EXISTENCE OF A SPECTRUM FOR NONLINEAR TRANSFORMATIONS

J. W. NEUBERGER

Denote by S a complex (nondegenerate) Banach space. Suppose that T is a transformation from a subset of S to S. A complex number λ is said to be in the resolvent of T if $(\lambda I-T)^{-1}$ exists, has domain S and is Fréchet differentiable (i.e., if p is in S there is a unique continuous linear transformation $F=[(\lambda I-T)^{-1}]'(p)$ from S to S so that

$$\lim_{q \to p} ||\, q - p\,||^{-1}\,||\, (\lambda I - T)^{-1} q - (\lambda I - T)^{-1} p - F(q - p)\,|| = 0)$$

and locally Lipschitzean everywhere on S. A complex number is said to be in the spectrum of T if it is not in the resolvent of T.

Suppose in addition that the domain of T contains an open subset of S on which T is Lipschitzean.

Theorem. T has a (nonempty) spectrum.

If T is a continuous linear transformation from S to S, then the notion of resolvent and spectrum given here coincides with the usual one ([1], p. 209, for example). Such a transformation T is, of course, Lipschitzean on all of S and hence the above theorem gives as a corollary the familiar result that a continuous linear transformation on a complex Banach space has a spectrum.

The set of all complex numbers is denoted by C.

LEMMA. Suppose that d>0, p is in S, Q is a transformation from a subset of S to S, D is an open set containing p which is a subset of the domain Q, Q is Lipschitzean on D and $(I-cQ)^{-1}$ exists and has domain S if c is in C and |c| < d. Then,

$$\lim_{c\to 0} (I-cQ)^{-1}p = p.$$

Proof. Denote by M a positive number so that $||Qr - Qs|| \le M ||r-s||$ if r and s are in D. Suppose $\varepsilon > 0$. Denote by δ a number so that $0 < \delta < \min(\varepsilon, 1/2)$ and $\{q \in S : ||q-p|| \le \delta\}$ is a subset of D. Denote by δ' a positive number so that $\delta'(\max(M, ||Qp||)) < \delta/2$. Denote by c a member of c so that $|c| < \min(\delta', d)$. Denote $(I - cQ)^{-1}p$ by c denote c by c and c

Then, $||q_1-q_0||=||p+cQq_0-q_0||=|c|||Qq_0||<\delta/2$. Suppose that k is a positive integer so that

$$||q_m - q_{m-1}|| < (\delta/2)^m, m = 1, 2, \dots, k$$
.

Then $||q_m - p|| \le \sum_{j=0}^{m-1} ||q_{j+1} - q_j|| \le \sum_{j=0}^{m-1} (\delta/2)^{j+1} < \delta$, $m = 0, 1, \dots, k$ and hence

$$|| q_{k+1} - q_k || = || cQq_k - cQq_{k-1} ||$$

$$\leq |c| M || q_k - q_{k-1} ||$$

$$\leq |c| M(\delta/2)^k \leq (\delta/2)^{k+1}.$$

Hence $||q_n-q_{n-1}|| \leq (\delta/2)^n, \ n=1,2,\cdots$ and therefore q_1,q_2,\cdots converges to a point r of S. Note that $||q_{n+1}-p|| \leq \sum_{j=0}^n (\delta/2)^{j+1} < \delta, \ n=1,2,\cdots$ so that $||r-p|| \leq \delta$ and hence r is in D. But $||r-(p+cQr)|| = ||(r-q_{n+1})+(p+cQq_n)-(p+cQr)|| \leq ||r-q_{n+1}||+|c|||Qq_n-Qr|| \leq ||r-q_{n+1}||+|c|M||q_n-r|| \to 0$ as $n\to\infty$. Hence r=p+cQr, i.e., (I-cQ)r=p, i.e., $r=(I-cQ)^{-1}p=q$. Hence, $||(I-cQ)^{-1}p-p|| \leq \delta < \varepsilon$. This proves the lemma.

Proof of theorem. Suppose the statement of the theorem is false. Then T has an inverse since if not, 0 would be in the spectrum of T. Denote by D an open set on which T is defined and is Lipschitzean. Denote by p a point of D different from -T(0).

Define $f(\lambda)$ to be $(\lambda I - T)^{-1}p$ for all λ in C. Suppose b is in C. If q is in S and different from p denote

$$(1/||q-p||)\{[bI-T)^{-1}q-(bI-T)^{-1}p]-[(bI-T)^{-1}]'(p)(q-p)\}$$

by L(q). Denote by L(p) the zero element of S and note that $\lim_{p\to p} L(q) = L(p)$ since $(bI-T)^{-1}$ is Fréchet differentiable at p. Denote $(bI-T)^{-1}$ by Q. If λ is in C, then

$$(\lambda I - T) = [I - (b - \lambda)(bI - T)^{-1}](bI - T)$$

and, since both $(\lambda I - T)^{-1}$ and $(bI - T)^{-1}$ exist and have domain S, it follows that $[I - (b - \lambda)(bI - T)^{-1}]^{-1} = [I - (b - \lambda)Q]^{-1}$ has the same properties and $(\lambda I - T)^{-1} = Q[I - (b - \lambda)Q]^{-1}$.

Hence, if λ is in C,

$$egin{align} f(\lambda) - f(b) &= Q[I - (b - \lambda)Q]^{-1}p - Qp \ &= Q'(p)[[I - (b - \lambda)Q]^{-1}p - p] \ &+ ||[I - (b - \lambda)Q]^{-1}p - p||L([I - (b - \lambda)Q]^{-1}p) \; . \end{cases}$$

But
$$[I - (b - \lambda)Q]^{-1}p - p = (b - \lambda)Q[I - (b - \lambda)Q]^{-1}p$$
 so

$$egin{aligned} (\lambda - b)^{-1} [f(\lambda) - f(b)] \ &= -Q'(p)Q[I - (b - \lambda)Q]^{-1}p \ &+ (|b - \lambda|/(\lambda - b)) \ ||\ Q[I - (b - \lambda)Q]^{-1}p \ || \ & imes L([I - (b - \lambda)Q]^{-1}p)
ightarrow - Q'(p)Qp \end{aligned}$$

as $\lambda \to b$ since $\lim_{\lambda \to b} [I - (b - \lambda)Q]^{-1}p = p$. Hence,

$$f'(b) = -[(bI - T)^{-1}]'(p)(bI - T)^{-1}p$$
.

Now $\lim_{c\to 0} (I-cT)^{-1}p=p$. Denote by δ a positive number so that if $|c| \leq \delta$, then $||(I-cT)^{-1}p|| \leq ||p||+1$. Then if λ is in C and $|\lambda| \geq 1/\delta$, $||f(\lambda)|| = ||(\lambda I-T)^{-1}p|| = |1/\lambda| ||(I-(1/\lambda)T)^{-1}p|| \leq \delta(||p||+1)$. Hence f is bounded. So, by Liouville's theorem ([1], p. 129, for example), f is constant, i.e., there is a point q in S such that if λ is in C, $(\lambda I-T)^{-1}p=f(\lambda)=q$, and so $\lambda q=p+Tq$. Hence it must be that q=0, i.e., p=-T(0), a contradiction. This establishes the theorem.

The author considers it likely that the statement of the theorem is true if the condition (in the definition of resolvent) that $(\lambda I - T)^{-1}$ be locally Lipschitzean is dropped.

REFERENCE

1. K. Yosida, Functional analysis, Academic Press, New York, 1965.

Received December 12, 1968. The author is an Alfred P. Sloan Research Fellow.

EMORY UNIVERSITY