LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS PRESERVING A FIXED RANK

D. Ž. DJOKOVIĆ

In this paper T is a linear transformation from a tensor product $X \otimes Y$ into $U \otimes V$, where X, Y, U, V are vector spaces over an infinite field F. The main result gives a characterization of surjective transformations T for which there is a positive integer $k (k < \dim U, k < \dim V)$ such that whenever $z \in X \otimes Y$ has rank k then also $Tz \in U \otimes V$ has rank k. It is shown that $T = A \otimes B$ or $T = S \circ (C \otimes D)$ where A, B, C, D are appropriate linear isomorphisms and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

Let F be an infinite field and X, Y, U, V vector spaces over F. We denote by T a linear transformation of the tensor product $X \otimes Y$ into $U \otimes V$. The rank of a tensor $z \in X \otimes Y$ is denoted by $\rho(z)$. By definition $\rho(o) = 0$. The subspace of X spaned by the vectors $x_1, \dots, x_n \in X$ will be denoted by $\langle x_1, \dots, x_n \rangle$.

LEMMA 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) = k$ imply that $\rho(Tz) = k$. Then $\rho(z) \leq k$ implies that $\rho(Tz) \leq k$ for all z.

Proof. If this is not true then for some $z \in X \otimes Y$, $z \neq 0$, we have $\rho(z) < k$ and $\rho(Tz) > k$. There exists $t \in X \otimes Y$ such that $\rho(t) + \rho(z) = k$ and moreover $\rho(z + \lambda t) = k$ for all $\lambda \neq 0$, $\lambda \in F$. Let

$$Tz = \sum_{i=1}^{m} u_i \otimes v_i$$
, $m =
ho(Tz)$.

Since $u_i \in U$ are linearly independent and also $v_i \in V$ we can consider them as contained in a basis of U and V, respectively. The matrix of coordinates of Tz has the form

$$\begin{pmatrix} I_m & & 0 \\ 0 & & 0 \end{pmatrix}$$

where I_m is the identity $m \times m$ matrix. Let

A_m	B
$\backslash C$	D

be the matrix of coordinates of Tt. Then the minor $|I_m + \lambda A_m|$ of the matrix of $T(z + \lambda t)$ has the form

D. Ž. DJOKOVIĆ

$$1 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \cdots$$
.

Since F is infinite we can choose $\lambda \neq 0$ so that $|I_m + \lambda A_m| \neq 0$. For this value of λ we have

$$\rho(z + \lambda t) = k$$
, $\rho(T(z + \lambda t)) \ge m > k$

which contradicts our assumption. This proves the lemma.

LEMMA 2. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) \leq k \text{ imply } \rho(Tz) \leq k$. If T is surjective and $k < \dim U$, $k < \dim V$ then $\rho(z) \geq \rho(Tz)$ for all z.

Proof. Assume that for some z we have $\rho(z) < \rho(Tz)$. Clearly, we can assume in addition that $\rho(z) = 1$. Therefore k > 1. By assumption $\rho(z) \leq k$ implies that $\rho(Tz) \leq k$. Let $s \leq k$ be the maximal integer such that there exists $z \in X \otimes Y$ satisfying $\rho(z) < s$ and $\rho(Tz) = s$. Let

$$Tz = \sum\limits_{i=1}^{s} u_i \bigotimes v_i$$
 .

We can choose $u_{s+1} \in U$, $v_{s+1} \in V$ such that $u_{s+1} \notin \langle u_1, \dots, u_s \rangle$ and $v_{s+1} \notin \langle v_1, \dots, v_s \rangle$. Since $u_i \in U$ are linearly independent and $v_i \in V$ also linearly independent we can assume that these vectors are contained in a basis of U and V, respectively. Since T is surjective there exists $t \in X \otimes Y$ such that $\rho(t) = 1$ and the (s + 1, s + 1)-coordinate $a_{s+1, s+1}$ of Tt is nonzero. The minor of order s + 1 in the upper left corner of the matrix of $T(z + \lambda t)$ has the form

$$a_{{}_{s+1},{}_{s+1}}\lambda+lpha_{{}_{2}}\lambda^{{}_{2}}+\cdots.$$

Since $a_{s+1,s+1} \neq 0$ we can choose $\lambda \neq 0$ so that the minor is nonzero. For this value of λ we have

$$egin{aligned}
ho(z+\lambda t)&\leq
ho(z)+1&\leq s\leq k\ ,\
ho(T(z+\lambda t))&\geq s+1\ . \end{aligned}$$

If s = k this contradicts our assumption. If s < k this contradicts the maximality of s. Hence, Lemma 2 is proved.

LEMMA 3. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) = k$ imply that $\rho(Tz) = k$. If T is surjective and $k < \dim U$, $k < \dim V$ then $\rho(z) = \rho(Tz)$ for each $z \in X \otimes Y$ satisfying $\rho(z) \leq k$.

Proof. The assertion is trivial if $\rho(z) = 0$ or k. Let $0 < \rho(z) < k$. Choose $t \in X \otimes Y$ such that

$$\rho(z + t) = \rho(z) + \rho(t) = k$$
.

Using this and Lemmas 1 and 2 we deduce

$$egin{aligned} &
ho(T(z+t))=
ho(Tz+Tt)=k\;,\ &
ho(Tz)+
ho(Tt)\geqq k\;,\ &
ho(Tz)+
ho(t)\geqq k\;,\ &
ho(Tz)\ge
ho(z)\& k\;. \end{aligned}$$

Since by Lemma 2, $\rho(Tz) \leq \rho(z)$ we are ready.

The following Theorem is an immediate consequence of Lemma 3 and Theorem 3.4 of [3]:

THEOREM 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) = k$ imply that $\rho(Tz) = k$. If T is surjective and $k < \dim U$, $k < \dim V$ then

$$(1) T = A \otimes B,$$

or

$$(2) T = S \circ (C \otimes D) ,$$

where

$$\begin{array}{ll} A: X \to U \ , & B: Y \to V \ , \\ C: X \to V \ , & D: Y \to U \ . \end{array}$$

are bijective linear transformations and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

This theorem gives a partial answer to a conjecture of Marcus and Moyls [2].

From Lemma 2 and Theorem 3.4 of [3] we get the following variant:

THEOREM 2. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) \leq k$ imply that $\rho(Tz) \leq k$. If T is bijective and $k < \dim U$, $k < \dim V$ then (1) or (2) holds.

When X = Y = U = V, dim X = n, k = n - 1 we get a result of Dieudonné [1].

References

1. J. Dieudonné, Sur une généralisation du groupe orthogonale à quatre variables, Archiv der Math. 1 (1948), 282-287.

D. Ž. DJOKOVIĆ

2. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.

3. R. Westwick, Transformations on tensor spaces, Pacific J. Math. 23 (1967), 613-620.

Received August 21, 1968. This work was supported in part by N. R. C. Grant A-5285.

UNIVERSITY OF WATERLOO