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CHARACTERIZATION OF CERTAIN INVARIANT
SUBSPACES OF Hp AND Lp SPACES DERIVED

FROM LOGMODULAR ALGEBRAS

SAMUEL MERRILL, III, AND NAND LAL

Let A = A(X) be a logmodular algebra and m a represent-
ing measure on X associated with a nontrivial Gleason part.
For 1 ^ p ^ oo, let Hp(dm) denote the closure of A in Lp(dm)
(w* closure for p — oo). A closed subspace M of Hp(dm) or
Lp(dm) is called invariant if fe M and g e A imply that fg e M.
The main result of this paper is a characterization of the
invariant subspaces which satisfy a weaker hypothesis than
that required in the usual form of the generalized Beurling
theorem, as given by Hoffman or Srinivasan.

For 1 ^ p ^ oo, let Ip be the subspace of functions in Hp(dm)

vanishing on the Gleason part of m and let Am = ifeA: \ fdm — ok

THEOREM. Let M be a closed invariant subspace of L2(dm) such
that the linear span of AmM is dense in M but the subspace R =
{feM:fA_I°°M} is nontrivial and has the same support set E as M.
Then M has the form χE F'(P)L for some unimodular function F.

A modified form of the result holds for 1 <̂  p <Ξ oo. This theorem
is applied to give a complete characterization of the invariant subspaces
of Lp(dm) when A is the standard algebra on the torus associated with
a lexicographic ordering of the dual group and m is normalized Haar
measure.

!_• Invariant subspaces* In 1949 Beurling [1], using function
analytic methods, showed that all the closed invariant subspaces of
if2 of the circle have the form M = FH\ where \F\=1 a.e. In
1958 Helson and Lowdenslager [3] and [4] extended the result to
some but not all subspaces of the H2 space of the torus, using Hubert
space methods. In the past 10 years the latter arguments have been
extended by Hoffman [5, Th. 5.5, p. 293], Srinivasan [8], [9], and
others to prove the following generalized Beurling theorem. If m is
a representing measure for a logmodular algebra A and if M is an
invariant subspace of L2(dm) which is simply invariant, i.e., if

(1) the linear span of AmM is not dense in Λf,
then M = FH2 for | F\ = 1. In the general case (even the torus case)
not all invariant subspaces satisfy this hypothesis. Our purpose is to
extend the characterization by weakening hypothesis (1).
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We assume throughout the paper that A = A(X) is a logmodular
algebra [5] of continuous complex-valued functions on a compact
Hausdorff space X and that m is the unique representing measure on

X for a complex homomorphism of A, i.e., 1 fgdm = I fdm \ gdm for

all f,geA. Furthermore we assume that this complex homomorphism
lies in a Gleason part P(m) containing more than one element. A
function feH°°(dm) is called inner if | / | = 1. For each feH2(dm)

we write f(φ) — I fdφ for φ in P(m), where φ also denotes the

representing measure for the homomorphism φ.
In [10] Wermer showed (for A a Dirichlet algebra) that there

exists an inner function Z such that Z maps P{m) onto {λ: | λ | < 1}
and such that the equation

(2) G(Z(φ))=f(φ)
associates with each / in H2(dm) an analytic function G(λ) = ΣΓ=o Urλ71

for | λ | < 1 where an — I Znfdm. (See [5] for the extension to log-
modular algebras.) Denote by F the boundary value function of G
(i.e., the function in L\dθ) whose Fourier coefficients are an, where
dθ is normalized Lebesgue measure on {| λ | = 1}).

Elementary arguments (including the Riesz-Fischer theorem) esta-
blish that the mapping Φ(f) — F can be extended to a bounded linear
transformation of L2(dm) onto L2(dθ), using the fact that L\dm) —
H\dm) © HUdm) [5, Th. 5.4, p. 293].

Denote by ^ p the closure (in Lp(dm)) of the polynomials in Z;
denote by ^ p the closure (in Lp(dm)) of the polynomials in Z and
Z. (For p= oo, the closure is taken in the w* topology.) Thus
^ 2 = ^Γ 2 0 ^ L and Φ, restricted to ^f\ is an isometric isomorphism
onto U(dθ), induced by the correspondence Z-+eiθ.

Actually Φ can be extended to a continuous transformation of
Lι(dm) onto L\dθ) induced by formula (2) and for 1 <; p ^ oo carrying
^fp isometrically onto Lp(dθ). (This map also carries Hp{dm) onto
Hp{dθ).) This follows from the following result of Lumer [6, Th. 3, p.
285] (and our Lemma 5 below): The correspondence Z—>eiθ induces an
isometric isomorphism of £?p onto Lp(dθ) for each p, 1 ^ P ^ oo, which
carries ^ p onto Hp(dθ). See also Merrill [7, Proof of Th. 1]. For /
and geL2(dm), Φ(fg) = Φ(f)Φ(g) (see the proof of Lemma 10 in Wer-
mer [10]). We call Φ the natural homomorphism of Lι(dm) onto Lι(dθ)+

Define P = ίfe Hp(dm): ( Znfdm = 0, n = 0,1, 2, .. Λ for 1 ̂  p g co,

so that H\dm) = %ί2 0 J2. Using (2) it is not hard to check that
p = {fe Hp(dm):f(φ) = 0,φe P(m)}. For any subset S S L\dm), denote
by [S] the closed linear span of S.

DEFINITION. Let M be a closed invariant subspace of Lp(dm). M
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is called simply invariant if AmM is not dense in M (w* dense for
p =z oo) and doubly invariant if AMC M. We call M sesqni-invariant
if ZM S M but M is not invariant under A.

There exist closed invariant subspaces of L2(dm) which are sesqui-
invariant, i.e., neither simply nor doubly invariant. For example, let
M = P. If P satisfied (1) so that it had the form FH\ F inner, then
F would be in I2, so that ZF would be in I2 by Lemma 1 below. But
if I2 = FH2, then ZeH2, which is not the case.

Our main purpose in § 2 is to relax hypothesis (1) and to obtain
a characterization of certain invariant subspaces of L2(dm) not covered
by the Beurling theorem, in terms of the support set of M, a unimodular
function, and P. At the end we extend the result to 1 <^ p ^ oo.
Examples in which I2 is nontrivial are given in § 3 together with
applications of the main theorem. First we give three lemmas of a
preliminary nature which collect elementary and known facts.

LEMMA 1. If feP, then ZnfeP.

Proof. Clearly it suffices to show that Zfe H2, for then ZfL T 2

and hence Zfe P. Let heHl{dm) and write

an = \znfdm, bn = ί Znhdm .

Then ( Zfhdm - aQbx + aj)o = 0 so Zfe H2.
J

LEMMA 2. Let MQL2(dm) be a closed subspace. Then the follow-
ing are equivalent

( i ) AM S M
(ii) H-MSM
(iii) HZM = ZM = [AmM].

Proof. That (i) implies (ii) follows from the w* density of A in
H^idm). To see that (ii) implies (iii) observe that by definition of Z,
HI = ZH2 and hence Hι

m = ZH\ by taking closure in L1. By con-
sidering conjugate spaces and applying Corollary to Theorem 6.1 in
Hoffman [5, p. 298], we have HZ = ZH~. Using (ii), H^M = ZH°°MQ
ZM C HZM. In any case HzM = [AmM] by the w* density of Am in
Hz. This establishes (iii).

To show that (iii) implies (i), it suffices to show (iii) implies (ii).
We haveseen that Hz = ZH°° or ZHZ = H~. Using (iii) this yields
jff-ΛΓ = ZHZM S ZZM = M.

LEMMA 3. Let M £ L2(dm) be a closed invariant subspace. Then
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the following are equivalent.
( a ) M — FH2 for some unimodular function F.
(b) MQ{AmM]Φ{<d).
( c ) MQZMΦ{0}.
(d) M, is not invariant under Z.

Proof. The equivalence of (a) and (b) is the generalized Beurling
theorem. Items (b) and (c) are equivalent by Lemma 2. If (a) holds
then so does (d). For if M were invariant under Z then since FeM,
ZFeM = FH2, so that ZeH2 which is not the case. On the other
hand, if (d) holds, ZM is a proper closed subspace of M, i.e., (c) holds.

DEFINITION. If fe L\dm), we define the support set of / (denoted
by Ef) as the complement of a set of maximal measure on which /
is null. If M is a closed subspace of L\dm), the support set of M
(denoted by EM) is defined as the complement of a set of maximal
measure on which all feM are null. Clearly Ef and EM are defined
only up to sets of measure zero.

2* The invariant subspace theorem*

THEOREM 1. Let A be a logmodular algebra and m a fixed
representing measure such that the part P(m) contains more than
one element. Let M be a closed sesqui-invariant subspace of L2(dm)
and let E be the support set of M. Let R = M Q [I°°M] and L =
M1 θ [Ϊ°°ML] where M1 = {fe χEL2(dm): f j_ M}. Then

(3) L is nontrivial and the support set of L is E if and only
if %2?£=Ŝ 2 and M has the form M— χE-F-I2 for some unimodular
function F, and

(4) R is nontrivial and the support set of R is E if and only
ifχEe^2andM has the form M=χE.F (I2)L = XE-F-(j2f2®P) for
some unimodular function F.

We need several lemmas, the key fact being Lemma 8.

LEMMA 4. Let Z be the Wermer embedding function. If θ is
Lebesgue measure on T, then θ{Z(x): xe X} = 1 and m{Z~ι{E)) = 0 if
and only if Θ{E) = 0, for each measurable subset E of T. Moreover,
if F in L^dθ) corresponds to fe ^f1 under the natural homomorphism
Φ, then f(x) = F(Z(x)) a.e.

Proof. Suppose that Θ(Z(X)) < 1. Then there exists a closed set
K S T\Z(X) such that Θ(K) > 0. The functions fn(t) = 1/(1 +np(t, K)),
where p denotes distance, are continuous for each n and converge to
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χκ(t) point wise everywhere and in U(dθ). Let gn and g denote the
images in J ^ 2 of fn and χκ, respectively, under the natural correspond-
ence. Hence gn—>g in U(dm) and by passing to a subsequence we may
assume that gn(x) —> g(x) a.e. (dm). Since the fn may be approximated
by trigonometric polynomials, gn(x) = fn(Z(x)) a.e. (dm), and the latter
sequence converges to zero a.e. (dm) by the definition of the fn. Hence
g(x) — 0 a.e. (dm). But this contradicts the fact that g corresponds
to a nonzero function. Thus Θ(Z(X)) = 1.

This also proves that if Θ(E) > 0, then m(Z~\E)) > 0. Now
suppose that Θ(E) = 0, i.e., that χs(t) = 1 a.e. (dθ), where S = T\E.
Choose closed sets K, £ iSΓ2 £ , , £ S, such that 0(lΓn) -* 0(S). Using
the argument of the previous paragraph, we can show that the
characteristic function of Kn corresponds to that of Z~x(Kn). Thus
the characteristic function of Z~ι(Kn) converges in U(dm) to the
function 1. But the characteristic function of Z~ι(Kn) also converges
to that of Z~ι(\J Kn). Thus the latter function is 1 a.e. Thus
m(Z~ι(S)) = 1 so that m(Z'1(E)) = 0.

To obtain the last assertion of the lemma, let FeL\dθ) and /
the corresponding function in the isomorphic image of U(dθ) in U(dm).
Choose a sequence Fn of polynomials in eiθ and e~iθ which converge to
F in U(dθ) and a.e. Let fn correspond to Fn so that fn—>f in U(dm)
and can be replaced by a subsequence which converges a.e.

Since Fn are polynomials, fn(x) = Fn(Z(x)) a.e. (dm). Since Fn(t) —•
F(t) a.e. (dθ), the first part of the lemma implies that Fn(Z(x))-+F(Z(x))
a.e. (dm). Thus f(x) = F(Z(x)) a.e.

LEMMA 5. If 1 <; p ^ oo, then

Hp(dm) = F 0 P

where 0 denotes algebraic direct sum. Denote by Np the closure of
Tp 0 Ip in Lp(dm) (norm closure for 1 ^ p < oo; w* closure for p —
oo). Then

Lp(dm) = ^fp@Np .

Proof. First assume l < p ^ o o . If / e Hp(dm), then / defines a
bounded linear functional on Lq(dm) which (via Lumer's isometry)
induces a bounded linear functional on Lq(dθ), which in turn is
represented by some FeLp(dθ). It is easy to show that

ί Znfdm = \ einθFdθ

for all integers n. Hence FeHp(dθ), and by Lumer's isometry there
exists ge %ίp with
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ί Znfdm = \ Zngdm

so that / — geP. Hence Hp(dm) = %ΓP 0 P , l < p ^ oo.
Now let p — 1 and fe H\dm). Since the lemma holds f or p = 2

and if1 is the closure of j T 2 0 / 2 , there exists gne r 2 and /&Λe/2

such that the functions fn = gn + feΛ converge in L1 to /. We will
have shown that Ήι(dm) = ^ Γ 1 © / 1 if we can establish that {gn} forms
a Cauchy sequence. For this it suffices to show that whenever / —
g + h for ge %T2 and fee/2, then \\g\\, ^ H/Hi.

Applying Lumer's isometry for p — 1 for the second equality and
for p = oo for the fourth, we have

Hflflii = ( |flr|dm = ί | Φ(g) \dθ = sup ( Φ(g)Φ(q)dθ

f f
= sup I gqdm = sup \ /gcίm <^ \\ f \\1 ,

where g ranges over ^f°°. Thus Hp(dm) = β>fp © /p, 1 ^ p =
For the second part of the lemma, denote

ikP = j / e Lp(dm): I Znfdm = 0 all integers

It can be shown that Lp(dm) = . 5 ^ 0 I P by the same arguments we
used for the Hp case. We can complete the proof of the lemma by
showing that Mp = Np, 1 ^ p ^ oo.

Clearly Np C M p . Let feMp. Since HZ(dm) 0 Hp(dm) is dense
in Lp(dm) [5, Th. 6.7, p. 305] and Hp{dm) = J p 0 P by the first part
of the lemma, we can choose gn e J^p and hn e Np such that

\ k(gn + feΛ)dm > I kfdm

for all /c e Lq(dm). Write k = k, + k2 where ^ e = ^ g and fc2 e Mq. Thus

kγgndm = I ^ ( ^ + Λ%)dm • 1 fcjdm = 0 .

Also 1 k2gndm = 0. Thus I kgndm—>Q. Since the subspace Np is norm

closed for 1 ^ p ^ oo, it is also weakly closed, so fe Np. If p = oo,

clearly /GΛΓ 0 0 .

LEMMA 6. Le£ Mbe a closed sesquί-ίnvariant subspace of L2(dm)f

and let R = ikf θ [^°°^]- If feR and Ef is the support set of f,
write f for the characteristic function of Ef. Then f _L I2.

Proof. Observe that for any f,geR the function fg is orthogonal
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to both J°° and I~. For if h e J°°, gh e I~M so that / ± g h , i.e., fg lh.
Similarly fg LΪ00. In particular | / | 2 = ffλ. I°° and I°°. It follows
easily from Lemma 5 that | / | 2 lies in Jzf1. If .P is the function in
L1(dθ) corresponding to |/ | 2 , we have \f{x)\2 = F(Z(x)) by Lemma 4.
In particular f(x) — 0 if and only if F(Z(x)) = 0 so that / = F<>Z.
Since FeL2(dθ)y it follows that fe^f2, i.e., / I / 2 .

LEMMA 7. Suppose that M is a closed sesqui-invariant subspace
of L2(dm) and let R — MQ [/°°Λf]. Then there exists feR with
Ef = ER.

Proof. If f,ge R, note that there exists h e R with Ek = Ef[jEg.
For let F = Eg\Ef. Since χF e £f2 by Lemma 6, χFg e R. Then / +
χFg e R and has support set Ef\jEg. Now let a = sup {m(Ef):fe R).
Choose fne R with m(Efn)—+a and 2 ^ S #/2 S . Alter the functions
fn by the technique above so that their supports are disjoint. Then
/o = Σ"=i 2~nfn e J? and has support G with m((?) = a. If m(£f

i2) > α,
then there would exist a set of positive measure in ER\G and a function
# G i? such that # would not vanish on that set. But then Efo (J Eg

is the support set for some function in R, although m(Efo U Eg) > a.
This contradiction shows that Efo = ER.

LEMMA 8. Let Mbe a closed sesqui-invariant subspace of L2(dm),
R — MQ [7°°M], and let E be the support set of R. Then there exists
a unimodular function FeL2(dm) such that χEFeR. If m(E) — 1,
then FeR.

Proof. By Lemma 7, there exists feR with Ef — E. Define

lf(x)/\f(x)\,xeE

Then \F(x)\ = 1 a.e., and / = F\f\.
As in the proof of Lemma 6, since feR, there exists a function

FeL\dθ) such that \f(x)\* = F{Z(x)) a.e. Thus F ^ O a.e. and
\/F e L2(dθ). Let h be the function in the isomorphic image of
L2(dθ) corresponding to \/F. By Lemma 4, \/F(Z(x)) = h(x) a.e.,
i . e . , \f\ = he ,ζf2. I t f o l l o w s t h a t f=F\f\e F^f2. C l e a r l y [Znf] s
F^f2 for all integers n. Writing N = [Znf], we have FN = [ZnFf].
But ZnFf = Zn(\f\/f)f= Zn\f\ on E, and is zero off E. Therefore
ZnFfe£f\ so that FNQ^f2. However, FN is invariant under Z
and Z, so that its isomorphic image in L\dθ) is doubly invariant and
must have the form QL\dθ) where Q = Q2eU(dθ). Thus FN = gj2^2

where # is the corresponding idempotent in S^2. It is clear from the
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definition of N that q = χE. Hence N = FχE^f\ so that FχE eN^

REMARK. If M is a closed sesqui-invariant subspace of L2(dm),
then ML (as defined earlier) is a closed subspace of L2(dm) invariant
under H°°(dm) and Z. Let L = Mλ Q [I~MX]. Then dual forms of
Lemma 6, 7, and 8 hold with L in place of R.

Proof of Theorem 1. First we assume that M= χEFP for some
unimodular function F and that χEe^2 and show that χEFeL, so
that EL = E. To this end let h e P. Then

χEFχEFhdm = \ = 0

by assumption, so that χEFeMλ. To see that XEFA.I^M1, let hel°°
and keM1. It suffices to show that χEF±.hk, i.e., that χEFh±k.
But this follows since k 1 M. A dual argument shows that Λf =
χEF(Γy and χEe^2 imply that χEFeR so that 2?Λ = £7.

Conversely, let us suppose that EL = £7. By Lemma 8, there exists
a unimodular function FeL2(dm) such that χEFeL. It follows that

( 5 ) FH\dm) a AT a χ ^ / 2 .

To prove the first inclusion in (5) it suffices to show that ML a
.Fίίi where this time ML denotes the orthogonal complement in all of
U(dm). Thus let heAm, so that hM^M and χEF ± hM. Since the
functions in ikf vanish off E by assumption it follows that F J_ feM,
i.e., Fh j_ Λf, so that i^ϊfi C M1 as required.

To obtain the second inclusion, let g e I°° and suppose that f±M
in χEL2(dm). It follows easily from Lemma 5 that I°° is dense in I2.
Thus it suffices to show that χEFg±f, i.e., that χEF±gf. But this
follows since χEF j_ I°°ikfL by construction.

Multiplying (5) by F we have

( 6 ) H\dm) ̂ FM^ χEP .

We use the invariance of M under Z to show that FM = χEP.
For let fe FM and write f = f1 + f2 where f e %r2, f2 e P. By Lemma
6, χE e ̂ f2 so that

f=XEf= XEA + XEf2

is the unique orthogonal decomposition of / into ^f2 and P. However,
since / and χEf2 are both in H2 (Lemma 1), it follows that χEfeH2.
Therefore χEf e βf2. But χEf vanishes on the complement of E so
that either (i) m(E) = 1, or (ii) χEf = 0.

If case (i) holds, H2 a FM a P so that either FM = P or there



HP AND LP SPACES DERIVED FROM LOGMODULAR ALGEBRAS 471

exists feFM with I Znfdm Φ 0 for some nonnegative integer n. By

considering the least integer for which such an / exists, it is not
hard to see that FM would not be invariant under Z. Thus M = FP.

If case (ii) holds, / = χEf2 e P and χEf = fe χEP. Thus FM s χEP.
Together with (6) this implies that FM = χEP. So that M = χE-F-P.

We turn now to case (4) in which R is nontrivial and the support
of (R) = E. Let N = ML = {fe L\dm)\ Ef ^ E and f± M). Then N
is the complex conjugate of a sesqui-invariant subspace and

N1 θ [I^N1] = MQ [I°°M] = R .

We apply (a trivial modification of) the first part of the theorem to
N. For this we need to know that EN = E. If G = E\EN is not
the null set, then χG-L\dm) s M which is not possible. Thus EN = E
and N — χE-F-ϊ2 for some unimodular function F. Hence

We now extend the main result to a more general class of sub-
spaces of U(dm).

THEOREM 2. Let M be a closed sesqui-invariant subspace of L2(dm).
Let Mι = {feM:f-L°°(dm) g M) and M2 = MQMίy and R2 = M2Q
[I-M2]. Assume that E2, the support set of M2 is the same as the
support set of R2. Then

where F is unimodular, Eι is the support set of Mι and χE2 J_ I2.

Proof. Since Mx is a closed doubly invariant subspace of L2(dm),
there exists a measurable set £ Ί S I such that Mx = χEι-L2(dm) (see
Helson [2, Th. 2, p. 7]). It is easy to check that

M2 = {feM:f=0 on EJ .

Since M is sesqui-invariant, M2 Φ {0}, and is itself sesqui-invariant.
By Theorem 1, M2 = χE2-F-P for some χE2 i_ P and F unimodular.

The final theorem of this section characterizes the invariant sub-
spaces of Lv(dm) for 1 ̂  p ^ oo.

THEOREM 3. Fix p in the range 1 ̂  p ^ oo. Let M be a closed
sesqui-invariant subspace of Lp(dm) and let E be the support set of
M. Let R = {feMnL«:f±I~M} and L = {fe M1 f] L*\fL Ϊ~M^}
where q is the conjugate index to p and M1 — {feχE Lq(dm):f±M}.
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Then
( i ) M = χE-F(^fp + Ip) where χE e ^f2 and F is a unimodular

function if and only if E is the support set for R.
(ii) M = χE*F Ip where χE e S^2 and F is a unimodular function

if and only if E is the support set for L.

Proof. It is easy to show that if M has form (i) or (ii) then E
is the support set of R or L, respectively. Let us prove the converse.
First we prove the theorem for p — 1. Suppose that E is the support
set of R. Let N = M Π L2(dm); N is a closed sesqui-invariant subspace
of U{dm). Let i2* - {fe N:f±I~N}. Since RaR*, we get E is the
support set of iϋ* which in turn is the support set for N. Applying
the L2 invariant subspace theorem to N, we get N = χE F(^f2 + I2).
Since NQM, we get χE-F{£?1 + Γ) S Λf. For / e M, define k=\f\112

for I /1 ^ 1 and 1 for I /1 < 1. Take h e iϊ2(cίm) outer such that | h | = fe.
It is easy to see that 1/h e H~(dm) and therefore f/h e M. Since
f/heL2(dm) also, we get f/heN= χE-F(^2 + I2) and therefore fe
XE-F^1 + I1). Thus we get M - x^F-i^f1 + Γ). When # is the
support set for L, we get M = χE*F Iι by applying an argument
similar to the above.

Now let us prove the theorem for p = oo. Suppose that E is the
support set for R. Let JV = [M] (where [ ] denotes closure in L\dm).
Let i2* = {feN:f±I°°N}. It is clear that E is the support set for
N which in turn is the support set for iϋ*. By the L2 invariant
subspace theorem we get N = χE F(^f2 + I2). Since MS Nf] L°°(dm),
we get M ξΞtχE-F(^f°° + I°°). By applying the L1 invariant subspace
theorem to Ή1, we get M1 = χE-G-T1, \ G | = 1. It is easy to see that
χE GP±χEF(^f- + I~) and therefore Af= Z^ F(=^°° + /TO). When ,&
is the support set for L, we get M = χ^ i^ J00 by applying an argu-
ment similar to the above. The proof for 1 < p < 2 is similar to the
one for p — 1 and that for 2 < p < oo is similar to the one for p = oo.
Thus the theorem is true for 1 rg p ^ oo.

3* Applications* We give an example of a logmodular algebra
and a representing measure m for which I 2 is nontrivial and show
that the above theorems, together with known results, completely
characterize the invariant subspaces of L2(dm).

EXAMPLE 1. Let T = {λ e C: \ λ | = 1} and let A = A(T2) be the

logmodular algebra of continuous functions on T2 which are uniform
limits of polynomials in einθeimφ where

(n, m)eS = {(n, m): n > 0} U {(0, m): m ^ 0} .

The maximal ideal space of A can be identified with



AND LP SPACES DERIVED FROM LOGMODULAR ALGEBRAS 473

with normalized Haar measure m identified with θ = φ — 0. The part
of m is {0} x {φ: | φ \ < 1}. The Wermer embedding function is given
by Z = eίφ, %2 is the U closure of the polynomials in eimφ, m = 0,1, ,
and I2 is the L2 closure of the polynomials in einθeimφ for n ^ 1.

Let now If be a closed invariant subspace of L2{dm). Observe
that M is doubly invariant if and only if eiθM = M. In this case
M = χE-L2(dm), for some measurable set E S T2.

If M θ <̂ Af ^ {0} and M = eiφM we show that R Φ {0} and that
ER = E2 (see Theorem 2). To see that R = MQeiθM, let #eΛf,
g±eiθM. Since Λf is sesqui-invariant 5rlβ"imV^M, for m = 1, 2, .
Hence #±[J°°lf].

Define Jl^ = {fe M.\ e~inθfe M, n = 1, 2, ...} and M2 = MQMι.
Then Mi = χEι-L2(dm) for some measurable Et. We show that Theorem
2 applies to Af2. Let K be the complement of ER in T2.

Since χκ£^\ we get χ^M2 c Λf2. Also χκ-M2_ιR so χ*ikf2c
βwikf2 and therefore χκM2 = χκ(eίθM2). But M2 cannot contain a doubly
invariant subspace, so ER = E2. Theorem 2 applies and

for some unimodular function F'. Writing F = e~ίθF', we have M2 =
χE2-F I2. Note that the proofs of Lemmas 4, 6, and 7 are much
simpler for the torus case than for the general case.

If MQeiφM Φ {0}, then M = FH2 by the generalized Beurling
theorem.

Suppose that we now replace T x T with B x T, where B is the
Bohr compactification of the real line and consider A — A(B x T).
Again Haar measure is associated with a nontrivial part. Denote
by χτ(x) the characters on B, where τeR. I2 is generated by the
characters χT(x)eimφ for τ > 0. Clearly (3) holds for M, = χj2 and (4)
holds for M= %r(/2 0 =2f2), for any fixed τ. However one can use
the example in Helson and Lowdenslager [4] to construct a sesqui-
invariant subspace of H2(dm) for which both L and R are trivial.
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