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A CHARACTERIZATION OF THE
CIRCLE AND INTERVAL

BENJAMIN HALPERN

Consider a connected 7)-space X. Take the Cartesian
product of X with itself n times (» = 2) and then remove the
generalized diagonal GD, = {(zy, +++, x,) € X*| x; = x; for some
1 # j} thus obtaining the deleted product Z = X*»— GD,. If Z
should be disconnected then a great deal can be said about X.
For example, if X is compact and metrizable, then X is homeo-
morphic to the closed interval [0, 1] or to the circle C ={(x, y) €
R2| 22 + 4% =1}. On the other hand, if it is only assumed (beyond
X being T, and connected and Z disconnected) that X is Haus-
dorft, locally connected and separable, then X must be homeo-
morphic to either (0, 1), (0, 1],[0,1] or C. In general, without any
assumptions beyond X being T, and connected and Z disconnected
it is possible to define an order on X which is a total order when
restricted to X — a certain finite set, and such that the order
topology is coarser (weaker, smaller) then the original topology
on X. Furthermore, all connected subsets of X and the com-
ponents of X” — GD,, for all m = 2 (m not necessarily equal to n)
are determined. In particular the number of components of
X™ — GD,, is either (m —1)! or m!/N!M! where 0< N, M < n,
N + M < m and each of these numbers is taken on for some
X satisfying our hypothesis. The ‘‘generalized’’ cut point
behavior of X is completely determined and an interesting
result is that either there are no cut points or all but at most
7 points are cut points,

The analysis presupposes nothing but elementary concepts from
general topology. In order to facilitate references to preceding lemmas
and definitions a table of contents is included at the end.

1. Let X be a topological space. Set X" =X x X x -+ x X.
n;i‘:nes

We will denote by GD, (the generalized diagonal) the subset of X*
consisting of all n-tuplets (w,, - -+, ,) such that z; = x; for some ¢
5 1=, 5=

CONVENTION. Throughout this paper we will assume X is a con-
nected Ti-space such that X"-GD, is not connected where m s a
fized integer greater thanm one.

DEFINITION 1.1. Let Y be a topological space. Two points
%, ye Y can be separated in Y if there exists disjoint open sets U,
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V such that e U, yeV and UU V=Y. The open sets U and V
are said to separate v and y in Y.

DEFINITION 1.2. If R is a relation on a set S then the nega-
tive relation R’ is defined by: for =, yc S, aR'y if and only if 2Ry
fails to hold.

In the following definition we introduce the central concept in
our analysis of X.

DEFINITION 1.3. Let & Dbe the collection of all finite subsets
of X. For a¢e & we define the relation R, on &« by xR,y if and
only if %, wea, x+#y, and = cannot be separated from y in
(X_ a) @] {x’ y}'

Clearly R, is symmetric and a2R\x for all x ¢ a.

We associate with « and R, a network (which we also call R,)
having the points of a as vertices and an edge between an z and
yeea if and only if R,y (or equivalently yR,x).

Our analysis consists of bringing into sharper and sharper focus
our picture of the R,’s. First we see how the connectedness of X
implies that each R, is connected. Next, the disconnectedness of
X" — GD, is used to show that each vertex zxeae & can have no
more than n edges (in R,) connected to it. The preceding two facts
combine to show that there must be at least one long simple chain
in @ provided a has sufficiently many elements. Then bringing in
the disconnectedness of X" — GD, we see that except near the ends
of such a long chain, each vertex z in the chain has exactly two
edges (of R,) connected to it which are of course the edges connect-
ing x to the preceding are following vertex in the chain. This in
turn enables us to distinguish (provided cardinality of « is sufficiently
large) a unique long chain C(a) such that each vertex in it has the
above property. The R,’s are sufficiently coherent for various a’s
to make it possible to use the C(a)'s to define a simple order < on
most of X. Those points left out we will refer to here as excep-
tional points. The exceptional points are shown to be small in number
(at most n) and clustered in two groups located at the ends of C(«).
The simple order < is then extended to a partial order on all of X
by putting one group of exceptional points > all other points and
the other group of exceptional points < all other points.

The relations R, can now be determined quite easily from <.
In fact if », yea, xR,y if and only if there does not exist a zca
such that x <z <y or ¥y <z < 2. Meanwhile the topology is related
to < and all the connected subsets of X are determined (roughly
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just intervals). The exceptional points are shown to be basically
(there may be 1 or 2 exceptions) the noncut points in the case that
there are some cut points. The way in which X™ — GD,, m =1,
(m not necessarily equal to ») is disconnected is analyzed in terms
of the numbers N and M of points in the two groups of exceptional
points. We conclude that X™ — GD,, has m!/(N!M!) components.

The topology about the exceptional points (with possibly 1 or 2
exceptions) is shown to be necessarily not nice where nice means
either locally compact or locally connected. The topology about the
other points may or may not be nice but we prove that if it is nice
then the order topology induced by < agrees with the given topology
at the points in question (same neighborhood system). Furthermore
if separability is assumed (locally or globally) one can set up a
homeomorphism (locally or globally) with a connected subset of the
real line R. Combining these observations we prove our characteri-
zation of I={xecR|0x <1} and C={(x,y)e R X R|2* + y* = 1}.

(Actually, there are two cases for the general shape of C(a).
The first is the one described above which leads to the final conclu-
sion X = I. In the other case C(«) is a closed chain (circular chain)
and in this case we finally conclude X = C.)

2. To simplify notation we will write x for the singleton {x}
when no confusion can arise.

LEMMA 2.1, Let a, Be ¥, BCca, a— L ={z}, 2yl and
x#vy. If eRyy and xR,y then xR,z and zR,y.

Proof. Assume xR,y and 2xzR.,y. We will show that «R,z.
Assume the contrary, 2R,z. Set X' = (X — B) U {x, y}. The relation
xR,y means that x can be separated from y in (X — a) U {x, y} =
X’ — z and consequently there exist sets X, and X, open in X’ — 2z
such that ze X, yeX,, X,NX,=¢, and X, U X, = X' — 2. Since
X’'—2z is open in X, X, and X, are open in X. Similarly xRz
implies the existence of open subsets of X, Y, and Y, such that
xeY, ze¢Y, Y NY,=¢, and Y, UY,=X'—y. Setting X,=1z2
and Y, = ¥ we have two partitions of X', {X,, X,, Xi} and {Y,, Y,, Y3}.
Their product partition {X; N Y;} is displayed below along with some
relevant facts.

z€ Yy z€ Y, y=1Ys
veX: | seXinY: | XinY. ¢
yeX: | 0¥ | XnY: |y

z2=2X3 ¢ z é
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It is now apparent that x is separated from y in X’ = (X — B8) U {=, ¥}
by the open sets X, N Y, and X,U Y,, a contradiction. Therefore
xR,.z. It follows similarly that zR,y.

DEFINITION 2.2. If R is a relation on a set S such that xRz
for all xe S, and T S then R induces a relation R” on T as follows:
For ¢,ye T, xRy if and only if « # y and there is a finite sequence
Loy Xyy Ty =22y &, €(S — T) U {#, y} such that x =2, «;_Rx; for1<i<m
and z, = v.

It is easy to verify that R = RS and if P T c S then R? = (R")".
LEMMA 2.8. If a,Be & and BCa then R; = RE.

Proof. 1In light of the above observation it is sufficient to prove
the lemma under the added restriction that o — B is a singleton {z}.
Assume first that z, y€ 8 and xR,y. Either xR,y or 2R,y. In the
first case xR’y follows immediately from Definition 2.2. If aR.y
then Lemma 2.1 implies ¢R,z and zR,y. Thus again from Definition
2.2, xR%y.

Now assume %, y €8 and xR%. Then there is a finite sequence
Loy Xy *+ 0y B € (@ — B) U {2, y} = {7, 2, y} such that x = 2, x,_,R,x; for
1<i<mand X, =y. It follows readily that either xR,y holds or
both zR,z and zR,y hold. In the first case, 2R,y, = cannot be
separated from % in (X — a) U {x, ¥y} and consequently 2 cannot be
separated from ¥ in (X — a) U {x, ¥y} U {z} = (X — B) U {x, y}. Hence,
if xR,y then xR,y. Now in the second case, xR,z and zR,y, and
we again cannot separate « from y in (X — 8) U {®, y} because if A
and B do so separate x from y then z is in either 4 or B, say A,
and then A — x and B separate z from y in (X — a) U {7, y}. But
then 2Ry a contradiction. Thus xR,y in all cases.

DEFINITION 2.4. If R is a relation on a set A then a related
relation R on A is defined by xRy if and only if there is a finite
sequence &y, X, * -+, &, € A such that x = 2, «;,_,Rx; for 1 < ¢ < m and
x, = ¥. Such a sequence, 2, +-+, %,, is called an R-chain from x to
y. The relations z;,  Rx; are referred to as links and m as the length
of the R-chain.

NortaTioN 2.5. We will let *s denote the cardinality of the
set s.

LEMMA 2.6. xR,y for all &, yeca provided *a > 1.

Proof. We will use induction on the number N of elements of
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a. If N =2 the lemma follows from the fact that if z, yca and
x # y then (X — a) U {z, y} = X and X is connected. Thus 2R,y and
yR,x which implies aR.,b for all a, bea. Now assume the lemma
holds for N=m. Let a={x,---,®,+,} Where x; # z; for ¢ # j.
Take any two distinct elements of «, say «, and z,, Set 8 =
{#,, &, +++, x,). By the induction hypothesis z.R;x, i.e., there is a
sequence Yo, *++, ¥, €S such that =, = y,, ¥, Ry; for 1 <7< p and
Y, = %,. This R, chain from x, to x, can be converted into an R,
chain from =z, to x, as follows. For each 7, 1 <1< p, if y,_.R.y;
then we replace the link y;,  R,y; by v;_.R.y;; if y,_R,y; then by
Lemma 2.1 y, R, and =z,. R, and we replace v,_,Rsy; by
Yio R and 2, R,y;. Thus xR, The relations xR,x for rca
follow from xR,y and yR,r where y is any element of a different
from x. Therefore R,y for all x, yca. This completes the induc-
tion step and hence the lemma is proved.

3. For later reference we state the following trivial observations
as lemmas.

LemmaA 3.1. If 2, ye BC A where A is a topological space,
B is a subspace, and x is separated from y in A then % is separated
from y in B.

LemmA 3.2, If a, Be & and x, yeBCa then xRy implies
*Ryy.

In the next lemma we start to investigate the relation between
connectedness in X and connectedness in X* — GD,.

LEMMA 3.3. Suppose a = {x,, +++, %,,} and x, # x; for =+ j.
If R, then T = (T, +++, Ti_yy sy Tigyy =+ *5 T,) cannot be separated
f’rom ?7 = (xu oty Ly Lptay Liyy 0y xn) i'n Xn - G-Dn'

Proof. Consider the set X’ =, X @, X ++o X 2;,_, X X X ;4; X
oo X ¢, C X" X' is homeomorphic to X under the projection onto the
1™ coordinate p; and
pi(X, n (Xn - GDn)) =X — {xw oty Ly Lyyy * %y xn}
= (X - C() U {w'ii xn+1} .

The conclusion now follows from x;R,x,,, and Lemma 3.1.
COROLLARY 3.4. Suppose « = {x, -+, ©,1,} and z; + x; for

1#] and 1=<4,5<n+1. If acBeF and x,Rx,,, then T =
@y o0y @iy &gy Tigy =, X,) cannot be separated from
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Yy = (901, crty By Tptgy Tyrgy =00y xn)
m X" — GD,.

Proof. By Lemma 3.2 x;R,x,., implies 2;R.x,., and so the con-
clusion follows from Lemma 3.3.

(3.5) Pictorial interpretation of Corollary 3.4. (see Figure 1.)
Given an ae & let the vertices of the network R, be represented
by dots on a sheet of paper with lines between dots corresponding
to the edges of R,. That is two dots corresponding to points z, y € «
have a line between them if and only if a#R,y. Suppose we have n

RO, Y O @ ©
O - &)

®

Figure 1

markers labled 1,2, ---, n. Then an n-tuplet (y, --+,9,) e X" — GD,,
such that y;,ea for 1 < ¢ < n, corresponds in a natural manner with
an arrangement of the n markers on = distinct dots. Call such an
arrangement of markers admissible. The above correspondence is one
to one and onto from the set of all (y, ---, v, € X® — GD, such that
y;ea for 1 <1< mn, to the set of all admissible arrangements of
markers. Now the content of Corollary 3.4 is that if one admissible
arrangement of markers is altered by moving one marker from the
dot it is on to an unoccupied dot which is connected to the original
dot by a line (such a change in the positions of the markers is called
allowable) then the new and old arrangements correspond to connected
(i.e., nonseparated) points of X" — GD,.

DEFINITION 3.6. The relation S is defined on X" — GD, by:
for a,be X" — GD,, aSb if and only if a can be separated from b in
X" — GD,. Note that S’ is transitive and symmetric and reflexive,
i.e., S’ is an equivalence relation.

DEFINITION 3.7. Let S, be the permutation group on 7 objects.
If (v, -+, 2,)eX" then set o(x, ---, 2,) = (Wo_y,) =+, Ty, ). Note
that ¢(X"” — GD,) = X™ — GD,, for each ¢ §,.

DEFINITION 8.8. Let R be a relation on a set S. An R-chain
Xoy v+, &, 18 simple if and only if wx; == x; for 4= 5. If x, ---, 2, is
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an R-chain from z, to x,,, 2, # %, then one may obtain from z, x, ---, 2,
a simple R-chain from z, to x, by removing “loops”.

LEMMA 8.9. If ZT= (%, ++-,%,) and §=(y, -+, Y,) are elements
of X" — GD, then TS'cy for some o€ 8S,.

Proof. Since S’ is transitive and {y,, ---, ¥,} = B can be obtained
from {, ---,2,} = A by replacing elements of A — B one by one
with elements of B — A it is sufficient to consider the case where
A—B={x} and B— A ={y;}. Then a ={x, -+, %, ¥y, ++*, Y,} 18
really a set of n-+1 distinct elements of X. Because each re S, acts
as a homeomorphism on X" — GD, we have 7ZS’cy if and only if
ZS’'t~'0y. Thus we need only show that tZS’cy for some 7,0¢S,.
According to Lemma 2.6 there is a R,-chain from y; to x;. Let
2y *+, 2y be a simple R, -chain from y; to x;. Let zy., ---,2, be an
enumeration of @ — {7, -+, 2y}. Thena = {z, --+, 2,}, 2, =z, if k= [,
;= 2y, Y; = % and z,_, Rz, for 1 <k < N. It follows that (2,,-:,2,) =
7% and (2, -+, 2y, *++, 2,) = 0y for some 7, 0¢c S, where the hat (%)
signifies that the element is missing. From Lemma 3.3, (with z,_,
and z, taking the parts of the z,,, and ; of Lemma 3.3 respectively)
Roy *v0y Zpay ooy %) S (Rgy #0#y 2y »++2,) for 1 <k < N. Thus tZS’cy
as we wished to show.

LemmaA 3.10. If ae X" — GD, then aSoa for some o€ S,.

Proof. Let ae X" — GD, and assume aS’ca for all oe8,.
According to Lemma 3.9 for each b and ce X" — GD, there exist
g, e S, such that 8S’ca and ¢S’za. Since S’ is transitive it follows
from bS’ca, caS’a, aS’ta, TaS’c that bS’c for all band ce X" — GD,,.
But this contradicts our fundamental assumption that X" — GD, is
not connected.

4. DEFINITION 4.1, If R is a relation on a set Y and x¢ Y
then we will set sprz = ¥{y e Y | zRy}.

LEmMMA 4.2. If zeae F then sppx < n.

Proof. Assume the contrary, i.e., assume zxzcac ¥ and
spr,® = n + 1. (see Figure 2.) Then there are n + 1 distinct points
Xyy Xyy + o+, ®,,, of a such that zR,x; for 1<7¢<n+ 1. From the
definition of R, we have « distinet from each z, 1 <7< + 1.
Let a = (2, +--,2,)e X" — GD,. We will show that aS’ca for all
oceS,. Since S’ is transitive it is sufficient to show aS’ca for all
simple permutations ¢. Also because each 7 ¢ S, acts as a homeomorph-
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ism on X" — GD, we have zaS’toa’ if and only if. aS’oca and con-
sequently we may assume o (x,, &, X3, -+, ,) = (&5, Xy, Ty +++2,). Using
Corollary 3.4 it follows from z,R.x, *R,%,.,, €.R.x, 2R.x, ®,. R« and

OBRORBRONNO

Figure 2
eR,x, that (v, @, @5 -+, @,) S’ (%, @y X5y <+, @,) S’ (Tprry Top Ty =00y By)
S (s T, Ty ooy ) ST Ty Ty By oy w,) ST (X, @y By e, @)
S’ (, %, %3 +++, x,). This calculation is illustrated in Figure 2.
Thus (x, X, sy »++, %) S’ (%, Xy, sy +--, x,) as we desired. So we

have aS’ca for all 0 e S, which contradicts Lemma 3.10. Therefore
the present lemma holds.

In the light of Lemmas 2.6 and 4.2 the following lemma tells
us that for *a large, a must contain at least one long simple R, -chain.

LEMMA 4.3. If R is a relation on a nonempty set Y such
that no simple R-chain has length more than N, xRy for all x,ye Y,
and spyx < M for all xe'Y where M = 2 then *Y < MY+,

Proof. Pickanz,eY. Set Y, = {yec Y|there is a simple R-chain
of length m from x, to y} for m = 0. Note that x, is an R-chain
of length 0 and the only R-chain of length 0 starting at wx,.
Thus Y, = {z,}. Let Z, = {all simple R-chains of length m from
2, to some point of Y} for m = 0. Clearly *Y, <*Z, for all m.
From the hypothesis we have Z, = @ for m > N. Hence Y, = &
for m > N. Also xRy for all z,ycY implies UrY, = Y. Thus
Y =UsY.=UYY, and consequently *Y < S MY, < D¥¢Z,.. Now
each simple R-chain of length m + 1 starting at z, is obtained from
a simple R-chain of length m starting at x, by adjoining a link.
Since sppx < M for all xeY we see that each simple R-chain of
length m can give rise to no more than M simple R-chains of length
m + 1. It follows that *Z,,., < M*Z, for m = 0. Since *Z, = *{x,} = 1,
an easy induction gives *Z,, < M™. Thus

MY -1

< MY+,
M—-1 =

V<N Z, =S M" =
0 m=0

LEMMA 4.4. Let e & and x,---,2y, be a simple R,-chain
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m a. If 2n +1 <1< N — 2n then xRy holds only for y = x;_,
and y = ﬂci.H. Thus Sprx,,; == 2.

Proof. Assume the hypotheses and suppose yea,y # 2, Y +
%4, and x;R,y. (see Figure 3.) We will show that (x, ---,%,) S’

¥
o—-C O -O O O O O O O
Figure 3

o, ++-,x,) for all ¢eS,. It is sufficient to consider only simple
interchanges of two adjacent objects. So assume o(x, ---, 2,) =
@1y =y Xy Xpgry Ty Lygay =0 £,).  We will consider three cases. Case
Liy#a,t—n<k<i+n Case2: y=2a,withe—n=<k<i—-2.
Case 3: y =2, with 1 +2 <k <7 + n.

Consider Case 1. The diagram of dots is illustrated in Figure 3.
It is now easy to see in light of the discussion 3.5 that (x,, ---, x,) S’
(g5 @iy * 0y Bima@iy Tiggy * oy Bimggn) ST (Wigy Tisgny =00y Tisy Yy Tigay * =%
i 12n) ST (Xigy Tigwry =0y Tigy ity Yy Tivay ***y Tign) S (Xigy Tigiry * o+,
Tigy Tityy Ty Tiggy =%y Timggn) S (Byy Loy <oy Tyyy Tyyyy Ty Tpugy =00y Ty)e
Thus (x,, -+, 2,) S’ o, ---, x,) as desired.

Next consider Case 2. It is easy to see that (x, .--,2,) S’
(@rmgry = oy Tpmyy Tpoy Tprgy By =0y Bignei)) S @peigny * o0y Bpmyy Ty Tprss
Dirsy * 00y Tigneron) S Xy + 0y Ty, Tyyyy Ty Lpggy *++, ¥,). Thus (x, -+, @,)
S’ o(x,, -+, x,) as we wished to show.

Case 3 is perfectly analogous to Case 2 and is left to the reader.
This completes the proof.

5. LeEmMA b.1. If *a = n®™t + 1 then there is a unique sub-
set C(a) of «a satisfying

(i) C(a) is a sitmple R,chain—ri.e., C(a) can be indexed so
that C(a) = {z,, ++-, .}, *C(a) = m, and x,, - -, ,, s a stmple R, -chain.

Figure 4
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(ii) *Cla) =z 4n + 1

(iii) 2eC(a) = spp > = 2

(iv) C(a) is a maximal set satisfying (i), (ii) and (iii). (see
Figure 4.)

Proof. By Lemma 4.2, sp, v <n for all xea. Thus from
Lemma 4.3 there must be a simple chain C, = x,, - -, 2,,,, of length
8n+1. Consider the simple chain C, = %,, .1, ®spsey ***, Lons:. By Lemma
4.4 sppw; =2 for 2n +1 <1< 6n + 1. Thus the set of points in
the chain C, satisfies (i), (ii) and (iii). Since « is a finite set it is
easy to see that there must be a maximal set C, satisfying (i), (ii),
and (iii). :

We will now prove that C, is the only subset of «a satisfying
(i), (i), (iii) and (iv). Let C, # C, be another such set and let C; =
Wy +++, Yn) and C, = {2, -+, 7,} where y; # y, for i = j, z + z; for
1% 7, YRy, for 2< 1< m, 2z,_ Rz for 2< 1< p, m=4n + 1 and
p = 4n + 1. Since sppy, = 2 there must be a unique element y, of
a such that y,R,y, and ¥y, # y,. Similarly there exists a unique ¥,+.
such that ¥,R.Y.+. and ¥%,_, #* ¥Yn+.. Analogously we have 2z, and
2,., with corresponding properties.

We break up the proof into three cases. Case 1: y, = 9, or
2, =%, Case 2! Y, #* Yn 2 #2,a0nd C; N C, #+ ¢; Case3: C;NC, = @.
We will reach a contradiction in each case. Consider Case 1 and for
definiteness assume y, = ¥,.. Note that in this case ¥,., = ¥, Since
C,# C, and C, is maximal we cannot have C,c C,. Thus there is a
zea — C,. By Lemma 2.6 we know that there is a simple R,-chain
C, from z to y,. Let y;, be the first element of C, in C, and t the
element of C, preceding %;. Note that ¢¢ C,. Since ¥y, = Y., Cs; =
Yi-zny Yicontvs ** s Yicy Yir Yitsy ** s Yirza 1S 8 simple R,-chain where we
temporarily have set y; = y,.; if <0 and y; =y, , if 7> m.
But, because y;_R.Y:, ¥iRYiv, tRy; and ¢ # ¥, ¥iy, and yiy # Yo
we must have sp, y; = 3. This contradicts Lemma 4.4.

Next consider Case 2. Y, # Yn, % # 2, and C;N C, # @. In this
case Yn4 * Y. Also note that y,¢ C, for otherwise y,;R,y, for some
J, 2 < J < m which would contradict sp; y; = 2. Similarly ¥, € Cs,
2o %1 € C,. Since C, N C, # @ we have y; = z; for some 4, j satisfy-
ingl<i<mand 1 <j5<p. Because y,. R,y SPrRi = 2, #;. Rz,
and z;R,z;,, we must have either y,., =2, , or ¥;., = 2;;,. By re-
numbering if necessary we may assume y;., = Z;,.

If 1+1=m+1 but j+1<p+1 we can conclude that
8Pr Ymtr = SPgp,Rir1 = 2. This then implies y,, <« +, Y, Yus, 18 a simple
R,-chain and in fact C, = {y,, *++, Ym, Yns.} Satisfies conditions (i), (ii)
and (iii). This contradicts the maximality of C,. Using the same
argument with the roles of C, and C, reversed we can conclude that
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either 7+1=m+1 and j+1=p+1 or 2+1<m+1 and
j+1<p+ 1. Now if the latter condition holds we may reason as
above and use the additional facts that y,,, = y;, = 2, to conclude
that y;,, = #2;,,. And againeitheri+2=m + landj+2=p+ lor
i1+2<m+1 and j+2<p -+ 1. The latter condition leads to
another step in this process and since « is finite the process must
stop. Hence 1+ +k=m +1and 7 + %k = p + 1 for some k.

Now start the above process going the other way. That is, consider
Y;—. It is easily seen that without renumbering again we must have
Y, = #;_,. Continuing as far as we can we discover that ¢+ — [ =0
and 5 — I = 0 for some [. Thus ¢+=10=7 and from above m + 1 =
1+ k=3+k=p+1. Hence y,=2, for 1<qg<m=p and so
C, = C, a contradiction.

Finally consider Case 3—C, N C, = @. By Lemma 2.6 there is a
simple R,-chain C; from y, to z,. Let y, be the last element of C,
in C, and 2z, the first element of C; following ¥, and in C,. In order
not to contradict condition (iii) for either C; or C, we must have
=1 or m and s =1 or p. By renumbering if necessary we may
assume r =m and s=1. Let C,=¢, ¢, --+,t, be that portion of
C, from y, to z,. Then Cio = 4, Ysy =+ *y Ym =Yy = toy by, »=+, Ly = 2, =
2, %y -+, 2, is a simple R,-chain of length at least 4n + 1. It follows
from Lemma 4.4, m = 4n + 1 and p = 4n + 1 that sp,t, =2 for
0<l<wv. Thus C, =W, Ys *** Y b1y ** =, Loy 2, -+, 2,} satisfies
conditions (i), (ii), (iii) and contradicts the maximality of C..

Since all cases lead to contradictions we conclude that there is
no C, =+ C, satisfying conditions (i), (ii), (iii) and (iv).

The following corollary follows readily from the proof of Lemma
5.1.

COROLLARY 5.2. If ae . and a=n""*' +1 then *C(a) = 6n + 1.

LeEmMA 5.3. If a, Be F' and *a, *8 = n*™ + 1 then C(a) = a if
and only if C(B) = B.

Proof. It is sufficient to prove the lemma in the special case
a C B, for the general case then follows by applying the special case
to a, «aUB, and a U B, B. Now since 5B can be obtained from a by
adjoining the elements of 8 — «a one at a time we may further
assume that 8 — a = {z}.

First assume C(8) = 8. The conclusion C(a) = a follows readily
from the definitions and the fact that R, = Rj.
Now assume C(a) = a. Let a = x, 2, @, ++-, x, with z, = x,,



384 BENJAMIN HALPERN

wRw., for 0 <i<m—1 and sppa; =2 for all ¢, ie., xR,
0 <7< m—1 are the only R, relations to hold. (Such a representa-
tion of a is arrived at by writing a = C(a) = {x,, 2., -+, 2,,} and
nothing that sp.x; =2 all ¢ leads to «,R.x.) Since 8 is R, con-
nected (see Lemma 2.6) we must have zR,x; for some j, 1 < j < m.
Renumbering « if necessary we may assume j = 2n + 1. If 2Ry,
for all 42, 0 <7< m— 1, then spz; =3 and Lemma 4.4 is con-
tradicted since 5 = 2n + 1. Thus 2;Rix;., for some 7, 0 < 1< m — 1.
Let 4, be any such i, i.e., x; R; ... Consequently, by Lemma 2.1
x; Rez and zRsx; ,,. Since x; Rz, 2Rsw; and R, = Rf we can conclude
that 4,e{j —1,7,7 + 1}. Similarly 4, +1e{j — 1, 7,7 + 1} and there-
fore ¢, =7 —1 or j. We have thus shown that zR,r;., for all
1% j~1 or j and yet x,Rjx,., for some 4. We have two cases.
Case 1. z;_ ,Rx; and x;Rjx;,. In this case we can conclude as above
that «;_,Rsz and zRsx;;,. Combining this with zR,x; we have SPrg? =3
and thus Lemma 4.4 is contradicted. Thus we are left with Case 2:
x;_Ryx; or x;Rpx;,, holds but not both. For definiteness we will
assume =z, Rz; and z;Rx;.,. Again we can conclude that zR,x;_,.
We cannot have zRyx; for ¢ {j — 1, j} for if we did then zR,x;_, and
zR,x; would imply «R.,x; , and «;R,x; which is impossible. (Note
that m =4n +1=9 and thus «;,, = €15 # %5, = ©;_,.) It follows from
Lemma 3.2 that a;Rjx, for all 4, k, 0< 4,k <m, |t —k|=*1, m—1.
We have thus determined R; completely and it is easy to see that
C(B) = B. In fact B is the simple closed (circular) R;-chain ,, z,, - - -,
Xj_yy & &;%j4y +** &, This completes the proof.

6. Let & '@ = {aeF |*a = n* 4+ 1}. Lemma 5.3 implies
Cla) = a for all ae # ' or C(a) # a for all ae F'. We will call X
circular or moncircular according to whether the first or second
possibility holds. In §’s 6 through 11 we will consider the noncircular
case exclusively. Thus i §'s 6 through 11 we assume X s non-
cirewlar, i.e,. Cla) = a for all e F'.

DEFINITION 6.1. Let ac &#'. If (%, ---,®,) is an m-tuple such
that m = *C(a), C(a) = {®,, -+, 2%,} and xR, for 1<1<m—1,
then (¢, ---, 2,) is called a presentation of C(a) (in symbols C(a) ~
(x, +-+, %,)). Condition (i) of Lemma 5.1 implies that C(a) always
has at least one presentation for a« € #’. It also follows from Lemma
5.1 that if (%, ---,2,) is a presentation for C(a), ae.#’, then
spg 2; = 2 and consequently «;R\x; when |7 — j| # 1 and {1, 5} # {1, m}.

LEMMA 6.2. If (x, +--,2,) ond (y, -++, Y, are two presenta-
tions of Cla), ae F ', then m = p and either z; = y; for L i< m
or & = Yp_in Jor 1 <15 m.
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Proof. First, m = *C(a@) = p. Next, we claim that 2z,R.x,.
Assume the contrary, x,R.x,. Since C(a) # « there isa zea — C(a).
By Lemma 2.6 there must be an R.,-chain C, from 2z to z,.. Let «;
be the first element of C(a) on C, and t the preceding element of C,.
Then tea — C(a) and tR,v;. Consequently sp,x; =3 which con-
tradicts condition (iii) for C(a). Thus «,R.x, and similarly v, R.Y.

Now note that {z, ---, 2,} = C(@) = {y,, --+, ¥.} and that x, and
2, are distinguished from all other elements of C(«) by the fact that
{ze C(a)|2R,x,} and {ze€C(a)|zR,x,} are singletons, ({x.} and {x,_.}
respectively), whereas {ze C(a)|zR.x;} = {x;_, ©,.,}' a set with two
elements provided «; # x,, #,,. The same thing holds for ¥, and ¥,
and thus {z, z,} = {y,, y.}. Stated briefly,

{2, 2a} = {te C(a) [Hze C(a) | 2Rut} = 1} = {y,, v} -

Case 1. z, =y, and 2, = ¥%,,. Case 2: z, =y, and z, = ¥,. Con-
sider Case 1: 2, = v, and 2, = ¥,. @, is the unique element z of C(«)
such that x R.,2. But this is also true of ¥, and thus z, = ¥,. @, is
the unique element of C(a) different from x, = y, such that x,R...
But this is also true of ¥,, and thus 2, = y,. Proceeding in this way
we arrive at the desired conclusion, z; = y; for 1 <7 < m. Case 2
can be reduced to Case 1 by renumbering the y,’s in the reverse
order (¥ = Ym_ir). We then conclude that =, = ¥, = ¥,_;s, as we
wished.

In the first paragraph of the proof of Lemma 6.2 we proved the
following result.

LEMMA 6.3. If C(@) ~ (¢, +--, X,), @€ . F ' then xRlx,.

DEFINITION 6.4. Let ae.#’ and C(a) ~ (v, +++, 2,). Since
S$Pra®, = 2 and x, is the only element ¢, of C(«) such that z,R,t, there
must be a unique tea — C(a) such that x,R,t. Designate this ¢ by
%,. Similarly, let «x,,, be the unique t,e @ — C(«) such that x,R.t,.
Note that the definitions of x, and %,,, depend on « and the presen-
tation (x, +--, x,) of C(a). Taking into account Lemma 6.2 we see
that if the presentation of C(a) is changed from one of the two
possibilities to the other, then %, and x,., simply interchange places.
We will use the following notations:

L) = {Zo, Tppss}
g(a) = — {xm Lyy ¢y Ty xm+1}
=a— (Clau ().

Thus « is the disjoint union of C(a), & (a) and & ().
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LEMMA 6.5. Let ae.# ' and C(a) ~ (2, +++, X,). If x;R2; and
04,7<m+1 then |2 —J]| = 1.

Proof. Since xR, for 1=0,1,---,m and sp,x; =2 for
1 <7< m the conclusion clearly holds for all + and 5 such that
{i,, 5} N {0, m + 1} = @. Next we shall show that z, # x,.,. Suppose
the contrary, «, = 2,.,. Using already familiar techniques and
Lemmas 2.6 and 4.4 it is easily shown that o« — C(a) = @, i.e., a =
C(a). But then X would be circular contrary to our assumption.
Thus %, # #,+,. The same line of reasoning shows that z,R.x,.,.
From sp, @; = 2 for 1 < % < m it now follows that ,R,x; and 1 < i< m
implies that ¢« = 1. Similarly z,, R.x; and 1< 7 < m implies ¢ = m.
Thus we have established the conclusion in all but one case, {¢,j} =
{0, m + 1}. But «,R.x,., (see above) and so in this case the lemma
is vacuously true. The lemma is thus proved.

7. In the proof of Lemma 7.1 we go into a fairly complete
analysis of the structure of R, in terms of that of R, when aCpg,
B —a=1{z}, and o, Be #'. We will have several occasions to refer
back to this analysis.

LemMA 7.1. If o, Be F ' and aC B then & (a)C & (B).

Proof. It is sufficient to consider the case where 8 — a = {z}.
In the following discussions it will be important to remember that
due to R, = R: we have xR,y if and only if either xR,y or xR;z and
2Ry, Let Cla) ~ (xy *++y Zn)-

We will consider two cases.

Case 1: zRjx; for ¢ =1, ---,m. In this case we must have
z;Rsx;,, for 1 =0,1, -+, m, and o, Rt for i =1,---,m and ¢ ¢ {x;_,, ©;;.}.
Thus C(a) is an R;-chain at least 4n + 1 long such that sp,t =2
for each te C(a). Since C(a), can be extended to a maximal such set
in B8 we can conclude that C(a) cC(B). Let C(B) ~ Yy *++, ¥p). It
is clear that with the proper choice of presentation for C(8) we may
write y;; = x; for ¢ =1, --+, m where 0 <j < p — m. (see proof of
Lemma 6.2) It follows that x, = y,; and %,y = Yjtme1-

We now claim that 5 =0 or 1 and if § = 1 then 2 = %,. In order
not to contradict the maximality of C(a) we must have sp, o # 2.
We distinguish two cases: Case la, sp, ¥, = 1; Case 1b, spz @ = 3.

Consider Case la, spp @ =1. Assume j > 0. Then 8Pg o =
sprgY; = 2. Since x,R,x; only for ¢ =1 we must have x,R;t for some
£ @ {@yy Ty + oy Ty Tpory). If tea then z,R,t which is impossible and
so t =z We assert that SPry% = 1. Suppose the contrary. Then
2R,s for some s = x,. Since we are considering Case 1 we have
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assumed zRjx; for 1 < i< m. Thus we can conclude that s == x,.
From 2,R;z and zR;s we have x,R,s which contradicts sp, x, = 1.
Since zR:y,, *, = ¥;, and z # y,,, = ¢, € @« we must have z =y, ,. It
follows that j — 1 =0 and z = y, as we claimed. Thus the claim is
established for Case 1la.

Case 1b, sp,a, = 3. Assume j > 0. Now there must be distinct

elements ¢, t,ea — {x, &, +++, Tpy Tpsy) such that ¢ R, and ¢,R.,.
Since SPrylo = SPpY; = 2 and «,Rzx, we must have t;Rix, for + = 1 or
2, say for 7 =1. Then tR; and 2R;x,. Hence t,Rjx, (s = 2)

and consequently ¢,R;z and zRx,. Thus SPrgt = 3, (t; #= =z, since
t;R,x,). Since zRsy;, (%, = y;), 2 must be y,_,. It then follows that
7 —1 =0 and so the claim has been established for Case 1b. This
completes the proof of the claim.

Using the same arguments (or just renumbering the x; and y;
backwards) one may show that 7+ m+1=p or p+ 1 and if
j+m+1=p then 2z =y,,,. In all the above eventualities we never
have an element of & (&) = « — {%,, @, +*+, T, L,si} PECOME an element
of (o, Yy =+, Up Ypss) S we go from a to 8. Thus & (a)c & (B) =
B — Yo Y1y *+*y Yy Yp+u} a8 we wished to show. This proves Case 1.

Case 2. zR;x; for some 7, 1 <1< m.

Case 2a. zRjy for all y +«; yepB. In this case ¢, sea and
tR,s implies tR;s. Thus C(a) ~ (x,, +--, x,) is a simple R,-chain.
From Corollary 5.2 we have m= C(a) = 6n + 1. Lemma 4.4 implies
i¢@n+ 1,20+ 2, ---,m — 2n}. We may assume without loss of
generality that m —2n < ¢ < m. Then C, = {x, -+, ®;_,} satisfies
conditions (i), (ii) and (iii) of Lemma 5.1 with respect to 8 and from
8Dr, %o = SPpyo # 2, 2R, $Pp % = 3 and x,_,R,xr; it is easily seen
that C, is maximal. Thus C, = C(B), C, ~ (¥, - ++, ¥;_) with x; = y;
for 1 <j <4, ¥, =2, and y; = x;. It follows that

i/j(af) =& — {il'/'o, Lyy =0y Ly xm-ﬂ} - B - {yl), Yiy **y Yiny yv,} - ?,”(,8) .

This completes the proof of Case 2a.

Case 2b. 2R,y for some y # ®;. Then xR,y and so y = x,_, or
Yy = ®;,,. If both relations zR,x;_, and zRr;,, held then z, R,
would hold, which is impossible. Thus just one holds.

We distinguish Case 2b (i) zR,x;,_, and Case 2b (ii) 2R;x;.,. Con-
sider Case 2b (i) zR®;_,. Since zRjx for all xe B3 except © = x,_, or
x; it follows that, provided z,yea and {x,y} # {x;_, «;}, we have
xR,y if and only if zRy. If x,_ Rjx; then clearly

C(lg) ~ (xly sy Xy By Wiy Ly =y xm)

and F(a) = &~ (B). Thus & (a) = £ (B) and hence & (a)C & (B) as
desired. On the other hand if =z,  R,x; then =z, ---, z, is a simple
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Ry-chain and from Lemma 4.4 we can conclude that
1¢{2n+1,2n + 2, +--, m — 20} .

Assume ¢ = m — 2n + 1. Then as in Case 2a we can conclude that
C(B) ~ (x, ++-,x;_,). It follows that ¥ (a)c &(B) as we wished.
This proves Case 2b (i). The proof of Case 2b (ii) is very similar and
thus left to the reader. Thus we have shown that % (a) C &(8) is
all cases and the lemma is established.

With the notation as in Lemma 7.1 and B8 — a = {2}, C(a) ~
(2, +++, ,) we list possible presentations (y,, .-, y,) for C(8) occuring
in all the various cases.
Case 1. C(B) ~ (4, X1y ++ =, X,)
C(B) ~ (@ +*+) Ty Tpsy) and 2 = Yy,
C(B) -~ (xm Ly v 0oy xm) and 2=1Y
C(B) ~ (@ **+y Ty Tpys) aNA Yo = 2 = Y.
(This case is impossible by Lemma 6.5.)
Case 2. C(B) ~ (®, ++-,x;) some j,m —2n —1<j < m
C(B) ~ (xﬁ ] xm) some j, 1 g.? =m
C(B) ~ (xlr cey Lgy By Lyyqy =00y x’m) some

L0 i< m.
8. LemMmaA 8.1. X s infinite.

Proof. Since X* — GD, is disconnected, X" — GD, # 0. Because
n =2, X has at least two distinct elements. Now using the fact
that X is a T,-space we see that if X were finite it would be dis-
connected. But X is assumed connected and hence X is infinite.

REMARK. This lemma and its proof obviously hold in general,
not just the noncircular case.

LEmMMA 8.2. If ace ¥ ', ze&(a) and Cla) ~ (X, +++, x,) then

pm T T € ()

Figure 5
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eitther there is a simple R, -chain C not intersecting C(a), C N C(a) =
g, from x to x, or from x to x,., but not both. (see Figure 5.)

Proof. By Lemma 2.6 there is an R,-chain C,, which we may
assume to be simple, from x to x,. Let x; be the first element of
{, @1y o+, Xpy €y} Oon the R,-chain C,. In order not to contradict
spp ;= 2 for 1 < j < m, we must have ¢ = 0 or m + 1. Thus, that
portion of C, from x to z; is the desired simple R,-chain.

Now if C, and C, are simple R, chains from x to x, and %,
respectively each not intersecting C(a) then we may construct from
them a simple R, chain C,=vy, ---,y, from «,., to x, not inter-
secting C(a). Now if we apply Lemma 4.4 to «,,, and the simple
R.-chain @, su Tnzuiss ** % Ty Tngs (= Y0)y Yy =00y Yp (= T), Ty =0, Xy
we see that spp .. = 2. But this contradicts the maximality of
C(a). Consequently both C, and C, cannot exist. This completes the
proof.

DEFINITION 8.3. Set & = Uwer & (®).
LEMMA 8.4. & 1is a finite set.

Proof. In light of the fact that &(a)c & (B) for acCp, a,
Be &', it is sufficient to establish the inequality *& (o) < 2n*** for all
ae Z'. Assume the contrary, *& (a) > 2n**+' for some e . & ’. Let

Cla) ~ (%, +++, 2,) and consider the sets A®* = {xe & (@) | there is a
simple R,-chain not intersecting C(a) from x to (Zc% )} Accord-

ing to Lemma 8.2 we have A*UA- = &(a) and m;ll+ nNa- = @.
Consequently either *4* > n'"*' or *A~ > n**'. For definiteness we
will assume *A* > n**', Now consider the set A* U {x} and the
restriction R of the relation R, to A* U {x,}. It follows from the
definition of A* that xRy for all @, ye A. Thus by Lemma 4.3
A+ U {x,} must contain a simple R-chain C, =y, ---, y, of length at
least 4n + 1. By considering an R-chain C, from x, to y, we can
obtain a simple R-chain C, (made up of parts of C, and C,) of length
at least 2n + 1 and starting from =z,. C, is actually an R,-chain
disjoint from C(a) and by combining C, and C(«) and using Lemma
4.4 we find that sp, x, = 2. But this contradicts the maximality of
C(c). This completes the proof.

DEFINITION 8.5. Set .# = X — &. Note that C(a)c .z all
aec 7', Since X is infinite and & is finite, .# must be infinite.
Pick two distinct elements # and v of _# and let them be fixed in
all discussions of the noncircular case. Set & ={ae F'|u,veal.
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For each ae© set «(a) = C(a) U .~ (a). By a presentation for
' (a) (notation: = (@) ~ (T, &,y *+ ) Ty Tmyy)) We will mean an m + 2
tuple (%, %, *+*, Z,, X,.,) such that C(a) ~ (), ---, 2,), %, and 2,.,
are as is Definition 6.4 and if u =2, and v = x; then 7 <j. It is
clear from Lemma 6.2 that for each ac © there is exactly one pre-
sentation for = (a).

DEFINITION 8.6. If ac© and we«’(«) then set I (x) = the
unique ¢ such that = (a) ~ (2, -+, ®,s,) and & = a; with 0 < ¢ < m + 1.

DErFINITION 8.7. We define a relation < on . as follows. If
2, ye€. .~ pick any awe © such that x, y e« and set « < y if and only
if I(x) < I(y). We proceed with the obvious task of showing
that < is well defined.

LeEmMmA 8.8. For x,ye. 7 x <y s well defined.

Proof. Let a,Be < and w,yca, and x,y<cB. By considering
the pairs o, « U S and « U B, B we can reduce the proof to the case
where w < 8. Then using induction we can further reduce the proof
to the case ac B, 8 — a={z}. In the proof of Lemma 7.1 we
worked out a presentation for C(8) in terms of one for C(«) in each
of various cases. The present lemma follows by a direct inspection
of these related presentations.

Now that we have seen that the relation x < y is independent
of the a used in its definition it is easy to see that < is a total
(linear) ordering of .. We now take up the problem of extend-
ing < in a natural way to a partial ordering on X.

DEFINITION 8.9. Let a e« and Z7(Q) ~ (% -+, Tpo). Set
& N a) = {x € &' ()| there is a simple R,-chain not intersecting
C(a) from =z to @;’”‘1 . From Lemma 8.2 we have «(a)=
SH(a)U & (a) and < ()N & (a) = @. (see Figure b.)

From the analysis in the proof of Lemma 7.1 and the idea in
the proof of Lemma 2.6 we can draw the following conclusion.

LemMmA 8.10. If a,Fec @ and aC B then & (@) &+(B) and
& () C &~ (B).

DEFINITION 8.11. Set &+

Ueer & @) and &~ = .., & ().
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It follows from & (a) = (@)U & (a) for ac < that & =
g+t U & ~. Also, it is not hard to show from & (@) N & () = @& for
ac < and Lemma 8.10 that &+ N &~ = @.

DEFINITION 8.12. Extend the definition of < by setting &'~ <
A < £F, ie., by setting y <z, <z and y <=z for all ye &,
xe.  and ze & *. The resulting relation is still antisymmetric and
transitive (i.e., a partial ordering) and of course is a total ordering
when restricted to _#.

9. In this section we relate the ordering < to the topology of
X. This leads to a complete determination of all the R,)s, aec &,
in terms of <, and sharp bounds on the size of the sets &+ and & .

LEMMA 9.1. If xe. 7 then {yly <} and {y|y >z} are open
subsets of X.

Proof. Consider first the case where there exists s, te .~ such
that s <x <t. Let ae & be such that s, x, tca. Set B8 = {s, x, t}.
Since R, = R it is easy to calculate E,. The important relation is
that sR;t. This means that there are disjoint open subsets U and V
of X such that UUV =X — {x}, seU, and te V. We will show
that U= {y|y <w} and V ={y|y >«}. First suppose yec X and
y <z Let vyeZ be such that y,s,xev. Since y <2 we must
have either ye Z(v) and I(y) < I(x) or ye (7). Also because
se # =N, and s < a2 we have sec=(v) and I(s) < I(x).
We now have a clear enough picture of R, to partially calculate
R, = R where 0 = {y, s, z}. We get yR,s. This means that y cannot
be separated from sin (X — o) U {y, s} = X — {x}. This implies y € U.
We have thus shown that {y|y < z}cU. Similarly {yly >2}jcV
and consequently {y|y < «} = U and {y|ly > o} = V as we wished to
show.

Now we will consider the case where x is either an initial or
terminal element of _#. For definiteness we will assume that x is
an initial element, i.e., y = « for all ye_. Since X is infinite and
& is finite we must have a te_»~ such that z <¢ If {y|ly <z} =
@ then {y|y <=z} and {y|y > 2} = X — {x} are clearly open. So
assuime {y|y < x} # @. Next note that {yly <z} =&-. Let y <=z
and consider v = {y, %, t}. Let o« e & be such that v+ C«a, and &~ («).
Then since z,tc._#Z we have @, te (@) ~ (¥, ***, Tymss)-

Next, from Ry, = RY it follows that yRjt. Thus there exist
disjoint open sets U, and V, such that U, UV, = X — {«}, ye U, and
te V,. As in the first case above we have {z|z > 2}CV,. Set U=
U,.--U, and V = N),..-V,. Then we have {z|z <2} =&~ c U and
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{z]z >ax}cV. Thus {#]2<2}=U and {#|2z>2a} =V and because
¢~ is finite U and V are open. This completes the proof.

LeMMA 9.2. If _ 2 contains a minimum element then &~ =
. Similarly, if .2 contains a maximum element then & = .

Proof. Supposexe. 2 andx <y forallye_~ Then {y|ly<a}=
¢~ is an open set. &~ is also finite and thus closed. (X is a

T -space.) But this implies X is disconnected unless «“— = ¢. Thus
@~ = @ as we wish to show. The second statement follows similarly.
LEMMA 9.3. Let aec < and & (a) ~ (X *++, pr).  Then

xe s (o) implies xRz, and xe: (@) tmplies wx,. R.x. (see
Figure 6.)

Figure 6

Proof. Suppose x¢ () and zR.x,. Since in general xe £ ()
implies xR,y for all ye (2 (@)U & *(a) — {x,} there is no R,-chain
from % to x, which does not intersect ¢ () — {x}. Thus aRlz,
where @ = ¢ ~(a) U {x,}. Therefore there are disjoint open sets U and V'
such that UUV =X — (¢ (a) — {x}), xe U and 2,e V.

We now claim that .2 cVor .2 CU. Let t,yecM. Set 5=
a U {t,y). We must have t, y € z°(8) and consequently there is an R,
chain from y to @, which does not intersect ¢ (8) &~ (a). Set v =
(&~ (a) — {z}) U {t,, v} and observe that t,R,y. Thus x, cannot be
separated from y in X — (¢ ~(«) — {x}) and so t,ye V or t,ye U.
This shows that _Z U & +*cV or _# C U as claimed.

Now from .2 cV it follows that Uc 2. Thus U would be a
nonempty open finite set which clearly contradicts the connectedness
of X. Similarly, .2 c U leads to a contradiction. Therefore xR, x,
as we wished to show. The second statement of the lemma follows
similarly.

LeMMA 9.4. If aew and z,yce & (@) or z,ye & (a) then
xR,y. (see Figure 7.)
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Figure 7

Proof. Let ac% and x,yc &~(a), and Z(q) ~ (T, ***) Tmsr)-
According to Lemma 9.2 _# cannot contain a minimum element.
Thus there is a ze€_# such that z <, Set 8= aU({z} and note
that ze Z(B), & () & ~(B), and & *(a)c & +(B). It follows that
Z(B)cZ (@) U{z}) and since z <, <t for all te Z (@) we must
have I(2) < I,(t) for all teZ(B8). Thus z =y, where Z(B) ~
(Yo ***s Yp+1)» Now from Lemma 9.3 we have xR,z and yR:z. It
follows immediately that xR,y. The case where z, y ¢ & *(a) is com-
pletely analogous. This completes the proof.

LEMMA 9.5. R, for aec S 1s completely determined by <.
In fact for z,yea, xRy if and only if x + y and there does not
exist @ zea such that either x < z<y or y <z <z (see Figure8.)

Q
o+

A

cooow
O OO0

Figure 8

Proof. First consider an ae < such that @~ = £~ (a) and
#+ =& *(a). We have a complete description of R,. Indeed, « is
the disjoint union of ¥ -(a), Z(a) and & +(a). For z, yca we have
xR,y if and only if 2 s y and either (1) z, y€ & (a), (2) 2, y € & (),
3) 2, ye z (@) and | I(x) — I(y)| = 1 (Lemma 6.5), (4) x,¢ {x, y} and
{e, y} N &~ (a) # @ where Z(a) ~ (X *++, Tuyy)y OF (B) T,y € {2, Y}
and {z, y} N & () # .

It follows from &~ = @ —(a) and &+ = & *(a) that Z(a)c 4
Now recalling the definition of < (Definitions 8.7 and 8.12) we see
that the lemma holds for a.

Next consider an arbitrary Se.#. Pick an ae £ such that
- =& (a), =& (@) and BCa. The lemma now follows for
B from the equation R, = R:.

LEMMA 9.6. ¥% < n, *&+* < n and *&~ < n.

Proof. We will rely heavily on the visual method introduced
in (3.5). Consider the claim *% < n». Suppose ** =n + 1. Set
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o

~=N and *&* =M. Let ae% such that &~ = £~ (a) and
t = Z*a). Let

Q0

EZ(“) ~ (ﬂ'}o, Lyy =0y xm+1) .

We know that m = 6n + 1 (Corollary 5.2). Consider the » marker
placed on the “dots” «, @, ---, %, in their natural order. We wish
to rearrange them into an arbitrary permutation of this original
placement through allowable changes. (see 3.5.) It is obviously
sufficient to show how to interchange an arbitrary pair of markers.
Let the markers be called m,, m, etc. Then at the start m, is on
X, M, is on x, etc. We wish to interchange the positions of m; and
m; where ¢ < j. We distinguish three cases. Case 1. 7 < N, Case
2. n—M< . Case3. 1< Nand n — M < j. There are no other
cases since N + M > n. In either Case 1 or Case 2 one simply uses
the dots in &~ or &* to perform the desired interchange. The
moves are very similar to those in Lemma 4.2 and will be left to
the reader. :

Now for Case 3. Since N+ M =*%% > n + 1 there must be a
k<N and n — M < k. Using Cases 1 and 2 on the pairs m,, m,
and m;, m; and m,, m; in that order one can interchange m; and m;.
Thus the markers can be rearranged into an arbitrary permutation
of their original placement through allowable changes. But this
contradicts Lemma 3.9. Thus % < n as we wished to show. The
inequalities &+ < n and *&' < n follow from the same considerations
as in Cases 1 and 2 above.

LEMMA 9.7. *&— %=1 and *&+ +# 1.

Proof. Suppose &~ = {y}. Pick an ¢ e & such that &~ = &~ («)
and &+ = & *(a). It then follows from Lemma 9.5 that yR,x, holds only
for xe &~ U {x,} where Z(@) ~ (%y, *++, Tpyy). Since then spy (2,) = 2
we must have x,e€ @ (a) which contradicts the definition of x,. Thus
%~ cannot be a singleton, i.e., ¥&~ = 1. & * == 1 follows analogously.

10. In this section we will determine all the connected subsets
of X.

LEMMA 10.1. If x,ye _ then the sets

tla , A NAt|t

VAN VANVANR AN
<
V IV ACIA

AN A CTIA
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and _7Z are conmected. Furthermore, any connected subset of _#
is of one of the above forms.

Proof. We will show that A = {¢|x < ¢t < y} is connected. The
other cases are very similar and so will be left to the reader. Suppose
A is not connected, that is suppose U and V are open subsets of X
such that UUVDA4, UNVnNdA=9g, UNA+ @ and VNA=Q.
Let acUNA and be VN A. We may assume without loss of
generality that a <b. So we have x < a <b < y. Set

U =Un{t|t<b)ult|t<a)

and V' =(Vn{t|t>a}) U{t|t >b}. Then it is easy to see that U’
and V'’ are disjoint nonempty open sets whose union is all of X.
But this contradicts the connectivity of X. Thus A is connected.

Next we will show that if A is a connected subset of _# then
A is of one of the above forms. First we need to observe that
Lemma 9.1 and the connectedness of _# (proved in the above para-
graph) imply that if S is a subset of _# with an upper bound a in
.7 then S has a least upper bound b (notation: b = lubS). For if
S had no least upper bound then S could not have a maximum
element and so U = U,.s{te . Z |t < s} and

V = Uc an upper bound for s in «ff{t € '-/'/// | 4 < t}

would be two disjoint nonempty open sets such that UUV = _~Z.
But this contradicts the connectedness of _#. Similarly each subset
of _# with a lower bound has a greatest lower bound (glb).

Now A may or may not have a lower or upper bound in _# and
should glb A or lub A exist, these points may or may not be elements
of A. These various possibilities lead directly to the various forms
given above. We will consider one typical case. Suppose A has an
upper bound but no lower bound and that x = lubA4ec A. We claim
that A= _zZNn{t|t<x}. Clearly Ac 2 N{t|t < x}. Next we will
show that . Z N{t|t<a}={te Z |t <z} A. Suppose ze¢._~ and
z < x. Suppose further that z¢ A. Because A has no lower bound
U={teA|t< =z} # @. Because v =lubA and

<, V={tcA|t>z2t+O.

Clearly U and V are disjoint open (in the relative topology of A)
subsets of A such that UU V = A. Thus A is not connected con-
tradicting our hypothesis. Therefore

A N{tIt<xlcAc . ZN{t|tZa).
Only the fate of x is left to be decided. But x € A by our hypothesis.
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Thus A = _Z N{t|t <2} as we wish to prove.

COROLLARY 10.2. If x, yeX then {t|z <t <uy}, {tle <t}
{t|t < 2} are connected. {t|x <t} and {t|t = x} are also connected
provided x e _#.

Proof. We will consider the set {t|¢ < 2} and leave the others
to the reader. It is sufficient to consider the nontrivial case where
Z-N{t|lt<a}+* @. Then ¢ &~ and = is not a minimum for _Z
(see Lemma 9.2). Thus {t|t<a}N._# +©. Now assume {t|t <}
is not connected and let U and V be disjoint nonempty open subsets
of {t|t < «} such that UUV = {t|¢t < «}. Then neither U nor V can
be completely contained in {¢|¢ < 2} — ({t|t < 2} N .#Z) = &~ because
%~ is a finite set and X is connected. Thus UN{t|t < a}nN . .Z) + @
and VN {tlt<axz}nN._#)+* @ and consequently {¢|t <<z} N ._# is not
connected. But {¢|t < 2} N _# is connected when 2 ¢ _# by Lemma
10.1 and if xe & " then {t|t <2} N ._#Z = _# and again is connected
by Lemma 10.1. Thus {¢|¢ < z} must be connected.

LEMMA 10.3. A is a connected subset of X if and only if A
1s of the form A = I — E where I is one of the sets listed in either
Lemma 10.1 or Corollary 10.2 or is X or is a singleton and E C &.

Proof. TFirst suppose A is a connected subset of X. If AN =
@ the desired conclusion follows from Lemma 10.1. So assume
AN # @. Consider the set B = AN _#. Consider the case where
B = @. Then Ac & and is thus a finite connected space. Since X
is a T,-space, A is also a T\,-space in its relative topology. Thus A
has the discrete topology and because A is connected it must be a
singleton. So the lemma holds in this case. Now assume B # Q.
If B= _« then the conclusion is obvious. So assume xze¢_# — B.
Then either {¢|t¢ <a}N A or {t|t > 2} N A is empty for otherwise 4
would be disconnected. For definiteness assume {t|t >2}N A= @.
Since we assumed at the outset that AN & # @ we must now have
ANE-+%= @. Set b =1lubB. Clearly B> {t|t < b} N .~ for other-
wise we could disconnect A. Therefore A = I — E where I is either
{t|t<b} or {t|t<b} and E = &~ — A. This proves the “only if”
part of the lemma.

Now assume A =1 — E where I is one of the sets listed in
either Lemma 10.1 or Corollary 10.2 or is X or is a singleton and
Ec. If I is a set listed in Lemma 10.1 then A =1 and thus
connected by Lemma 10.1. If I is a singleton I — & is a singleton
or the empty set and is thus connected. Consider a typical case
where I is a set listed in Corollary 10.2. Say I = {t|¢ < x} for some
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ze_ Suppose U and V are open sets such that UNVnNA4A-= @,
UnNnA+=o, VNA+# @, and UUV2DA. We may assume without
loss of generality that ze¢ U. Replacing U by Un{t|t<a} if
necessary we may assume U C{t|t < x}. Set

B=An_7Z =_7n{t|t<a}.

We have xe VN B so VNB» @. We also must have UNB # @
for otherwise Uc &~ and U would be a finite open subset of X
which is impossible. But this shows that B 1is disconnected con-
tradicting Lemma 10.1. Thus A is connected. The other cases can
be handled similarly. This completes the proof.

Since the connected subsets of X are determined by a finite
number of yes or no choices and at most two choices of points from
X we have the following corollary.

COROLLARY 10.4. The cardinality of the set of all connected
subsets of X equals the cardinality of X.

11. In this section we determine the number of components of
X™ —GD,, for all m = 2.

DEerINITION 11.1. Let 2 be a point of a topological space Y.
The quasicomponent of x is the set [x] = {y ¢ Y|y cannot be separated
from =x}.

LeMmA 11.2. Suppose *%— = N and *&+ = M. Then X™ — GD,,
has exactly m!/(N'M!) components provided m =2 and N + M < m.
If N+ M > m then X™ — GD,, is connected.

Proof. We will first investigate how the symmetric group S,
acts on the set @ of quasicomponents of X™ — GD,. It turns out
that @ is in one-to-one correspondence with the left cosets of a
certain subgroup G of S,. We then determine G completely and
calculate *@Q by *Q = *S,/*G. Finally, because the number of quasi-
components turns out to be finite, the quasicomponents of X" — GD,,
are in fact the components of X" — GD.,,.

If ye X™ set y, = the ¢ component of y, for 1 < ¢ < m. Then

Y = (Yy **+, Yn). For each ce S, (S, considered as the permutation
group of the set {1, ---, m}) and ye X™, define oy by setting (oy); =
Yo_s,» 1t follows that z(oy) = (ro)y for all 7,0eS, and yeX™

Clearly each o¢S, considered as a function from X™ into itself
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takes X™ - GD, into X™ — GD, and is a homeomorphism of
X™ — GD, with itself. Hence each o takes quasicomponents of
X™ — GD,, into quasicomponents of X™ — GD, and thus induces a
function 7(0): @ — Q. We have for each yc X™ — GD,, and c€ S,
the equation z7(o)([y]) = [oy].

Now let v, ¥;, -+, ¥. be m points of _7Z such that y, <y, < --- <
Yoo Set y=(y, -+, Yu) € X™ — GD,,. Consider the subgroup G of
S, consisting of all ¢S, such that z(o)[y] = [y]. It is easily seen
that w(o)[y] = 7 (z)[y] for o,7€ S, if and only if ¢ and 7 are in the
same left coset of G. Furthermore, according to Lemma 3.9 for
each ge @ there is some ce S, such that ¢ = n(0)[y]. (Lemma 3.9
is stated for the case where m = » but its proof does not use the
assumption that X" — GD, is disconnected and hold for any m = 2
in place of n.) Thus there is a one-to-one correspondence between
@ and the set of left cosets of G. Therefore *Q = *S,/*G.

We will now find G explicitly. We claim that G =G =
{6e8S,|o(@) =1 for N<i1<m— M, and o(i) < N for 7+ < N, and
o(it) >n — M for 1 >mn — M}. The argument used in Lemma 9.6,
Cases 1 and 2, show that G cG. We will now prove the reverse
inclusion. To this end, suppose ceS, — G. We will show that
w(o)[y] # [y], i.e., oySy (oy is separated from y in X™ — GD,).
Consider the sets U:{weX”—GDm[w.;<w,~ fori<Nandj>m— M,

and wi{i}wj for N<j<m— M and %{;}j} and V={weX"-GD,,|
either w; > w; for some 1 < N and j > m — M or w; > w; for some
1and j with N<j<m— M and 7 <j or w; < w; for some 7 and
Jj with N<j<m— M and %> j}. Using the fact that X is con-
nected and that _~ has no initial (terminal) point if &~ # (& # @)
it is not hard to see that U and V are open. They are obviously
disjoint and clearly ye U and oye V. It is only necessary now to
establish that UUV = X" —- GD, to show that oySy. So let
weX™—GD, and suppose wg¢ UU V. Then from we¢ U we can
conclude that w; < w; fails for an appropriate pair 4, j. Consider a
typical case: 1 < N and N<j<m — M. Since w¢ V we have that
w; < w; fails. Because _.7 is totally ordered and &~ < &+ we must
have w,, ;e &~ or w, w,e &*. We take the second case leaving
the first to the reader. Now since w¢ V, o, < w,; cannot hold for
anyk>m—M. Thusw,e&* forall k=m-M+1, m—M+2..-, m.
Combining this with w;, ;e &+ we see that we have M + 2 distinct
(we X™ — GD,,) elements in a set &+ of M elements. This is absurd.
Thus w¢ UU V is untenableand so UUV = X™ — GD,, as we wished
to show. Hence U and V separate y and oy and consequently oySy.
Therefore 0 ¢ G’ implies 0 ¢ G and this combined with G'C G shows
that G = G’ as claimed.



A CHARACTERIZATION OF THE CIRCLE AND INTERVAL 399

Now we can calculate *Q =S, /!G. *S, = m! and clearly *G = NIM]!.
Thus #*Q = m!/(N!M!) and because there are only a finite number of
quasicomponents, the quasicomponents coincide with the components
and thus the first statement of the lemma is proved. The proof of
the second statement is completely analogous to the proof of Lemma
9.6.

REMARK. It is not hard to show that the set U = [y].

12. The circular case. We will now consider the circular case.
That is, in this section we assume that <’ (@) = a for all aec 7 ".
Since « is R, connected (i.e., xR,y for all z, yc ) and $pg,® = 2 for
every xca it is clear that the network representing R, (i.e., the
network consisting of the points of « as vertices and having a line
segment between two points «, yea if and only if zR,y) is one
simple circular chain. (see Figure 9.) Choose a triplet (u, v, w) of

Figure 9

distinct points of X and let it be fixed from now on. (Recall that
X is infinite—see Lemma 8.1 and the remark that follows it.) Set
g ={ae F'|u,v,wea}. It is clear that for each ae & there is
a unique presentation (%, %, +--, Z,) of & (@) = @ such that z, = u
and if v=w2;, and w=2; then 7<j. We change our notation
slightly and now write a« ~ (%, --+, ,) only for the distinguished
presentation (,, ---, x,,) mentioned above. Next, let e & and z e «,
and a ~ (x,, ---, Z,). Set I,(x) = the unique 7 such that z = z;.

DEFINITION 12.1. Let x,ye X and pick an acZ such that
z,yea. Set x <y if and only if I(x) < I.(y). We need to show
that © < y is well defined, i.e., does not depend on choice of a.

LEmmA 12.2. If z,ye X, a,B8e¢ < and xz, yca N B then I (x) <
I(y) if and only if Iy(x) < I(y).

Proof. As in Lemma 8.8 it is sufficient to consider the case
where 8 — a = {#} and « c S. From R, = R; it follows that the R,
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network is obtained from the R, network by removing the link between
x; and 2;,, and adding the vertex z along with a link from «; to z and
one from z to «;,,. It is now clear that I,(x) < I(y) if and only if
Iy(x) < I(y). This completes the proof.

It is clear that < is a total order on X.

LEMMA 12.3. Ifa,beX and a <b then A= {r|a <2z < b} and
B={x|x<a or b<a} are open subsets of X.

Proof. If either A= @ or B = ¢ then the other set equals
X — {a, b} and consequently both A and B would be open. So we
may assume there is a cc A and deB. Let aeZ be such that
a,b,¢c,dea. It is clear from the definition of < that «¢ and b
separate ¢ and d in the R, network. That is in going around « we would
come to a then ¢ then b then d then a. It follows that c¢Rjd where
v = {a, b, ¢, d}. Consequently, there exists disjoint open sets U and
V such that ceU, deV and UUV = X — {a, b}. We claim that
U=A and V=B. Let xcA. Choose a BSeZ such that ¢ =
{a,b,¢,2}cB. From c¢,xzeA it follows that I(a) < Ii(c), I(z) <
I,(b). Consequently c¢R,x and so ¢ cannot be separated from z in
X —{a,b}. Thus ze U. This shows that Ac U. Similarly BcV
and it follows that U= A and V = B as claimed. Hence A and B
are open and the proof is complete.

LEMMA 12.4. Let a,be X and a <b. The following sets are
nonempty and connected:

b’, ©|x Lz or b
| |

Proof. Consider the sets A = {z|a < 2 < b} and B = {x|x<a or
b < a}. We will show that A + @. Suppose A = @. Then B+ O
for otherwise X = {a, b} contradicting the fact that X is infinite.
Let ce B and assume ¢ > b. The case where ¢ < a can be handled
similarly. Consider U= {z|la <2 <¢) and V={x|z<b or x> c}.
The sets U and V are open by Lemma 12.3 and we have UUV =
X —{c}. Also UNVcA=@, acV and beU. By considering an
ac % such that v = {a, b, ¢} C @ we see that aR,b and consequently
a cannot be separated from b in X — {c¢}. This is a contradiction.
Thus A +# @. Similarly we must have B % @. The other sets

x|a zr, {x|x+-a}.

2

ASASE /A AN
AN A CIA

ASASE /A AN
A A A A
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mentioned in the lemma are nonempty because they contain either
A or B.

We will now show A is connected. Suppose W and Z are two
open subsets of X such that WNZNA=0, WNAdA+0,ZNA+* Q,
WUZD>A. Let de WNA and ee ZN A and we may assume with-
out loss of generality that a < d <e<b. Let feB. We assume
f<a. The case f>0b can be handled similarly. Now set W, =
(Wnixla<e<eh)U{x|f<ax<d} and

Zi=ZNxld<ae<bhU{zle<z or < f}.
Then W, and Z, are open in X,
W.nzZcwnzZn{zld<e<efCcWNZNA=@,

de W,ecZ, and W, U Z, = X — {f}. Now by considering a Se¢ %
such that 6 = {f, d, ¢} © B we see that dR,e and so d cannot be separated
from ¢ in X — {f}. We have reached a contradiction. Thus A is
connected. A similar argument shows that each of the other sets
mentioned in the lemma are connected. This completes the proof.

The proofs of Lemma 10.1 and Corollary 10.4 are easily adapted
to prove the following lemma and corollary.

LEmMmA 12.5. If C is a connected subset of X then either C is
a singleton or C = @, X or C is of the form of one of the sets listed
wn Lemma 12.4.

COROLLARY 12.6. The cardinality of the set of all connected
subsets of X s equal to the cardinality of X.

Lemma 12.7. R, for ae & s completely determined by <.
In fact, for x,yea, x <1y the relation xR,y holds if and only if
x#=y and there does mnot exists z and t elements of « such that
< z<y, and either t < x or y < t.

Proof. The conclusion is obvious for ae 2. The conclusion
follows for an arbitrary 8e & by picking an ae & such that Bc «a
and then calculating R; by R, = R%.

LEmMA 12.8. X™ — GD,, has exactly (m — 1)! components for
all m = 2.

Proof. We may proceed exactly as in the proof of Lemma 11.2
except for the determination of G. So we now address ourselves to
the determination of G for the circular case.
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First we set up a little machinery. For each o¢ S, set
A(O.) = {(xl, ey, xm) € Xm _— G.Dm I xa—l(l) < xa—l(g) < A < xg_](m‘;} .

Let 7 be the element of S,, givenby z(¢) =4+ 1for =1, ---,m — 1
and t(m) = 1. Let H be the subgroup of S, generated by 7, i.e.,
H = {7 .-+, 7™ = identity}. Now set U= U,.z4(0) and V =
U, zA(0).

Now we claim that G = H. The inclusion HC G follows easily
from 3.5. To see the reverse inclusion we will separate y (see proof
of Lemma 11.2) from oy for each 0 ¢ H. We claim that the sets U
and V do separate y from all oy with 0 ¢ H. Clearly ye U and oye V
for all ¢ H. It is also easy to see that UNV =@ and UUV =
X™ —GD,,. Finally using Lemmas 12.3 and 12.4 one can readily estab-
lish that each point of U or V is an interior point of U or V respectively
and thus U and V are open. Therefore U and V produce the
desired separation as claimed. Consequently G H and so G = H as
claimed. It only remains for us to note that *G = m and so *Q =
£SL/FG = ml/m = (m — 1)L,

13. In this section and all the following sections we do not
assume a priori that X is circular or noncircular.

This section is devoted to presenting simple characterizations of
the circular case, the noncircular case, .7, &, £+, &, and {re X |z
is either a terminal or initial point of _# under <}. (The sets
A, &, &t, and &~ are of course defined only in the noncircular
case.) We also delineate here the nature and number of cut points
of X.

LEMMA 13.1. X 1s citrcular or noncircular depending respectively
on whether X has none or at least one cut point.

Proof. This lemma follows readily from Lemmas 9.1 and 12.4
and the fact _# is infinite. This latter fact comes from the obser-

vation that X is infinite, & is finite and .7 = X — &.

Noration 13.2. Let _¢~ stand for the set of noncut points of
X and T = {x|x is either a terminal or initial point of _#~ under <}.

LEMMA 13.3. v = & U T provided X 1s moncircular.
Proof. This follows from Lemmas 9.1, 9.2 and 10.3.

We now wish to characterize the sets &+, &~ and T.
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LeEMMA 13.4. Suppose that x s a cut point of X. Let U and
V be nonempty disjoint open sets such that UUV = X — {x}. Set

- Un.yv +f UN . s not a singleton
B %) of UN . v is a singleton

Define V similarly. Then
@ (-, e ={0,V)and
®) T={P|{P}=Un_+ or {P}=Vn_s)}.

Proof. It follows from Lemma 10.3 that
(U, V= {{t|t <a}, {t]t > ]}

Now the conclusion follows easily from Definition 8.12 and Lemmas
13.3, 9.2 and 9.7.

With the above characterizations of —, @+ and T in mind, the
formulas # =X—- &, &£ =_4" —1T, and & = £~ U &+ provide
the desired characterizations of _# and .

In the following theorem we state some facts about the cut
points of X which follow readily from the theory we have developed
but do not involve that theory in their statement.

THEOREM 13.5. Either X has no cut points or all points of X
except for at most m points are cut points. If x is a cut point
then X — {x} has exactly two components. If X has mo cut points
and S 1s a subset of X with exactly m elements, m = 1 then X — S
has exactly m components. The set of cut points of X s a con-
nected Hausdorff space.

Proof. The first statement follows easily from Lemmas 13.1,
13.3, 9.2, and 9.6. The second follows from Lemmas 13.3, 9.1, and
10.3. The third conclusion follows from Lemmas 13.1, 12.3, and
12.4. The last statement follows from Lemmas 13.3 and 10.3 (for
the connectedness) and Lemma 9.1 (for being Hausdorff).

14. This section is concerned with the concept of local con-
nectivity at a point. Recall that a topological space Y is locally
connected at a point p if for each open set U containing p there is
a connected open set V such that pe VcU. A space is locally
connected if it is locally connected at each of its points.

If < is a partial ordering of a set Y then we distinguish two
topologies on Y induced by <. The first is the linear topology,
denoted by <', and has as a sub-base the sets {ye Y|y < b} and
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{ye Y|y > b} where b is an arbitrary element of Y. The second is
the circular topology, denoted by <°, and has as a base the sets
{yeY|a<y<bland {ye Y|y <a or b<y} where a and b are arbitrary
elements of Y.

Let = be a topology for ¥ and pe Y. We will mean by t at p
the neighborhood system of ¢ at p, i.e., the set {A|peint A}). Let ¢
be the given (original) topology of X.

LEMMA 14.1. If X s circular then X 1s locally connected at p
aof and only if T at p = <° at p. If X is moncircular then X 1is
locally connected at pe 7 if and only if T at p = <' at p.

Proof. The key observation is that most intervals with a closed
condition at one or both ends, i.e., sets like {t|a < ¢ < b} are mot
open. We will consider an example to display the technique. Suppose
X is noncircular and a,be_#, a < b, a is not an initial point of _/~
and A = {t|ja £t <b}. We will show that A is not open. Assume
the contrary, A is open. Then U= {t|t<a} and V=AU {t|a < &}
are disjoint nonempty open sets such that UUV = X. This is
impossible since X is connected and so 4 is not open. The theorem
now follows easily in the circular case from Lemmas 12.3 and 12.5.
In the noncircular case we make the observation that the sets
{xle <a}, {z|z > a}, and {x|a < 2 < b} where a and b are arbitrary
elements of X form a base for <' and then the theorem follows
readily from Lemmas 9.1, 9.2, and 10.3.

LEMMA 14.2. Suppose X is noncircular and 2z, ye & (£*). If
there are disjoint open sets U and V such that xc U and yeV
then X 1s mot locally conmected at z.

Proof. Let ce _~ and set U' = UnN{t|t<e¢}. Suppose A is a
connected open set such that xe Ac U’. Then from Lemma 10.3
and AN &~ + @ we conclude that A =1 — E where [ = {t|t < a}
or I = {t|t <a} for some ac _~ and EC &. Now since

uUnvcuonvs=09o

we have V' = VNn{tit<alc®~. Thus V’ is a finite nonempty
(ye V') open subset of X which contradicts the connectedness of X.
Therefore no such A exists and so X is not locally connected at z.

CouNTER ExAMPLE 14.3. The following example shows that the
Hausdorff type of separation assumed in Lemma 14.2 cannot be
dropped. Let X = {—1} U [0, 1] with the topology generated by all
sets of the form {t|t < x} with 2 > 0, and {¢|t < 2} — {0} with « > 0,
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and {¢t|¢ > «} with x arbitrary. Then X is T), connected, X" — GD,
is disconnected for n > 2, {—1, 0} &~ (provided we make the right
choice in ordering X) but X is locally connected at —1.

THEOREM 14.4. If X s locally connected and Hausdorff then
there is a total ordering < of X such that

(a) if X has any cut points then all points of X are cut points
except an initial or terminal point of X under < (which if one of
both exist are mot cut points), and the topology of X = <', and

d) if X has mo cut points then the topology of X = <°.

Proof. This theorem follows readily from Lemmas 14.1, 14.2,
9.7, 13.3, and 13.1.

15. In this section we consider the concept of local compactness
and obtain results very analogous to those of §14. Let ¢ be the
given topology of X.

LEMMA 15.1. If X s circular and locally compact at p then T
at p= <°at p. If X is noncircular and locally compact at pe _#
then = at p = <' at p. (Note that the implications in Lemma 15.1
are only one way in contrast to the two way implications of Lemma
14.1.)

Proof. Consider the case where X is noncircular and locally
compact at pe _# and p is not an initial or terminal point of _#
Let C be a compact subset of X such that peinterior of C = int C.
We wish to show that 7 at p = <! at p. The inclusion <' at pC 7
at p follows immediately from Lemma 9.1. Now let Ber at p.
Then peint B. We must show that there exists a, be X such that
pe{tja <t < blcCB.

Consider the open set U =intCNintB. Then pe U and it is
sufficient to show that pe{t|a < ¢t < b} U for some a, bec X.

First we claim that either {t|z2 <t < p}NU= @ for all z< p
or {t|p<t<y}nNU= @ for all ¥y > p. Suppose this were not so.
Then we would have a z < pand a ¥ > p such that {t|z<t<y}NU =
{P}. We now have a finite open subset of X which is impossible.
Thus the claim is established.

For definiteness we will assume {t|{z2<¢<p}NU =+ @ for all
2 < p. Wenow claim that {¢|z < t < p} c U for some z < p. Suppose
the contrary. Consider the open covering of C consisting of all the
sets {t|t <z} with 2 <p and the set UU{¢t|p <t}. Since C is
compact there is a finite subcovering and we thus conclude that there
is a 2z, < p such that {t|z, =t <N CcU. By our assumption of
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the contrary to the claim we know that there must be a z, such
that 2, <2, < p and 2 ¢ U. Next, there must be a 2, such that
2, < 2 < p and z,€ U. Finally there is a z, such that z, < z, < p and
z,¢ U. It follows that V={t|z, 2tZ2z}NC={|st<2)NU=
{t|z, =t <z}nN U. Thus V is a nonempty open subset of X which
does not equal X (p¢ V). We now assert that V is also closed.
To see this, first note that since 2z, < 2 < 2, < p we must have
2y2e 7. Thus{t|z, <t<z}=X—({t|t<z}U{t|t>=z}) showing that
{t|z, <t <z} is closed. V is consequently a closed subset of C and
is therefore compact. It follows from Theorem 13.5 that {t |z, < t < 23}
is a Hausdorff space and thus V is a closed subset of {t|z, <t < 2.}
in the relative topology of {t|z <t < z}. But, since {t|z <t < 23}
is closed in X, V must be closed in X as we asserted. We have
thus contradicted the connectedness of X. Therefore {t|z <t < p}cU
for some z < p as claimed above. Let a be such a z.

Next we claim that {t|p<t<y}NU== @ forall y > p. Assume
the contrary. Then {t|p<t<y}N U= @ for some y, > p. Now
consider the set A ={t|la <t <y} NU={t|a <t =<p}. Aisclearly
open. Consequently Z = {t|la <tZplU{t|t <p} and W = {t|t > p}
are nonempty (pe Z, y,e¢ W) disjoint open sets such that ZU W =
X. This is impossible and thus {t|p < t<y}NU =+ @ for all y > p
as claimed.

Now we claim that {t|p <t<y}cU for some y > p. The
proof of this claim is completely analogous to the proof of the second
claim above and so will be left to the reader. Let b be such a .
We then have peft|a <t <blcUcint B as desired.

The cases where X is circular or p is an initial or terminal point
of _# can be handled in a manner very similar to the above argu-
ment and so will be left to the reader. This completes the proof.

LEMMA 15.2. Suppose X 1is moncircular and p, g€ X (£7). If
there are disjoint open sets A and B such that pc A and qe B then
X 1s mot locally compact at p.

Proof. Suppose C is a compact set such that peint C. Consider
the open set U = ANint C. In order to avoid the absurdity of a non-
empty finite open subset of X we must admit that {t|z <t < p}NU #
@ for all z < p. Next it follows, just as in the proof of the second
claim in the proof of Lemma 15.1, that {t{|a < t < p}c U A for some
a < p. Similarly there must be an o/ < ¢ such that {¢t|a’ < t < ¢} C B.
Lemma 9.2 implies that _# has no maximum and hence

o ={tla<t<pnitle <t<qgcCANB=Q
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which is absurd. Therefore no such C exists which shows that X
is not locally compact at p.

THEOREM 15.3. If X is locally compact and Hausdorff them X
1s locally connected and so the conclusions of Theorem 14.4 hold.

Proof. This follows easily from Lemmas 15.2, 15.1, 14.1, and
14.4 used in that order.

16. In this section we prove the major results of the paper.
They are obtained from the preceding results with the help of the
following well known result. We give a brief proof since our state-
ment of it may not coincide exactly with the statements of it in the
standard references.

LEMMA 16.1. Let < be a simple order on a set S. Let S have
the topology <' and suppose S 1is connected, D 1is a countable dense
subset of S, and a and b are minimum and maximum elements
of S respectively, a %= b. Then there is an order preserving
homeomorphism of S with the unit interval I = [0, 1].

Proof. Observe first that there is a one-to-one order preserving
function f from D’ = D — {a, b} onto D” = diatic rationals in (0, 1).
(see Hocking and Young [1], Th. 2-22.) Next observe that the con-
nectedness of S implies that S has the least upper bound property
(see the proof of Lemma 10.1). Thus we can define the order pre-
serving functions @: S—1I and +: I— S by

P = lub fly) () = lub £(s) .

y<w s<t

It is easy to verify that + is the inverse of ¢ and thus ¢ is one-to-
one and onto. Since the topologies of S and I are determined by
their respective orders, ¢ must be a homeomorphism.

DEFINITION 16.2 We will say that a topological space S is
locally separable at a point pe S provided there is a neighborhood
U of p and a countable set D which is dense in U. If S is locally
separable at each of its points then S is locally separable.

THEOREM 16.3. If X 1s Hausdorff, locally connected (or locally
compact), and locally separable then X is locally homeomorphic
to R* ={tecR|t =0} (i.e., X is a l-dimensional manifold with
boundary).
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Proof. First note that the locally compact case reduces to the
locally connected case by Theorem 15.3. There are four cases which
depend upon X and the point p in question: Case 1, X circular and
p the initial point u of <; Case 2, X circular and p not the initial
point of X; Case 3, X noncircular and p either an initial or terminal
point of _#; Case 4, X noncircular and p not an initial or terminal
point of _Z In the last three cases p has a closed neighborhood of
the form S = {¢t|a < t < b} with the property that < is a simple order
on S and S has a countable dense subset. In the first case we can
adjust < in an obvious way so that the preceding statement holds
for p». In each case it follows immediately from either Lemma 12.5
or Lemma 10.1 that S is connected. Besides, by Theorem 14.4 S has
the <! topology. The desired conclusion now follows from Lemma 16.1.

REMARK. Note that the local homeomorphism in the above proof
also preserves the order (adjusted order in Case 1).

COROLLARY 16.4. Under the hypothesis of Theorem 16.3, X must
be locally compact.

THEOREM 16.5. If X is Hausdorff, locally connected (or locally
compact) and separable then X is homeomorphic to one of the following
spaces:

(a) the closed interval [0, 1],

(b) the open interval (0, 1),

(¢) the half open, half closed interval (0, 1],

(d) the circle, {(x, y) e R*|a* + o* = 1}.

Proof. This is a corollary to the proofs of Lemma 16.1 and
Theorem 16.3. If D is a countable dense subset of X then DN S is
a countable dense subset of S if S is as in Theorem 16.3. Now by
lining up D” (D” = D — possible initial or terminal points) with the
diatic rationals in (0, 1) once and for all, the local homeomorphism
we get in Theorem 16.3 will be all coherent. (In fact we need only
consider at most an appropriately chosen pair of sets like S.) The
four possibilities (a)—(d) are determined by whether X is noncircular
or circular and if noncircular whether X has 0, 1, or 2 end points.

THEOREM 16.6. If X 1is a compact metric space them X 1is
homeomorphic to either the closed interval [0,1] or the circle
{(x, y) e R*|2* + o* = 1}.

Proof. Since a compact metric space is separable and locally
compact the present theorem follows immediately from Theorem 16.5.
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LeMMA 16.7. If either X 1is circular or X is noncircular and
A4 has an initial and a terminal point then local compactness and
local separability for X implies compactness and separability.

Proof. Assume X is noncircular, locally compact and locally
separable, ¢ =min .#Z = min X, b =max _# =max X. Let A be
the set of all x such that {y|a <y < x} is compact and separable.
We will show that A is nonempty, open and closed.

First of all ae A so A is nonempty. Secondly, by Theorem 16.3
the remark that follows we see that A is open (X is obviously
Hausdorff under the hypothesis). Finally, let x, € closure of A. Con-
sider a neighborhood of x, of the form S = {t|¢ <t < d} which is
order preservingly homeomorphic to [0, 1]. Since x,eclosure of A
there is some xzeANS. It then follows that {t|a <t <) =
{ftlast=<zlU{t|z =t <2} is a compact and separable set being
the union of two compact and separable sets. Thus z,€ A which
shows that A is closed.

Since X is connected A = X. Thus X = {t|e < ¢t < b} is compact
and separable. The circular case can be handled very similarly using
a point p as both a and b simultaneously. The details are left to
the reader.

THEOREM 16.8. If X is Hausdorff, locally compact and locally
separable and X has at least two moncut points them X 1s
homeomorphic to either the closed interval [0,1] or the circle
{@, ) ek | + y* = 1}

Proof. This follows immediately from Theorem 15.3, §13,
Lemma 16.7 and Theorem 16.5 used in that order.

17. In this section we will present an example of an X like we
have been studying and then show how this example is rather typical
of a large class of possible X'’s

The example is pictured in Figure 10. It is not hard to show

O’I |
Ol }O
o e
|

8«' /’O

Figure 10

that this space really is an example of an X with » = 10, and with
a proper choice of < we ave *%+* =4 and *%~ = 6. This space is
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clearly metric and separable and locally compact at points of _Z
The following theorem is a sort of converse to this example.

THEOREM 17.1. If X is metric, separable, and locally compact
at cut points and there are cut points then X can be embedded in
R:. In fact, X is homeomorphic to the union of a finite number of
points of R® with the graph of a continuous one-to-one map of (0, 1)
into R°.

Proof. First note that the set L of cut points of X is homeo-
morphic to (0, 1) by the general arguments presented in § 16, where
L = _# — possible end points. We will assume L = (0,1). Con-
sider R = R X C where C is the complex numbers. Let #¥&— = N,
tor = M, &~ ={e, -+, ey} and Et = {eyy, *++, eyin). Set & =
(0, exp2mi(j/(N + M))eR x C for 1=j< N+ M. Now for te R

set ¢+ = {3 =0 Finally define p: X— R’ = R x C by

ple;)) =€, for 1<j< N
N+M
) = 3, (1 —e7'd(t, e;))*€; + (¢, 0)

where d is the metric for X and

€= 1 min d(e;, e;) .
2 ik

The verification that ¢ is the desired homeomorphism is left to the
reader.

18. In this section we show how one of our fundamental
hypotheses may be weakened and draw from this a theorem on “con-
nectedness” in the deleted product X" — GD,.

DEeFINITION 18.1. We define the relation 7 in X" — GD, by
setting 7% for Z,yec X" — GD, if and only if 7= (y, +++, ¥,) =
(@1 * =y Tisyy Yjy Tjyry =+, &,) for some j where z = (x,, -+, 2,), and T
cannot be separated from 7 in

{@} > {aa} X X {oyn) X XX oy X e X {0 X" — GD,) .

We observe that the fundamental hypothesis of this paper that
(h): “X™ — GD, is not connected” can be replaced by the apparently
weaker hypothesis (h'): “z(T)y for some Z,yc X" — GD,” (see De-
finition 2.4 for 7). In fact hypothesis (k) was used only to prove



A CHARACTERIZATION OF THE CIRCLE AND INTERVAL 411

Lemma 3.10 and the proof of Lemma 3.10 essentially uses only
hypothesis (). We can now prove the following theorem.

THEOREM 18.2. If Y s a connected T,-space and T = (x,, +--, x,)
and ¥ = (Y, -+, ¥Y.) cannot be separated in Z =YY" — GD,(Y) then
Ty where GD,(Y) and T are the same as GD, and T above except
defined for Y imstead of X.

Proof. Assume zT’y. Then from above we know that all the
analysis of this paper holds for Y in place of X. In the proof of
Lemmas 11.2 and 12.8 we saw that the set of Ze Z such that z77%
coincided with the set of ZeZ such that £S,Z when ¥ was of the
form % = (x, %, -+, ,) with v, <z, <-.-- <2, and ;€. 7%, ©=
1, .-+, n, in the noncircular case. This can be seen to hold for any
TeZ Dby noting the following two facts. Fact 1: The proof of
Lemma 3.9 really shows that if #, 7€ Z then #Tow for some ce€S,.
Fact 2: For each g€ S, the map o: Z— Z preserves all the structure
(e.g., T,S,) for which we are concerned. It follows that ZS,7 a
contradiction. Thus ZT% as we wished to prove.

REMARK. Theorem 18.2 holds without the hypothesis that Y is
connected. The proof consists of reducing the general case to Theorem
18.2 by seeing how the partition of Y" induced by the partition of
Y into components behaves with respect to GD,(Y). The details are
left to the reader.
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