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APPROXIMATION BY INNER FUNCTIONS

R. G DOUGLAS AND WALTER RUDIN

Let L°°(T) denote the complex Banach algebra of (equiva-
lence classes of) bounded measurable functions on the unit
circle T, relative to Lebesgue measure m. The norm 11 /11» of
an / in L^iT) is the essential supremum of | / | on T. The
collection of all bounded holomorphic functions in the open
unit disc U forms a Banach algebra which can be identified
(via radial limits) with the norm-closed subalgebra H°° of L~(T).

A function / in L°°(T) is unimodular if | / | = 1 a.e., on
Tm The inner functions are the unimodular members of H°°.
It is well known that they play an important role in the
study of H°°.

The main result (Theorem 1) is that the set of quotients
of inner functions is norm-dense in the set of unimodular
functions in L°°(T). One consequence of this (Theorem 7) is
that the set of radial limits of holomorphic functions of bounded
characteristic in U is norm-dense in L°°(T). It is also shown
(Theorem 3, 4) that the Gelfand transforms of the inner func-
tions separate points on the Silov boundary of H°°, and this
is used to obtain a new proof (and generalization) of a theorem
of D. J. Newman (Theorem 4).

Our proof of the main result uses only one nontrivial property of

H°°, beyond the fact that H°° is a norm-closed subalgebra of L°°. It

therefore applies, without any extra effort, to a much more general

situation which we now describe.

Let now L°° denote the Banach algebra of all bounded measurable

functions on some measure space X, normed by the essential supremum,

and let B be a norm-closed subalgebra of L°°. We say that B has

the annulus property if the following is true:

If X is the union of disjoint measurable sets Eγ and E2 and if

0 < rλ < r2 < oo, then there exists h in B such that

(1) 1/h is in By and

(2) \h\ — rt a.e., on Ei9 for i — 1, 2.

That H°° (in the classical setting described above) has the annulus

property is well known: to see it, put u = r4 on E{ (now T—E^E^,

and define

h(z) = exp f — Γ e%θ + z log u(eίθ)dθ\ (zeU).
I2ττ J-χ e'θ — z i

Then h maps U into the annulus {w: rx < | w \ < r2}, and the radial

limits of h have modulus r* a.e., on Eiu

313



314 R. G. DOUGLAS AND WALTER RUDIN

Furthermore, the iΓ°°-algebras associated with weak*-Dirichlet
algebras also have the annulus property. This is a special case of
Lemma 2.4.3 of [11]. We shall have no opportunity to use any other
property of these algebras, and will therefore not even define them
here. An excellent account of them is given in [11].

In order to avoid repetition we now state what our standing as-
sumptions will be. Theorems 1 to 5 will deal with the general situa-
tion just described. H™ will simply denote some subalgebra of some
L°°, the only other hypothesis being that H°° has the annulus pro-
perty. The "inner functions" will again be the unimodular members
of H°°. Theorems 6, 7, 8 are more special and deal with the classical
situation of the unit circle.

THEOREM 1. The set of all quotients of inner functions is norm-
dense in the set of all unimodular functions in L°°.

Proof. Since the measurable unimodular functions taking finitely
many values are norm-dense in the set of all unimodular functions in
L°°, and since each function of the latter type is a product of finitely
many unimodular functions each taking at most two values, it is
sufficient to prove the following.

PROPOSITION. // Eι and E2 are disjoint measurable subsets of X
whose union is X, if \ and λ2 are complex numbers of modulus 1,
and if ε > 0, then there exist inner functions φγ and φ2 such that

I \ - Φάx)lΦι(x) I < ε a.e., on E{(i = 1, 2) .

It involves no loss of generality to assume that XL Φ λ2. Let aL

and a2 be closed disjoint subarcs of T, of length less than ε, contain-
ing λL and λ2, respectively. Let Ω be the complement of aγ U (x2 in
the Riemann sphere. Then there is an annulus

D = {z:r1<\z\<r2\

and a continuous function Φ on its closure D whose restriction to D
is a one-to-one conformal map of D onto Ω ([2], p. 247). If | z | = r{

then Φ{z) is in a{(i = 1, 2). The reflection principle shows that Φ is
holomorphic on 5, except for a simple pole at some point z0 in D. By
a theorem of Ahlfors [1] there exists a function Φ2, holomorphic on
5, such that Φ2 has a zero at z0 and | Φ2(z) \ = 1 on 3D. Define Φ1 =
Φ Φ2. Then Φγ is holomorphic on 5, \Φγ(z)\ = 1 on 3D, and Φ = ΦJΦ2.

By the annulus property which iϊ°° satisfies, there exists h in H°°
such that \h\ — r€ a.e., on Eiy and 1/h is in H°°. Thus h maps X
into 3D, || fe II*, = r2 and || 1/h |U = l/?v Since Φγ and Φ2 are holomor-
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phic on J5, their Laurent expansions converge uniformly on D. Since
H°° is norm-closed, this implies that the compositions φι — Φιoh and
φ2 — φ2 o h are in H°°. Clearly, they are also inner. Finally, φιjφiι =
φohy and (Φoh)(x) is in a{ for almost every x in E^i = 1, 2).

This proves the proposition, and hence Theorem 1.

THEOREM 2. Let Q be the set of all functions of the form ψφ,
where ψ is a finite linear combination of inner functions and φ is
inner. Then Q is norm-dense in L°°.

Proof. By Theorem 1, the norm-closure Q of Q contains all
unimodular functions in L°°. Let χE be the characteristic function of
a measurable set E c X. Note that 2χE — 1 is unimodular, and hence
is in Q. Since Q is a linear space, it follows that χE is in Q for
every measurable EaX, and hence Q — L°°.

Since Q is the algebra generated by the inner functions and their
complex conjugates, Theorem 2 may be restated as follows:

COROLLARY. The self-adjoint algebra generated by the inner
functions is norm-dense in L°°.

REMARK. The subgroup G consisting of those unimodular func-
tions which are quotients of inner functions has already occurred in
certain studies ([5], [7, p. 12]). Theorem 1 shows how delicate the
question of membership in G is. Note that GczQ (see Theorem 2)
and that QaQ, where Q denotes the set of those functions in L°°
which are of the form φψ, where φ and ψ are in H°°. In the classi-
cal situation, every nonconstant f in Q satisfies

( log I / I dm > - oo .

We doubt that this necessary condition is also sufficient (even for
unimodular /) but we have no counterexample.

In connection with Theorem 2, we recall that it is still an open
question whether the closure J of the set of finite linear combinations
of inner functions is iϊ°° (cf. [3], p. 348). Actually, J is a subalgebra
of if°° which in the classical case of the circle has the same maximal
ideal space and Silov boundary as H°° (see the footnote to Theorem 3
and the proof of Theorem 4).

We now consider the maximal ideal space M of H°°. The annulus
property implies that 1 is in iϊ00, so M is compact. The Gelfand
transform / of an / in ίf°° is a continuous function of M, such that
ll/il = H/iL, where | | / | | denotes the maximum of | / | on M, and ||/||«,
is the essential supremum of | / | on X. We shall use the following



316 R. G. DOUGLAS AND WALTER RUDIN

notations:

If φ is inner, then

Kφ = {yeM:\φ(7)\ = 1} .

Ift 'Σ is a set of inner functions, then

KΣ = (\KΦ.
φeΣ

If Σ is the set of all inner functions in H°°, we write K in place
of KΣ.

The Silov boundary of H°° will be denoted by d.

THEOREM 3. The Gelfand transforms of the inner functions
separate points on K.m

Proof. Let τ0 and Ti be distinct points of K. There exists / in
H°° with /(To) = 0 and /(7i) = 1. By Theorem 2, one can find ψ and
ψ such that φ is inner, ψ» is a finite linear combination of inner
functions, and \\Φf — ψ\\*> < 1/3. Hence

for every yeM, in particular for 70 and 7i So | ^(τ0) | < 1/3, and
I ψ(7i) I > 2/3 since | ̂ (7i) | = 1. This shows that ψ separates 70 and 7X

Theorem 3 leads directly to a generalization of a theorem which
D, J. Newmann proved in the classical case [9] and which characterizes
the Silov boundary d of H°° in terms of inner functions:

THEOREM 4. d = K.

Proof. Let φ be inner. Choose / in H°°, not identically 0. Since
I φ\ = 1 on X, ||/0 IU = || / ||TO = | | / | | . There exists 70 in M at which

attains its maximum, | |/0|U, so that

This implies that | $(y0) \ = 1 (i.e., % is in Kφ) and that |/(70) | = | | / | | .
Thus every | / | attains its maximum (relative to M) at some point of
Kφ. This says: d c Kφ. Since K is the intersection of all Kφ1 we
have d (zK.

To prove that 3 fills all Ky let E be a proper compact subset of
K, choose 7i in K but not in JS?. It then follows from Theorem 3 that

1 Kenneth Hoffman has communicated to us a proof which together with Theorem
3 shows that in the classical case of the circle the inner functions separate points
on all of M.
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there exist finitely many inner functions, say φlf •••,#*, such that
jj) = 1 for 1 ^ i g n, but

inf Re φ^i) < 1 for every 7 in E.
i

Then / = 1 + & + . + ψn is in H-Jfr) ^n + l = \\f\\, but |/(τ) I <
w]+ 1 for every 7 in E. Hence E does not contain 3. This completes
the proof.

The following result about function algebras was stated without
proof in [4] by the first author. We point out that it does not de-
pend on the annulus property.

LEMMA. Let Σ be a multiplicative semigroup of inner functions.
Let %Σ be the norm-closed subalgebra of L°° which is generated by
H°° and the complex conjugates of the members of Σ Then the
maximal ideal space MΣ of %Σ can be identified with the set KΣ c M.

Proof. Let Γ b e a multiplicative linear functional on %Σ. Res-
tricting Γ to H°°, we see that to each such Γ corresponds a unique
7 in ikf, denoted by τ(Γ), such that Γ(f) = f(y) for all / in H°°.

Suppose 7 = τ(Γ) and φ is in Σ. Since φφ = 1, we have

Γ(φ) = Γ(φ~ι) = 1/Γ(φ) - 1/̂ (7) .

This shows that Γ is determined by 7, so τ: MΣ—>M is one-to-one. It
is easy to see that τ is continuous. Since both spaces are compact
and Hausdorίf, r is a homeomorphism. Furthermore, τ(MΣ) c KΣ1 for
if 7 = r(Γ), then | ̂ (7) | ^ || Φ |U = 1, and also

\VΦ(y)\ = | Γ ( # | ^ | | 0 i L = i ,

so that i ̂ (7) I = 1 for every φ in Σ and every 7 in τ(MΣ).
We want to prove that τ(MΣ) — KΣ. To do this, we fix 7 in KΣ1

and show that 7 is in τ(MΣ).
For ψ in iϊ0 0 and φ in J, define

If ^ = ^ 2 , then f λφ2 = α/r̂ ,, which implies
and since 7 is in ϋΓj, it follows that /ΌίψΆ) = ΓQ(^r2φ^. In other-
words, Γo is well defined on a dense subalgebra of Stx. It is easy to
check that Γo is linear and multiplicative on this subalgebra. Finally
(using the fact that 7 is in KΣ once more),

- 1 f(y)/Φ(y) I - I f (7) 1 ̂  i m u = II ̂  II- >
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so that Γo is bounded and can therefore be extended to a multiplica-
tive linear functional Γ on 31̂ . It is clear that τ(Γ) = 7, and the
proof is complete.

As a consequence, we obtain a theorem of I. J. Schark ([10], [8,
p. 174]) which Srinivasan and Wang [11, p. 232] have extended to the
context of Weak*-Dirichlet algebras:

THEOREM 5. The Sίlov boundary d of H°° can be identified with
the maximal ideal space M^ of L°°.

Proof. Let Σ be the set of all inner functions. Then

The first of these equalities is Theorem 4, the second is the definition
of K, the third is the preceding lemma, and the fourth follows from
Theorem 2, since the latter asserts that %Σ — L°°.

We now return to the classical situation, i.e., to the unit circle.
Recall that an inner function in the open unit disc U is said to be
singular if it has no zero in U.

THEOREM 6. Suppose f is in L°°(Γ), | / | = 1, 0 < e < 1.
(a) There exist Blaschke products Bt and B2 such that

(b) There exist inner functions φ1 and φ2j with φ2 singular such
that

Of course, the expression BJB2 in (a) refers to the radial limit
function of the quotient of the two Blaschke products, and the norm
is the essential supremum over T.

Proof, (a) is an immediate consequence of Theorem 1, because of
Frostman's Theorem ([6, pp. 112-113], [8, p. 175]) which asserts that
the Blaschke products are norm-dense in the set of all inner functions.

By Theorem 1, it suffices to prove (b) for the case / = 1/^, where
ψ is inner. Define

u(w) = expίc w + 1

I w — 1

where c > 0 is so chosen that Zu(0) < ε, and put
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Ui{w) = .

w[l — u(0)u(w)]

Then uλ is inner, and one checks easily that

I u(w) — wut{w) I < ε (w e U) .

Put w — ψ{z) in this inequality, define φι — uxoψ and φ2 = uoψ. Then
0X and 02 are inner, φ2 has no zero in U, and

I &(s) - ψ{z)φι{z) | < ε (2 e 17) .

To complete the proof, take radial limits in the last inequality and
divide by ψφ2.

Because of Theorem 6(b), Theorem 2 now takes the following form:

THEOREM 7. If f is in L°°(T) and e > 0, then there is a singular
inner function φ and a finite linear combination ψ of inner func-
tions, such that

\\f-ψ/φ\\oo<ε.

Note that ψ/φ is a holomorphic function in U, of bounded charac-
teristic (being a quotient of two H~-functions). Thus the radial limits
of holomorphic functions of bounded characteristic are norm-dense in

We conclude with the observation that the set K which was de-
scribed prior to Theorem 3 can be defined (in the classical case) by
means of the singular inner functions alone:

THEOREM 8. If Ί in M is such that | ψ(y) \ < 1 for some inner
function ψ, then there is a singular inner function φ with \ φ(j) | < 1.

Proof. By Theorem 6(b), with ε = 1 — | ψ(j) |, there are inner
functions φt and φ2, with φ2 singular, such that

IIΦ* - ΨΦi II- < l - I ψ(y) I >

which implies that

1 to I < I <£Cr)to
Theorem 8 adds an eighth equivalent condition to the seven that

are listed on p. 179 of [8].
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