MEASURES ON COUNTABLE PRODUCT SPACES

E.O. Elliott

A regular conditional measure ν on a space Y relative to an outer measure μ on a space X is defined as a function on $X \times \mathscr{R}$ such that (1) for each $x \in X$, $\nu(x, \cdot)$ is an outer measure on Y and \mathscr{R} is the family of subsets of Y which are (Carathéodory) measurable under each of the measures $\nu(x, \cdot), x \in X$, and (2) for each $\beta \in \mathscr{R}$ the function $\nu(\cdot, \beta)$ on X is μ integrable) i.e., $\int \nu(x, \beta) \mu dx \leq \infty$).

Letting g be the function on the subsets of $Z = X \times Y$ defined by

$$g(eta) = \int \int I_{eta}(x,\,y)
u(x,\,\cdot) dy \ \mu \ dx$$
 ,

defining a covering family \Im to consist of those rectangles $A \times B$ where A is μ measurable, $B \in \mathscr{R}$ and $g(A \times B) < \infty$ or those sets N such that g(N) = 0, we obtain the outer measure $\phi = (\mu \circ \nu)$ on Z generated by (the content) g and covering family \Im .

A system of regular conditional measures is a sequence begun by a measure ν_0 on a space X_1 and followed by regular conditional measures ν_i (relative to μ_i) on spaces X_{i+1} $(i=1,2,\cdots)$ where $\mu_1 = \nu_0$ and $\mu_{i+1} = (\mu_i \circ \nu_i)$ for $i = 1, 2, \cdots$. Set X = $\prod_i X_i$, and for $x \in X$ write x^i for the point (x_1, x_2, \cdots, x_i) which is the projection of x onto the space $X^i = \prod_{j=1}^i X_j$ and similarly write $S^i = \prod_{j=1}^i S_j$ whenever the sets S_j are subsets of X_j $(j = 1, \cdots, i)$.

For such a system of regular conditional measures a generalization of Tulcea's extension theorem for regular conditional probabilities holds, a Fubini-like theorem for integrable functions is obtained and finally, for topological spaces, a condition is given for the extension of inner regularity and almost Lindelöfness properties.

We let \mathscr{R}_1 be the family of ν_0 measurable sets and let \mathscr{R}_i be the family of subsets of X_i which are measurable under each of the measures $\nu_{i-1}(x^{i-1}, \cdot), x^{i-1} \in X^{i-1}$, and let \mathfrak{F}_i be the family of subsets γ of X^i such that $\mu_i(\gamma) = 0$ or $\gamma = \alpha \times \beta$ where α is μ_{i-1} measurable and $\beta \in \mathscr{R}_i$ and $\mu_i(\gamma) < \infty$. Thus \mathfrak{F}_i is the covering family which generates μ_i .

Now, writing $X_i^* = \prod_{j=i+1}^{\infty} X_j$ we define

$$\mathscr{R}^* = \left\{ S: S = \prod_i \beta_i ext{ for some } \beta ext{ s.t. } \beta_i \in \mathscr{R}_i ext{ for each } i
ight\}$$

 $\mathscr{R}^{**} = \left\{ \beta: ext{ for some } i, \beta = \alpha \times X_i^* ext{ where } \alpha \subset X^i ext{ and } \mu_i(\alpha) = 0
ight\},$
 $\mathscr{R} = \mathscr{R}^* \cup \mathscr{R}^{**},$

g to be the function on \mathscr{R} which is zero on \mathscr{R}^{**} and given by

 $g(\beta) = \lim_{i} \mu_i(\beta^i)$

on \mathcal{R}^* .

For $\beta \in \mathscr{R}^*$ and $x \in X$, let

$$ho_i(x,\,eta)=oldsymbol{
u}_{\scriptscriptstyle 0}(eta_{\scriptscriptstyle 1})\prod_{j=1}^{i-1}oldsymbol{
u}_j(x^j,\,eta_{j+1})\;,$$

and

$$\rho(x,\beta) = \lim_{i} \rho_i(x,\beta)$$
.

Let $\mathscr{R}^{*'} = \{\beta \in \mathscr{R}^* : g(\beta) < \infty, \rho_i(x, \beta) \text{ is uniformly bounded on } \beta, \text{ and } \rho(x, \beta) \text{ exists for all } x \in \beta\}$ and $\mathscr{R}' = \mathscr{R}^{*'} \cup \mathscr{R}^{**}$ and use \mathscr{R}' and g to generate a measure φ on X.

Our first objectives are to prove that φ and g agree on the covering family \mathscr{R}' and that members of \mathscr{R} are φ measurable. To do this we need and state a generalization of Tulcea's extension theorem for regular conditional probabilities. The final objective is to show that the product topology on X is inner regular and almost Lindelöf [1] whenever the component spaces are provided the spaces are of finite measure and the conditional measures are continuous [1]. The proof of this parallels that given for general product measures [2].

1. A generalization of Tulcea's extension theorem. Let a regular conditional measure system ν'_i be given as above and assume that $\nu'_i(X_i) = 1$ and $\nu'_i(x^i, X_{i+1}) = 1$ for each i and $x^i \in X^i$, i.e., ν'_i is a system of regular conditional probabilities. Define the measures μ'_i as above with $\mu'_1 = \nu'_0$ and $\mu'_{i+1} = (\mu'_i \circ \nu'_i)$ and let \mathscr{K} be the family of subsets of X which are cylinders in X over sets which are μ'_i measurable for some i.

Now let Ψ be the measure on X generated by the covering family \mathscr{K} and the content h defined by

$$h(\beta) = \mu'_{i}(\alpha)$$

where $lpha \subset X^i$ and $eta = lpha imes X_i^* \in \mathscr{K}$.

The measure Ψ differs from the conventional Tulcea extension of the conditional probabilities ν'_i in that in going from μ'_i to μ'_{i+1} the sets $\alpha \subset X^{i+1}$ for which

$$\int\int I_{\scriptscriptstylelpha}(x^{i+1}) m{
u}_i'(x^i,\,ullet) dx_{i+1} \mu_i' dx^i = 0$$

are assigned measure zero whereas, in the conventional extension they may not even be measurable. The conventional method of proof [3]

640

for Tulcea's extension theorem, however, may be carried through for this new extension with essentially no changes. Therefore we give without proof the following.

THEOREM 1.1. The members of \mathscr{K} are Ψ measurable and $\Psi(\beta) = h(\beta)$ for each $\beta \in \mathscr{K}$.

2. Agreement and measurability. Consider a member S of $\mathscr{R}^{*'}$ and let $\nu'_0(\cdot) = \nu_0(\cdot)/\nu_0(S_1)$ to get a normalized measure on S_1 , and let $\nu'_i(x^i, \cdot) = \nu(x^i, \cdot)/\nu_i(x^i, S_{i+1})$ to get a regular conditional probability on S_{i+1} . Extending this system of probabilities as in §1 yields a (probability) measure Ψ_S on the space S. Let the measures μ'_i on S^i be associated with the ν'_i as in §1.

If $\beta \in \mathscr{R}^{*'}$ and $\beta \subset S$ then $\mu_i(\beta^i)$ is given by an *i* fold integral in

$$egin{aligned} &\mu_i(eta^i) = \int (i) \int I_{eta^i}(x^i) m{
u}_{i-1}(x^{i-1},\,\cdot) dx_i\,\cdots\,m{
u}_1(x^1,\,\cdot) dx_2 m{
u}_0 dx_1 \ &= \int (i) \int I_{eta^i}(x^i)
ho_i(x,\,S) m{
u}_{i-1}'(x^{i-1},\,\cdot) dx_i\,\cdots\,m{
u}_1'(x^1,\,\cdot) dx_2 m{
u}_0' dx_1 \ &= \int I_{eta^i}(x^i)
ho_i(x,\,S) m{\mu}_i' dx^i \ &= \int I_{eta^i}(x^i)
ho_i(x,\,S) m{
u}_s dx \;. \end{aligned}$$

Thus, employing Lebesgue's theorem, we have

$$egin{aligned} g(eta) &= \lim_i \mu_i(eta^i) \ &= \lim_i \int I_{eta^i}(x^i)
ho_i(x,S) arPsi_s dx \ &= \int \lim_i I_{eta^i}(x^i)
ho_i(x,S) arPsi_s dx \ &= \int I_{eta}(x)
ho(x,S) arPsi_s dx \;. \end{aligned}$$

Suppose now that $\mathscr{G} \subset \mathscr{R}', \mathscr{G}$ is countable, and $S = \bigcup \mathscr{G}$, then the members of \mathscr{G} are $\mathscr{\Psi}_s$ measurable since the members of $\mathscr{G}_1 = \mathscr{G} \cap \mathscr{R}^{*'}$ are countable intersections of members of \mathscr{K} (i.e., cylinders over μ'_i measurable sets for some *i*) and members of $\mathscr{G}_2 = \mathscr{G} \cap \mathscr{R}^{**}$ have $\mathscr{\Psi}_s$ measure zero. Hence,

$$I_{\scriptscriptstyle S}(x) \leq \sum_{\scriptscriptstyle \beta \in \mathscr{G}} I_{\scriptscriptstyle \beta}(x)$$

and

$$I_{\scriptscriptstyle S}(x) \leq \sum_{\scriptscriptstyle eta \in \mathscr{T}_1} I_{\scriptscriptstyle eta}(x)$$
 a.e. $\varPsi_{\scriptscriptstyle S}$.

Consequently,

$$\int I_{\mathcal{S}}(x)\rho(x,\,S)\Psi_{\mathcal{S}}dx \leq \sum_{\beta \in \mathcal{G}_{1}} \int I_{\beta}(x)\rho(x,\,S)\Psi_{\mathcal{S}}dx + 0$$

and

$$egin{aligned} g(S) &\leq \sum\limits_{eta \in \mathscr{G}_1} g(eta) + 0 \ &\leq \sum\limits_{eta \in \mathscr{G}} g(eta) \ , \end{aligned}$$

and we conclude $g(S) = \varphi(S)$ proving the

THEOREM 2.1. If $S \in \mathscr{R}'$ then $\varphi(S) = g(S)$. Let

 $\mathscr{M} = \{A: A = X^{i-1} imes eta_i imes X^*_i \ \textit{for some } i \ \textit{and} \ eta_i \in \mathscr{R}_i\}$

and note that if $A \in \mathscr{M}$ and $S \in \mathscr{R}'$ then

$$S \cap A \in \mathscr{R}'$$
 and $S - A \in \mathscr{R}'$

and

$$arphi(S) = arphi(S \cap A) + arphi(S - A)$$
 .

We consequently learn that members of \mathscr{M} are φ measurable since \mathscr{R}' is the covering family for φ . Countable intersections of members of \mathscr{M} are hence measurable proving the next

THEOREM 2.2. If $\beta \in \mathscr{R}$ then β is φ measurable.

For $x^i \in X^i$ let $\xi_0(\cdot) = \nu_i(x^i, \cdot)$, write $x^i y^j$ for the point $(x_1, \dots, x_i, y_1, \dots, y_j)$ and let $\xi_j(y^j, \cdot) = \nu_i(x^i y^j, \cdot), j = 1, 2, \dots$. The regular conditional measure system ξ_j then determines a measure $\lambda_i(x^i, \cdot)$ on X_i^* . For $\beta \subset X$ let us agree that $\beta_x i = \{y: (x_1, \dots, x_i, y_1, y_2, \dots) \in \beta\}$. Then we may state the

THEOREM 2.3. If β is φ measurable then

$$arphi(eta) = \int \lambda_i(x^i,eta_x i) \mu_i dx^i = \iint I_eta(x^iy) \lambda_i(x^i,\,\cdot) dy \mu_i dx^i$$

and λ_i is a regular conditional measure associated with μ_i .

From [1, 1.6] we obtain the Fubini-like

THEOREM 2.4. If f is φ integrable¹ then

 $(1 - \infty) \leq \int f(z)\varphi dz \leq \infty$ and $\{z: f(z) \neq 0\}$ is σ -finite under φ .

642

$$\int f(z) arphi \, dz = \iint f(x^i, \, y) \lambda_i(x^i, \, \cdot) dy \, \mu_i dx^i \; .$$

3. Topological measures. To review the topological notions in [1] let us suppose that T is a topological space with \mathscr{T} being its family of open sets, and let θ be a measure on T for which the open sets are measurable. Then \mathscr{T} is almost Lindelöf (a.L.) provided each covering of T by open sets contains a countable subfamily which covers almost all of T, and \mathscr{T} is inner regular (i.r.) provided each open set can be approximated in measure by closed subsets of finite measure, i.e., for each $\beta \in \mathscr{T}$,

$$heta(eta) = {
m Sup}_{\gamma} \mathop{\subset}\limits_{\gamma ext{ closed}} eta, heta(\gamma) < \infty$$
 .

Now let us assume that each of the spaces X_i is endowed with a topology \mathscr{T}_i and that \mathscr{T}^i is the product of the topologies \mathscr{T}_j , $1 \leq j \leq i$. Then the sequence \mathscr{T}_i will be called a.L. and i.r. provided \mathscr{T}_i is a.L. and i.r. relative to ν_0 and \mathscr{T}_i is a.L. and i.r. relative to $\nu_{i-1}(x^{i-1}, \cdot)$ for each $x^{i-1} \in X^{i-1}$, and the sequence ν_i will be called continuous provided that for each $i = 1, 2, \cdots$, the function $\nu_i(\cdot, \beta)$ is finite and \mathscr{T}^i continuous for each set β which is measurable under all measures $\nu_i(x^i, \cdot)$ where $x^i \in X^i$.

From [1, 2.3] and mathematical induction we obtain the

THEOREM 3.1. If \mathcal{T}_i is a.L. and i.r., ν_i is continuous and $\mu_i(X^i) < \infty$ for each *i*, then \mathcal{T}^i is a.L. and i.r. relative to μ_i for each *i*.

Let \mathscr{T} be the product topology on X obtained from the \mathscr{T}_i . Then we have the

THEOREM 3.2. If \mathcal{T}_i is a.L. and i.r., ν_i is continuous, $\mu_i(X^i) < \infty$ for each *i*, and $\varphi(X) < \infty$ then \mathcal{T} is a.L. and i.r. relative to φ .

Proof. Suppose $A \in \mathcal{T}$, then for some countable family \mathcal{G} such that each $\alpha \in \mathcal{G}$ is a cylinder $\alpha' \times \alpha''$ where $\alpha' \in \mathcal{T}^{i(\alpha)}$ and $\alpha'' = X_i^*_{(\alpha)}$ we have $A = \bigcup \mathcal{G}$. Since α' above is $\mu_{i(\alpha)}$ measurable, α is φ measurable and consequently A is φ measurable. Since $\varphi(X) < \infty$ and each set α' can be $\mu_{i(\alpha)}$ approximated by a closed subset as closely as desired, it follows that each $\alpha \in \mathcal{G}$ can be φ approximated as closely as desired by the (closed) cylinders over those closed subsets. Since $\varphi(A) < \infty$ a finite subfamily \mathcal{G}' of \mathcal{G} can be chosen so that $\varphi(\bigcup \mathcal{G}')$ is as close to $\varphi(A)$ as desired. Hence A may be φ approximated as closely as desired by closed subsets (which are the union of the closed cylinders).

E. O. ELLIOTT

associated with \mathcal{G}'). Thus \mathcal{T} is i.r. relative to φ .

To see that \mathscr{T} is a.L., let \mathscr{H} be an open covering of X and let \mathscr{H}_i be the family of open sets in X^i such that each cylinder in X over one of these open sets is a subset of some member of \mathscr{H} . Thus, letting

$$\mathscr{C}_i = \{ \beta : \beta = \alpha \times X_i^* \text{ for some } \alpha \in \mathscr{H}_i \}$$

we see that members of \mathscr{C}_i belong to the base for the topology \mathscr{T} and that $X = \bigcup \mathscr{H} = \bigcup_i \bigcup \mathscr{C}_i$. Using the fact that \mathscr{T}^i is both i.r. and a.L. we can select a countable subfamily \mathscr{H}'_i of \mathscr{H}_i for which $\mu_i(\bigcup \mathscr{H}_i - \bigcup \mathscr{H}'_i) = 0$. Now, letting

$$\mathscr{C}_i' = \{ \beta \colon \beta = \alpha \times X_i^* \text{ for some } \alpha \in \mathscr{H}_i' \}$$

we have $\phi(\bigcup \mathcal{C}_i - \bigcup \mathcal{C}_i') = 0$ and taking \mathcal{D}_i to be such a countable subfamily of \mathcal{H} that each member of \mathcal{C}_i' is a subset of some member of \mathcal{D}_i , we obtain further that $\phi(\bigcup \mathcal{C}_i - \bigcup \mathcal{D}_i) = 0$.

Finally, let $\mathscr{B} = \bigcup_i \mathscr{B}_i$ and conclude,

$$X - \bigcup \mathscr{B} = \bigcup_i \bigcup \mathscr{C}_i - \bigcup_i \bigcup \mathscr{B}_i \ \subset \bigcup_i (\bigcup \mathscr{C}_i - \bigcup \mathscr{B}_i)$$

and

$$\phi(X - \bigcup \mathscr{B}) \leq \sum_{i} \phi(\bigcup \mathscr{C}_{i} - \bigcup \mathscr{B}_{i}) = 0$$
.

Noting that \mathscr{B} is a countable subfamily of \mathscr{H} completes the proof.

References

1. E. O. Elliott, Measures on product spaces, Trans. Amer. Math. Soc. 128 (1967) 379-388.

2. E. O. Elliott and A. P. Morse, General product measures, Trans. Amer. Math. Soc. 110 (1964) 245-283.

3. M. Loeve, *Probability theory*, D. Van Nostrand Company, Princeton, New Jersey, 1960.

Received October 6, 1966, and in revised form February 3, 1969.

BELL TELEPHONE LABORATORIES

644