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A SUBCOLLECTION OF ALGEBRAS IN A
COLLECTION OF BANACH SPACES

ROBERT PAUL KOPP

Let D(p, r) with 1 ̂  p < oo and •— oo < r < 4- oo denote the
Banach space consisting of certain analytic functions f(z)
defined in the unit disk. A function f(z) = Σ~=o a>nZn is a
member of D(p, r) if and only if

Σ (n + l) r I an \p < °° .

We define the norm of / in D(p, r) by

By the product of two functions / and g in D(p, r) we shall
mean their product as functions, i.e., [fg](z)=f(z)g(z). The
purpose of this paper is to discover which of the spaces D(p, r)
are algebras.

THEOREM 1. // D(p, r) is an algebra, then there exists a real

O with \\fg\\ ^c | |/ | | | | f lr | | for every f,geD(p,r).

Proof. Let h be a fixed element of D(p, r). It suffices to show
the map f—+hf is a bounded linear transformation from D(p,r) to
itself. The proof is based on the closed graph theorem [2, p. 306].
Suppose h is a multiplier from D(ply rx) to D(p21 r2) and suppose

( i ) Λ — / i n Dip^n) and
(ii) hfn-+g in D(p2,r2).

Then fn(z)—>f(z) for each z in the unit disk and so h(z)fn(z)-+h(z)f(z).
On the other hand by (ii), h(z)fn(z)—>g(z) for each z in the unit disk.
Hence g = hf, and so by the closed graph theorem multiplication by
h is a continuous linear transformation. It follows from this [2, p. 183]
that D(p, r) is equivalent to a Banach algebra, and from this the
theorem follows immediately.

COROLLARY 1. // D(p, r) is an algebra and c > 0 as above, then
^c\\f\\vfeD(p,r) and

Proof. For each / in D(p, r) let Tf denote the multiplication
operator from D(p, r) to itself determined by /, i.e., Tf(g) = fg. Then
for zQ satisfying | z0 \ < 1 the map Tf -> f(z0) is a multiplicative linear
functional on the Banach algebra of multiplication operators

Tf,feD(p,r)
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with the usual norm. Hence

\f(Zo)\^\\Tf\\ = s u p \\fg\\£c\\f\\,geD(p,r).
I l 0 l l = i

THEOREM 2. If p — 1, then Dip, r) is no algebra for r < 0. And
if 1 < p < oo, then D{p1 r) is no algebra for r ^ p — 1.

Proof. The function f(z) = Σ~ + l)]s* is an unbounded
function on | z | < 1 but lies in D(l, r) if r ^ 0. And similarly the
function /(s) = Σ~=o l/[(^ + 1) log (n + l)]zn is an unbounded function
on I z I < 1 in .D(p, r) if p > 1 and r ^ p — 1. Therefore by Corollary
1 the spaces are not algebras.

THEOREM 3. If p = 1, ί/̂ w JD(P, r) is an algebra for r ^ 0,
i/ 1 < p < oo ίfeβπ D(p, r) is an algebra for r > p — 1.

Proo/. ( i ) Suppose first f(z) = Σ^=o < V and
in D(l, r) with r Ξ> 0. We will show /# e J9(l, r)

bnz
n lie

Σ<
A; = 0

1)1

Σ Σ (i + H 1)1 <*>k I I δj I where j = n - k
k=Qj=0

Σ
A;=0 j=0

= 11/11 H e l l .
(In) Now suppose r > p — 1, and let

OO CO

fix) = Σ anz
n and g(z) = Σ bnz

n

be]two elements of Dip, r). We will show there is a constant K such
that H/0 || ^ K\\f\\ \\g\\. Define q by the equation 1/p + 1/g = 1 .

Σ<
fc=0

+ IT

fΣ
U=0

α* | (n - k + 1)'" |

Applying Holder's inequality we get
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where

We complete the proof of the theorem by showing

sup [Cn] < oo .

-k

= (n - A;

\PIQ

since

rq/p = — 1) > 1

\PIQ
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