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ALGEBRAS FORMED BY THE ZORN VECTOR MATRIX

TAE-IL SUH

In the Zorn vector matrix algebra the three dimensional
vector algebra is replaced by a finite dimensional Lie algebra
L over a field of characteristic not 2 equipped with an as-
sociative symmetric bilinear form (¢, b) and having the pro-
perty: [albc]] = (a,¢)b — (a, b)e,a,b,ce L, We determine all
the alternative algebras % obtained in this way: If the bilinear
form (a, b) on L is nondegenerate then 2 is the split Cayley
algebra or a quaternion algebra. For a degenerate form (a, b),
A is a direct sum of its radical and a subalgebra which is
either a quaternion or two dimensional separable algebra. As
an immediate consequence of the first result we have shown
that if the bilinear form on the Lie algebra L is nondegenerate
then L is simple with dimension three or one.

Let @ be a field of characteristic not two throughout this paper.
Let A be an anti-commutative algebra over @ with a symmetric
bilinear form (a, b) which is associative, i.e., (ac, b) = (a, ¢b), a, b, cc A,
and we consider the set 2 of 2 x 2 vector matrices of the form:

a a

( ,a,Bed;a,becA.
b B

9 is a vector space @ under the usual addition, +, and multiplication

by scalars. A multiplication in 2 ([5] and [2]) is defined to be:

1 (a a)(v c) _ (cw — (a,d), ac + oa + bd) .
b B/\d o vb + Bd + ac, £B6 — (b, ¢)
Then U is a flexible algebra over @ in the sense that
(zy)x = z(yx), 2, ye A .
Furthermore 2 is an alternative algebra over @, i.e., 2’y = z(xy) and

(yx)r = ya*, x, y € A if and only if the anti-commutative algebra A has
the following property:

(2) a(be) = (a, ¢)b — (a, b)e,a,b,cc A .

This is checked easily by a comparison of entries of vector matrices
2’y and a(xy). We note that this property implies the Jacobi identity:
a(be) + b(ca) + c(ab) = 0 and A is a Lie algebra over the field @.

We shall determine all the alternative algebras over @ which are
constructed from the Lie algebras with (2) by the Zorn vector matrices.
First we determine all the Lie algebras with (2) and let L be a finite
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dimensional Lie algebra over @ equipped with an associative symmetric
bilinear form (a, b) and having the property (2). We return to writ-
ing [a b] in place of ab. Set L+ = {a € L|(a,b) = 0,be L} the radical
of the bilinear form. If the bilinear form (a,bd) is nondegenerate,
i.e., L+ = 0, it follows from (2) that L is a simple Lie algebra. On
the other hand, if (a, b) is degenerate we have the following.

LemMMA. If the bilinear form (a,b) is degenerate, then the Lie
algebra L 1is nilpotent with L* =0 or L = ®u + L* where L* is a
nonzero abelian ideal and (ad w)* |+ = oI, 0 = —(u,u) # 0 in @,

Proof. If L* = L, the condition (2) implies L* = 0. In the rest
of the proof we assume that L' = L, and L* is a nonzero proper
ideal of L. There exists an element % % 0 in L which is not in L* and
satisfies (u, u) = 0. Let (¥, ¥, **-, ¥n) be a basis for L*.

(ad u)* |0 = —(u, u)l
because we have (ad w)*y; = [u[u, ¥;]] = —(u, w)y; for all y,. Since
o= —(u,u)=0
in @, the mapping ad % is nonsingular on L*t.
(ad Wy y;] = , ¥5)y: — (U, ¥)y; = 0

for all 7, 7 imply [¥;, ¥;] = 0 which means L* abelian. Finally we show
that L is the direct sum of two subspaces @u and L. Let z be any
element of L, not in L*. (ad w)[x, v;] = — (u, 2)y; and set 7 = —(u, x).
Then (ad w)ad(tu — px)|,+ = 0. Since ad u is nonsingular on L*,
ad(tu — px) |- = 0. We wish to show that (y,7u — px) = 0 for any
y of L, which is equivalent to saying that xe®wu + L*. Since
[tu — px, y;] = 0 for all y; of the basis for L*, 0= [y[cu — oz, y]] =
—(y, Tu — px)y;. This has completed our proof.

Now we first take up the case the Dbilinear form (a,bd) on the
Lie algebra L is nondegenerate. It is known ([2]) that (a,d) on L
is nondegenerate if and only if the algebra ¥ constructed from L is
simple. Since the alternative algebra A is simple, ¥ is the split
Cayley algebra or an associative algebra ([1]). We consider the latter
case and follow Sagle’s argument in [3]. Let

ol A N R

be any elements of 2. By a comparison of (1,1)-entries of (zy)z =
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x(yz) we have ([bd], h) = (a, [c g]). Without loss of generality we
may take @ = 0 and we have ([bd], k) = 0 for all he L. It follows
from the nondegeneracy that [b d] = 0 for all b,d of L, i.e., L? = 0.
From 0 = [a[b ¢]] = (a, ¢)b — (a, b)c, we have dim L = 1 and therefore
A is a quaternion algebra. Hence we have the following

THEOREM 1. Let L be a finite dimensional Lie algebra over a
field @ of characteristic 2 equipped with an associative symmetric
bilinear form (a,bd) and having the property (2). If (a,bdb) ts non-
degenerate, then A is the split Cayley algebra or o quatermion
algebra.

A similar consideration to this theorem is given in [3]. As an
immediate consequence of the theorem we have

COROLLARY. Let L be as in Theorem 1. If the bilinear form
(a, b) 1s nondegenerate L is simple with dimensionality three or one.

Next we consider the remaining case, that is, (a,b) on L is de-
generate. Let (4, %,, ---, %,) be a basis for L over ® and we set

1 0 0 0
6, = y €= ’
0 0 01

0 s 0 0
eig):(o /L(’;)y eéi):( 0), 8:1’29"'yn°
w,

These form a basis for the algebra 2 over @. Let L = @u + L* be
as in lemma and take the basis for L to be u, = u and (uy, +--,u,)
a basis for the abelian ideal L*. We have the following multiplica-
tion table for :

ee; = 0;5€; ,
eieii) = eile, = ei)
eeie; = ejie; = 0,
o) — {pei if (s, .t) =(1,1),
0 otherwise,
0if s,t=2,8,+++,m,

eiel) = —ejjlel) = .
x,; otherwise

where 7,5,k =1,2; 1% k;s,t =1,2,---,n and z,; is a 2 X 2 vector
matrix with 0 for all entries except for (%, i)-entry [u, u,]. The ef3
and e, s = 2, 3, -+ -, n are all properly nilpotent and therefore generate
the radical % of A (Zorn Theorem 3.7 in [4]). It follows that A =
S + N (direct sum) where & is a quaternion subalgebra with basis
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(e, €5, €7, e). We note that this quaternion subalgebra & is the
same as one given in Theorem 1. Now we consider the remaining
case: L* =L and L is nilpotent with L* = 0. Take a basis

(uu sy Uy, "'yun)

for L such that (u,., --+,u,) is a basis for the abelian ideal L* of
L. We have

[, w;]e L},1 < 4,5 < m and
[u; w;] = 0 otherwise.

The multiplication table for 2 is as follows:

e.e; = 0;;6; ,

el = eiile, = eii

el = eile; =0,

eel] = —(u,, u)e; =0,

(s),(t)
€k i = T

where ¢,7,k=1,2;1% k;s,t=1,2, ---,n and =z, is as before. The
e, 1 #k,s=1,2,---, n are all properly nilpotent and generate the
radical R of A. Hence A is a direct sum of N and a separable sub-
algebra @¢, + ®e,. We have proved the following

THEOREM 2. Let L be as in Theorem 1. If the bilinear form
(a, b) s degenerate, then the algebra A constructed from L is a direct
sum of its radical N and a subalgebra & where S is either a qu-
aternion or 2-dimensional separable algebra.
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