroup of G[p].

Because C[p]/Uy is finite and G[p]/Glp] N Uy is isomorphic to a
subgroup C[p]/Uy, so the dimension of G[p]/G[p] N Uy as a vector
space over the prime field of characteristic p is finite. Hence there
exists a finite subgroup Ry of G[p] such that G[p] = (G[p] N Uy) P R,.
The decomposition of G[p] N Uy can be shown as follows. For each
2 in G[p] N Uy « is the sum of 2z, e E(T)(0 =g <p); «=>7I32,.

Then we have ¢*(x) = >72 T2, = > 25 q*2, for 0 <y < p — 1. Since
the determinant of Vandermonde’s matrix is not zero mod p, each gz,
(0=¢=p—1) is a linear combination of z, p(x), -+, p*"(x). This

means 2z, e E(T)NG[p]N Uy for 0 g =<p— 1.

Proof of (1). Suppose @ is an onto homomorphism of G. Then
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the continuous extension T of ¢ |4, is clearly an onto homomorphism
of C[p] and G[p] is invariant under T. By our assumption T must
be singular, so we have the above decomposition of G[p]. Put Q, =
(E(T) N Glpl N Uy D E(T) NGlp] N UD - - - B (E,(T) N Glp] N Uy),
clearly o(Qy) = Qy and ¢ is an isomorphism on Q,, and

(EL(T) N Glp]l N Uy) @ By = G[p]/Qy = 2(GIP])/2(Qy) = p(Ey)

but dim p(Ry) < dim Ry < + oo. This implies that E(T) N G[p]N Uy =
{0} and R, is isomorphic to @(Ry) by @. Therefore ¢, is an
isomorphism on G[p]. Let 0= xe@G and the order of z=p" >1,
then 0 p(p™~'x) = p"'p(x), so p(x) 0. Thus  must be an isomor-
phism on G.

Proof of (2). Suppose @ is an isomorphism of G into G. We have
to show @(G) = G. The continuous extension T of @], is a semi-
isomorphism and G[p] is invariant under T. By our assumption T
must be singular, so we have the same decomposition of G[p] as above.
First of all we can see o(G[p]) = G[p]. Automatically

E(T) N G[p] NUy= {O} ’

because ¢ is one to one, therefore G[p] = @y D Ry = p(Qy) B p(Ry) =
QxDep(Ry) C Glp] but dim R, = dim p(Ry) < + o, this implies p(G[p]) =
Glp]. Next we can see ¢(G) D G[p*]. The group H = {z|x € G and the
first N — 1 coordinates in /I are zero} is a direct summand of G and

Hlp] = Glp] N Uy = Qx
=EMNR)DETINQRNB - B (E,_(T)NQy) .

We can take a finite group L such that G= H@ L. We have to show
first (@) D H[p?]. For arbitrary x in H[p?] px = 3=z, for some
2, E(T)NQy 1 =<q=<p—1), then each z, is a linear combination
of pp(x), pp*(x), -+, pp*~(x). This means that there exist x,eG
L=Zqg<p-—1) such that z, = pp(x,) for 1 < g < p — 1. Therefore
pr = 327 pp(x,), so x — o3 2=t a,) € G[p], but G[p] = o(G[p]) implies
zep(@). Now @(G) D G[p*] can be shown. For xe G[p*] there exists
a positive integer M and integers 7, 0 < r; < p — 1 (at least one of
them is not zero) such that 3%, r,pp'(x) € @y = H[p], because G[p]/Qy
is finite dimensional. Since p(Qy) = Qy, We can assume 7, = 1 without
loss of generality. Then we find z € H[p?] such that p >\, r.@'(x) = pz.
But H[p*] € o(G) has been shown, so z = ¢(z') for some 2’ € G, therefore
x + S ro'(x) — o) € G[p] = (G[p]), this implies z € p(G). Now we
can see @(G) D G[p"] for all n =1,2 ... by induction. Namely in general
»(G) D G[p"] and the special form of @ on Q, imply o(G)> H[p"*'].
And o(G) D H[p"*'] and the finiteness of L imply o(G)D G[p"*'].
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Proof of (3). Suppose G is the direct sum of two subgroups G,
and G, and ¢ is the projection onto G,. The continuous extension 7' of
@ | arpy 18 also a projection defined on C[p], therefore C[p] = E(T)DBE(T)
and G[p] = (E(T) N G[p]) & (E(T) N G[p]). Since G[p] is invariant
under T, T must be strongly singular by our assumption about G[p].
Suppose E,(T) is open, then E(T) is finite, hence G,[p] = E(T) N G[p]
is finite. The finiteness of G,[p] implies the finiteness of G..

The following is a direct corollary of Theorem 1.

COROLLARY. Let G be a pure subgroup of C which contains 3.
If G[p] s mot imvariant under any nonstrongly singular homomor-
phism on C[p], then G has the three properties stated in (1), (2) and
(8) tn Theorem 1. Namely G has no proper isomorphic quotient group
and no proper isomorphic subgroup, and G is quasi-indecomposable.

3. Existence theorem

THEOREM 2. There exvists a pure subgroup G of C which contains
2 and satisfies three properties;

(1) G has no proper isomorphic quotient groups,

(2) G mas no proper isomorphic subgroups,

(8) G s quasi-indecomposable.
And an arbitrary pure subgroup H of C such that H contains 3 and
H[p] = G[p] satisfies above three properties.

This theorem comes from the corollary of Theorem 1 and following
two lemmas. Lemma 1 is known as the purification property, so we
omit the proof of Lemma 1 (see more general form in [6]).

LEMMA 1. For an arbitrary subgroup @ between X[p] and C[p]
there exists a pure subgroup G of C such that G contains X and

Glp] = Q.

LEMMA 2. For any family {T,|x€ A} of monstrongly singular
homomorphisms on C[p] there exists a subgroup Q between X[p] and
Clp] such that Q s mot tnvariant under any T,(\ € A).

The existence of such @ can be shown by transfinite induction
which is Crawley’s idea in [3]. We need following lemma which is
also essentially Crawley’s.

LEMMA 3. Suppose T s a nonstrongly singular homomorphism
on C[pl. Then there exists a one-parameter family 4(T)={x,|0=t <1}
of elements in C[p] such that four elements x,, x,, Tx, and Tx, are
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linearly independent for arbitrary s +# t.

Proof. The proof can be divided into two cases (a) and (b).

(@) T is singular but not strongly singular. In this case, by
Baire’s category theorem (C[p] is a complete metric space) there are
at least two ¢ and ¢’ such that both E(T) and E,(T) are infinite
compact groups, so card E/(T) = card E,(T) = ¢ (for instance, see
[5], p.31). Therefore dim E(T) = dim E,(T) = c. Let {y,|]0=t<1}
be a basis of E,(T) and {y;|0 <t <1} be a basis of E,(T). Then
AT) ={y, + y.|0 <t <1} is the desired family.

(b) T is not singular. In this case, by Baire’s category theorem
U,/E(T) N U, are infinite compact groups for all n =1,2..., so as
above dim U,/E(T) N U, = ¢. Hence U, = (E(T)N U,) @ D, with dim
D,=cforall n=1,2 ..., Take 0= z,e¢D,, then z, and Tz, are
linearly independent. Let {z,z, ---, Z,_} be the group generated by
x, and T, then by the continuity of T we can find U, such that
2, + Uy + T(Uy,) (051 < p*— 1) are mutually disjoint. For this M
we take a basis {y,]0=t<1} of D,. Then A(T)={x,+ %, |0t <1}
is the desired system. Because, suppose n,(x, + ¥.) + n.(Tx, + Ty,) =
nwi(x, + ¥,) + ny(Tx, + Ty,) for s==t where n,, n,, n; and n} are integers,
then =z, + #,Tx, + ny, + n,Ty, = nlw, + niTx, + ny, + n,Ty,, and
n,x, + n,Tx, must be some z; and also njx, + n;Tx, must be some z;,
but z; = z; by our choice of U,. This implies n, = n/mod p and
n, = n,mod p, therefore we have ny, + n,Ty, = ny, + n,Ty,, whence
n(y, —y,) = —n,T(y, —y,). However 0#y, —y,€ Dy and D, N E(T) =
{0}, hence %, = n, = 0 mod p.

Proof of Lemma 2. {T;|»¢€ A} is given, then card 4 is at most
¢ (note that the cardinality of the set of all continuous homomorphisms
on C[p] is at most ¢, because C[p] is a separable compact group). We
assume that 4 is a well ordered set of ordinal numbers which are less
than 2, where 2 is the first ordinal number whose cardinality is c.
Choose e C[p] but e¢ 2[p], then we can construct a family of sub-
groups R,(A € A) by transfinite induction as follows:

(a) J[p]=R,CcR;,CR,CC[p]if 0=x<p (\, ),

(b) card R, < cardn-Y, < ¢ for all ve 4,

(¢) e¢R, but there exists x; € B; N 4(T;) such that e — Tz, € R;.
Suppose R, has been constructed for all N < peA. Let R, =U,<. R
Then card ([e] + R}) < card - %, < ¢, where [e] is the group generated
by e. The property of 4(T,.) in Lemma 3 guarantees the existence
of w,€ 4(T,) such that ([e] + E}) N ([%w] + [Tu®0]) = {0}. Then R, =
R, + [x,] + [e — Tux,] is the desired subgroup. Let Q = U,..R;,
then by (a) @ is a subgroup of C[p] which contains X[p] and by (c)
@ is not invariant under any T,(\ € 4).
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4. A quasi-decomposable group without proper isomorphic
quotient groups and proper isomorphic subgroups.

THEOREM 3. There exists a pure subgroup G of C which contains
2 and satisfies properties;

(1) G has no proper isomorphic quotient groups,

(2) G has mo proper isomorphic subgroups,

(3) G has a decomposition G, G, such that G, and G, are not
bounded.

The following lemma is essential for our proof of this theorem.

LEMMA 4. For any family {T:|x€ 4} of nonsingular homomor-
phisms on C[p] there exists a subgroup Q between X[p] and C[p] such
that Q 1s not invariant under any T,(\ € A) but tnvariant under the
canonical projection P, onto even coordinates.

The outline of the proof of this lemma will be given later.

Proof of Theorem 3. Every element of C has countable coordi-
nates as an element of the product space [[3., C(»™); x € C is called
an even (odd) element if all odd (even) coordinates are zero. For a
subset A of C A°(A°) means the set of all even (odd) elements in A.
Then clearly C =C*C° and ¥ = 2B 2°. By Lemma 4 there exists
a subgroup @ between Y[p] and C[p] such that @ is not invariant under
any nonsingular homomorphisms on C[p] but is invariant under P,
therefore X‘[p] = X[p]° < Q° < C[p]* = C°[p], 3'[p] = 3[p]’C Q' C[p]’ =
C’[p]l and Q = QP Q°. With exactly the same proof as that of Lemma
1 we can show that there exists a pure subgroup GG, of C*C"
which contains 3°(2°) and G,[p] = Q(G.[p] = Q°). Clearly G, and G,
are not bounded. Let G = G, P G,, then G is a pure subgroup of C
which contains ¥ and G[p] = G|[p] D G,[p] = P Q° = Q. By Theorem
1 G has the properties (1) and (2) in Theorem 3.

The outline of the proof of Lemma 4. In order to prove Lemma
4 we can apply a similar method to the construction of Q in Lemma
2. However before doing it we have to prepare some reformation of
Lemma 3. Precisely our reformation is as follows, hereafter we shall
use notations A° = P,(A)(A° = (I — P,)(A)) for a subset A of C[p] and
2* = Pa(x* = o — P,x) for an element « in C[p].

For an arbitrary monsingular homomorphism T we can find a
one-parameter family 4(T) = {x,|0 < ¢ < 1} of elements in C[p] which
has one of the following six properties; 1°, 2°, 3", 1°, 2° and 3°,
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1° 2, Tz, eC[p]° for all 0 <t <1 and four elements x,, x,, Tx,

and Tx, are linearly independent for arbitrary s # t,
2° there exists ¢,0 < q < p — 1 such that x,€ C[p]° and

Tmt — qx; € C[p]e

for all 0 <t <1 and four elements x,, x,, Tx, — qx, and Tx, — qu,
are linearly independent for arbitrary s + &,

3 x,eClp]’ for all 0=t <1 and six elements x,, x,, (Tx,)’, (Tx,)",
(Tx,)" and (Tx,)° are linearly independent for arbitrary s + t.

1¢,2° and 3° are dual properties 1°, 2° and 3° by exchanging odd
for even.

In the proof of this we have some difficulty coming from non-
commutativity of nonsingular homomorphism and P,. The proof in
our original manuscript needs a long computation, in this paper we
omit our detailed computation according to referee’s suggestion but
authors can supply the detailed proof to interested readers.

Using above A(T') the existence of @ in Lemma 4 can be shown as
follows. Let {T,|x € A} be a given family of nonsingular homomorphisms
on C[p]. We assume that A is a well ordered set of ordinal numbers
which are less than the first ordinal number whose cardinality is c.
Choose c¢eC[p] but ¢ ¢ ¢ X[p]. By transfinite induction we can
construct the following family of subgroups R,(» € 4);

(a) 2[p]l=R,cR,CcR.CC[p]if 0 <X\ < (N, e ),

(b) card R, < cardx-W, < ¢ for all he 4,

(e¢) R, is invariant under P, for all M e 4,

(d) ¢ and c¢°¢ R, but there exists ;e R; N 4(T;) such that
¢ — Ty, or ¢¢ — T)x; or ¢ — T)x,e R, for all x e 4.

Suppose R, has been constructed for all N < ped. Let R, =
U.<. R;. Then card R} < card »-W, < ¢ and R} is invariant under P,
and ¢® and ¢°¢ R,. Let 4(T,) be one having one of properties 1° ~ 8°
and 1° ~ 8°. Suppose 4(T,) has property 1°, then we can find =z, e 4(T,)
such that (R}, + [¢°] + [¢‘D) N [z ] B [T.2.]) = {0}. Let

R, = R, + [v.] + [¢'— Tux,] ,

then clearly R, satisfies above (a), (b) and (¢). And ¢® and ¢°¢ R, also
holds. Suppose ¢’ € R,, then ¢’ = + nz, + m(c’* — T,.x,) for some z € R},
and some integers n and m, so — x + (1 — m)¢* = nx, — mT.x,., but
by our choice of w,, nz, — mT.x.=0 and z + (m — 1)¢* = 0. This
implies » =m = Omodp and ¢ = xe R, which is a contradiction.
Suppose ¢ € R,, then ¢f = x + nx, + m(¢® — T.x,) for some x e R and
some integers n and m, but x, and T.x,.e C[p]’, so ¢¢ = z e R, which
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is also a contradiction. Suppose 4(T.) has property 2°, then we can
find @, € 4(T.) such that (R} + [¢'] + [¢’) N ([2.] D [T, — gz,]) = {0}.
Let R, = R}, + [«.] + [¢¢ — T.z,. + qx.], then clearly R, satisfies above
(a), (b) and (¢). And ¢ and ¢ ¢ R, also holds. Suppose ¢’c R,, then
¢ =2x + nx, + m(c® — T, + qx,) for some x € R, and some integers n
and m, but z, € C[p]° and T,x.— gz, € C[p]°, hence we have ¢’ = z° 4 nx,,
that is, — 2° + ¢" = nx,. Our choice of z, implies nx, = 0= — a° + ¢,
so we have ¢ = 2° e R}, which is a contradiction. Suppose ¢° € S,, then
¢ = + nx, + mc® — T, + qx,) for some x ¢ R, and some integers
n and m. Hence — z + (L — m)¢* = nx, — m(T,. 2, — qx,), but by our
choice of z, we see —a + (1 — m)c* =0 = nw, — m(T,x, — qx,). This
implies 7 = m = 0 mod p, so ¢ = x € R}, which is also a contradiction.
Suppose 4(T,) has property 3°, then we can find «,€ 4(T,) such that
(B, + [¢'] + [’ N ([2] D [(Te)'] D [(To)]) = {0}, Let

R, = R, + [x,] + [¢" = (Tw2,)'] + [¢* = (T,.)] .

Then R, clearly satisfies (a), (b) and (c). And ¢® and ¢°¢ R, can be
seen as follows. Suppose ¢’ = & + nx, + m(c’ — (T,x,)°) + m'(c* — (T,.2,)°)
for some xz e R, and integers n, m and m’, then

CO = :UO + nx‘u + m(co - (T,Uxf‘)0)7

so — " + (1 — m)c" = nx, — m(T.2,)°. This implies nx, — m(T.x,)° =
0= —2"+ (1 —m)c" by our choice of x,. Hence m=0 and ¢ =2"c R,
which is a contradiction. We can see also ¢°¢ R, for same reason.
And z, and ¢ — T.x.€ R, is clear. The construction of R, for 4(T.)
having one of properties 1° ~ 3° is exactly similar by exchanging odd
for even.

Let @ = U,..R;. Then the above properties (a) ~ (d) for all R,
guarantee that Q is a subgroup between X[p] and C[p] not invariant
under any T;(» € 4) but invariant under P,.
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