LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS PRESERVING A FIXED RANK

D. Ž. DJoкоvić

In this paper T is a linear transformation from a tensor product $X \otimes Y$ into $U \otimes V$, where X, Y, U, V are vector spaces over an infinite field F. The main result gives a characterization of surjective transformations T for which there is a positive integer $k(k<\operatorname{dim} U, k<\operatorname{dim} V)$ such that whenever $z \in X \otimes Y$ has rank k then also $T z \in U \otimes V$ has rank k. It is shown that $T=A \otimes B$ or $T=S \circ(C \otimes D)$ where A, B, C, D are appropriate linear isomorphisms and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

Let F be an infinite field and X, Y, U, V vector spaces over F. We denote by T a linear transformation of the tensor product $X \otimes Y$ into $U \otimes V$. The rank of a tensor $z \in X \otimes Y$ is denoted by $\rho(z)$. By definition $\rho(0)=0$. The subspace of X spaned by the vectors $x_{1}, \cdots, x_{n} \in X$ will be denoted by $\left\langle x_{1}, \cdots, x_{n}\right\rangle$.

Lemma 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z)=k$ imply that $\rho(T z)=k$. Then $\rho(z) \leqq k$ implies that $\rho(T z) \leqq k$ for all z.

Proof. If this is not true then for some $z \in X \otimes Y, z \neq 0$, we have $\rho(z)<k$ and $\rho(T z)>k$. There exists $t \in X \otimes Y$ such that $\rho(t)+\rho(z)=k$ and moreover $\rho(z+\lambda t)=k$ for all $\lambda \neq 0, \lambda \in F$. Let

$$
T z: \quad \sum_{i=1}^{m} u_{i} \otimes v_{i}, \quad m=\rho(T z)
$$

Since $u_{i} \in U$ are linearly independent and also $v_{i} \in V$ we can consider them as contained in a basis of U and V, respectively. The matrix of coordinates of $T z$ has the form

where I_{m} is the identity $m \times m$ matrix. Let

be the matrix of coordinates of $T t$. Then the minor $\left|I_{m}+\lambda A_{m}\right|$ of the matrix of $T(z+\lambda t)$ has the form

$$
1+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\cdots
$$

Since F is infinite we can choose $\lambda \neq 0$ so that $\left|I_{m}+\lambda A_{m}\right| \neq 0$. For this value of λ we have

$$
\rho(z+\lambda t)=k, \quad \rho(T(z+\lambda t)) \geqq m>k
$$

which contradicts our assumption. This proves the lemma.
LEMMA 2. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) \leqq k$ imply $\rho(T z) \leqq k$. If T is surjective and $k<\operatorname{dim} U, k<\operatorname{dim} V$ then $\rho(z) \geqq \rho(T z)$ for all z.

Proof. Assume that for some z we have $\rho(z)<\rho(T z)$. Clearly, we can assume in addition that $\rho(z)=1$. Therefore $k>1$. By assumption $\rho(z) \leqq k$ implies that $\rho(T z) \leqq k$. Let $s \leqq k$ be the maximal integer such that there exists $z \in X \bigotimes Y$ satisfying $\rho(z)<s$ and $\rho(T z)=s$. Let

$$
T z=\sum_{i=1}^{s} u_{i} \bigotimes v_{i}
$$

We can choose $u_{s+1} \in U, v_{s+1} \in V$ such that $u_{s+1} \notin<u_{1}, \cdots, u_{s}>$ and $v_{s+1} \notin<v_{1}, \cdots, v_{s}>$. Since $u_{i} \in U$ are linearly independent and $v_{i} \in V$ also linearly independent we can assume that these vectors are contained in a basis of U and V, respectively. Since T is surjective there exists $t \in X \otimes Y$ such that $\rho(t)=1$ and the $(s+1, s+1)$-coordinate $a_{s+1, s+1}$ of $T t$ is nonzero. The minor of order $s+1$ in the upper left corner of the matrix of $T(z+\lambda t)$ has the form

$$
a_{s+1, s+1} \lambda+\alpha_{2} \lambda^{2}+\cdots
$$

Since $a_{s+1, s+1} \neq 0$ we can choose $\lambda \neq 0$ so that the minor is nonzero. For this value of λ we have

$$
\begin{gathered}
\rho(z+\lambda t) \leqq \rho(z)+1 \leqq s \leqq k \\
\rho(T(z+\lambda t)) \geqq s+1
\end{gathered}
$$

If $s=k$ this contradicts our assumption. If $s<k$ this contradicts the maximality of s. Hence, Lemma 2 is proved.

LEMMA 3. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z)=k$ imply that $\rho(T z)=k$. If T is surjective and $k<\operatorname{dim} U$, $k<\operatorname{dim} V$ then $\rho(z)=\rho(T z)$ for each $z \in X \otimes Y$ satisfying $\rho(z) \leqq k$.

Proof. The assertion is trivial if $\rho(z)=0$ or k. Let $0<\rho(z)<k$. Choose $t \in X \otimes Y$ such that

$$
\rho(z+t)=\rho(z)+\rho(t)=k .
$$

Using this and Lemmas 1 and 2 we deduce

$$
\begin{aligned}
& \rho(T(z+t))=\rho(T z+T t)=k, \\
& \rho(T z)+\rho(T t) \geqq k, \\
& \rho(T z)+\rho(t) \geqq k \\
& \rho(T z) \geqq \rho(z)
\end{aligned}
$$

Since by Lemma $2, \rho(T z) \leqq \rho(z)$ we are ready.
The following Theorem is an immediate consequence of Lemma 3 and Theorem 3.4 of [3]:

Theorem 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z)=k$ imply that $\rho(T z)=k$. If T is surjective and $k<\operatorname{dim} U$, $k<\operatorname{dim} V$ then

$$
\begin{equation*}
T=A \otimes B \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
T=S \circ(C \otimes D) \tag{2}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A: X \rightarrow U, & B: Y \rightarrow V \\
C: X \rightarrow V, & D: Y \rightarrow U
\end{array}
$$

are bijective linear transformations and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

This theorem gives a partial answer to a conjecture of Marcus and Moyls [2].

From Lemma 2 and Theorem 3.4 of [3] we get the following variant:

Theorem 2. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) \leqq k$ imply that $\rho(T z) \leqq k$. If T is bijective and $k<\operatorname{dim} U$, $k<\operatorname{dim} V$ then (1) or (2) holds.

When $X=Y=U=V, \operatorname{dim} X=n, k=n-1$ we get a result of Dieudonné [1].

References

1. J. Dieudonné, Sur une généralisation du groupe orthogonale à quatre variables, Archiv der Math. 1 (1948), 282-287.
2. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
3. R. Westwick, Transformations on tensor spaces, Pacific J. Math. 23 (1967), 613-620.

Received August 21, 1968. This work was supported in part by N. R. C. Grant A-5285.

University of Waterloo

