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A CHARACTERIZATION OF THE
CIRCLE AND INTERVAL

BENJAMIN HALPERN

Consider a connected Tx-space X. Take the Cartesian
product of X with itself n times (n ^ 2) and then remove the
generalized diagonal GDn = {(xlf , xn) e Xn \ Xι = xj for some
i Φ j} thus obtaining the deleted product Z = Xn - GDn. If Z
should be disconnected then a great deal can be said about X.
For example, if X is compact and metrizable, then X is homeo-
morphic to the closed interval [0,1] or to the circle C ={(x, y) €
R2 ] x2 + y1 = 1}. On the other hand, if it is only assumed (beyond
X being Ύx and connected and Z disconnected) that X is Haus-
dorff, locally connected and separable, then X must be homeo-
morphic to either (0,1), (0,1], [0,1] or C. In general, without any
assumptions beyond X being Tx and connected and Z disconnected
it is possible to define an order on X which is a total order when
restricted t o l ~ α certain finite set, and such that the order
topology is coarser (weaker, smaller) then the original topology
on X. Furthermore, all connected subsets of X and the com-
ponents of Xm — GDm for all m ^ 2 (m not necessarily equal to n)
are determined. In particular the number of components of
Xm - GDm is either (m - 1)! or ml /Nl Ml where 0^N,M<n,
N + M ^ m and each of these numbers is taken on for some
X satisfying our hypothesis. The "generalized" cut point
behavior of X is completely determined and an interesting
result is that either there are no cut points or all but at most
n points are cut points.

The analysis presupposes nothing but elementary concepts from
general topology. In order to facilitate references to preceding lemmas
and definitions a table of contents is included at the end.

1* Let X be a topological space. Set Xn = X x X x x X.
- y •*"

n times

We will denote by GDn (the generalized diagonal) the subset of Xn

consisting of all w-tuplets (xlf , xn) such that x{ — xί for some i Φ
i, 1 ^ i, 3 ^ n.

CONVENTION. Throughout this paper we will assume X is a con-
nected Trspace such that Xn-GDn is not connected where n is a
fixed integer greater than one.

DEFINITION 1.1. Let 7 be a topological space. Two points
x,yeY can be separated in Y if there exists disjoint open sets U,
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V such that xe U, yeV and UU V = Y. The open sets U and V
are said to separate x and y in Y.

DEFINITION 1.2. If R is a relation on a set S then the nega-
tive relation R' is defined by: for x, yeS, xR'y if and only if xRy
fails to hold.

In the following definition we introduce the central concept in
our analysis of X.

DEFINITION 1.3. Let JΓ be the collection of all finite subsets
of X. For a e J^ we define the relation Ra on a by xRay if and
only if x, yea, x Φ y, and x cannot be separated from y in
(X - a) U {x, y}.

Clearly Ra is symmetric and xR'ax for all xea.
We associate with a and Ra a network (which we also call Ra)

having the points of a as vertices and an edge between an x and
yea if and only if xRay (or equivalently yRax).

Our analysis consists of bringing into sharper and sharper focus
our picture of the Ra's. First we see how the connectedness of X
implies that each Ra is connected. Next, the disconnectedness of
X% — GDn is used to show that each vertex xeae J^ can have no
more than n edges (in Ra) connected to it. The preceding two facts
combine to show that there must be at least one long simple chain
in a provided a has sufficiently many elements. Then bringing in
the disconnectedness of Xn — GDn we see that except near the ends
of such a long chain, each vertex x in the chain has exactly two
edges (of Ra) connected to it which are of course the edges connect-
ing x to the preceding are following vertex in the chain. This in
turn enables us to distinguish (provided cardinality of a is sufficiently
large) a unique long chain C(a) such that each vertex in it has the
above property. The Ra's are sufficiently coherent for various a's
to make it possible to use the C(α:)?s to define a simple order < on
most of X. Those points left out we will refer to here as excep-
tional points. The exceptional points are shown to be small in number
(at most n) and clustered in two groups located at the ends of C(a).
The simple order < is then extended to a partial order on all of X
by putting one group of exceptional points > all other points and
the other group of exceptional points < all other points.

The relations Ra can now be determined quite easily from <.
In fact if x, ye a, xRay if and only if there does not exist %, zea
such that x < z < y or y < z < x. Meanwhile the topology is related
to < and all the connected subsets of X are determined (roughly
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just intervals). The exceptional points are shown to be basically
(there may be 1 or 2 exceptions) the noncut points in the case that
there are some cut points. The way in which Xm — GDm1 m ^ 1,
(m not necessarily equal to n) is disconnected is analyzed in terms
of the numbers N and M of points in the two groups of exceptional
points. We conclude that Xm — GDm has ml/(N\Ml) components.

The topology about the exceptional points (with possibly 1 or 2
exceptions) is shown to be necessarily not nice where nice means
either locally compact or locally connected. The topology about the
other points may or may not be nice but we prove that if it is nice
then the order topology induced by < agrees with the given topology
at the points in question (same neighborhood system). Furthermore
if separability is assumed (locally or globally) one can set up a
homeomorphism (locally or globally) with a connected subset of the
real line R. Combining these observations we prove our characteri-
zation of I = {x e R I 0 ^ x ^ 1} and C = {(x, y) e R x R \ x2 + y2 = 1}.

(Actually, there are two cases for the general shape of C(a).
The first is the one described above which leads to the final conclu-
sion X ~ I. In the other case C(a) is a closed chain (circular chain)
and in this case we finally conclude X ~ C.)

2* To simplify notation we will write x for the singleton {x}
when no confusion can arise.

L E M M A 2.1. Let α, / 3 e j ^ , βaa, a — β — [z], x,yeβ and

x Φ y. If xRβy and xRf

ay then xRaz and zRay.

Proof. Assume xRβy and xR'ay. We will show that xRaz.
Assume the contrary, xR'az. Set X' = (X — β) U {%, y} The relation
xRf

ay means that x can be separated from y in (X — a) U {x, y) —
X' — z and consequently there exist sets Xι and X2 open in X' — z
such that a; e Xίy ye X2, Xx Π X2 = ^, and Xx U X2 = X' — £. Since
X' — z is open in X, Xt and X2 are open in X. Similarly #i2̂ 2
implies the existence of open subsets of X, Yγ and F2 such that
xeYl9 ze Y2, r x n Γ2 - φ, and Γ ^ Γ ^ Γ - y. Setting X3 = z
and y3 — y we have two partitions of X', {X^ X2, X3} and {Y^ Y2, Y5}.
Their product partition {X̂  Π Yj} is displayed below along with some
relevant facts.

xe Yi zeYz y = Yz

2/6X2

xeXi

x2n

Φ

n Yi

Yl

X i Π

x2n

z

Y2 \

Y2

φ

y

Φ
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It is now apparent that x is separated from y in X' = (X — β) U {x, y)
by the open sets Xx Π Yi and X2 U Y29 a contradiction. Therefore
xRaz. It follows similarly that zRay.

DEFINITION 2.2. If i? is a relation on a set S such that xJ?'x
for all xeS, and Γ c S then R induces a relation Rτ on T as follows:
For x, y e T, xRτy if and only if x Φ y and there is a finite sequence
x0, xu x2, , xm e (S — T) U {x, y) such that x — x0, x^Rxi for 1 ̂  i ^ m
and α;m = #.

It is easy to verify that R = Rs and if Pc Γ c S then # p = (JSΓ)P.

LEMMA 2.3. If a, βe ^~ and βaa then Rβ = J? .̂

Proof. In light of the above observation it is sufficient to prove
the lemma under the added restriction that a — β is a singleton {#}.
Assume first that x, y e β and xRβy. Either xRay or xR'ay. In the
first case xRβ

ay follows immediately from Definition 2.2. If xR'ay
then Lemma 2.1 implies xRaz and zRay. Thus again from Definition
2.2, xRίy.

Now assume x, y e β and xRβ

ay. Then there is a finite sequence
xQ, x19 , xm G (a — β) U {&, 2/} = {«, «, 2/} such that x = α;0, &<-I-R«B< for
1 ^ i ^ m and Xm = y. It follows readily that either xRay holds or
both xRaz and 2ϋϊα7/ hold. In the first case, xRay, x cannot be
separated from y in (X — a) [j {x, y] and consequently x cannot be
separated from y in (X — a) (J {a?, #} U {z} — (X — /3) U {$, ?/}. Hence,
if xRay then α ̂ i / . Now in the second case, xRaz and zRay, and
we again cannot separate x from # in (X — /9) U {a?, y} because if A
and B do so separate a? from y then 2 is in either A or JS, say A,
and then A — x and I? separate 2 from y in (X — α) (J {2,2/}. But
then zR'ay a contradiction. Thus tfit^ in all cases.

DEFINITION 2.4. If i? is a relation on a set A then a related
relation 5 on A is defined by s&Ri/ if and only if there is a finite
sequence x09 xly , xm e A such that x = #0> a^-iito* for 1 <£ i ^ m and
a;Λ = 7/. Such a sequence, #0, •••, ίcw, is called an R-chaίn from x to
2/. The relations x^JtXi are referred to as links and m as the length
of the iί-chain.

NOTATION 2.5. We will let *s denote the cardinality of the
set s.

L E M M A 2 . 6 . xRay for all x , yea provided *a > 1.

Proof. We will use induction on the number N of elements of
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a. If N = 2 the lemma follows from the fact that if x, yea and
x Φ y then (X — a) (J {x, y) = X and X is connected. Thus #2?e# and
yRax which implies aRab for all α, 6 e a. Now assume the lemma
holds for N = m. Let α: = {xlf , xm+1} where xt Φ x5 for i Φ j .
Take any two distinct elements of a, say xt and x2. Set /9 —
{a?i, x2, •••,#»}. By the induction hypothesis xJRβX^ i.e., there is a
sequence τ/0» •• ,i/J)e/5 such that α̂  = τ/0, yi-JR^yi for 1 ^ ΐ ^ p and
2/p = a?2. This Rβ chain from â  to x2 can be converted into an Ra

chain from xγ to #2 as follows. For each i, I ^L i <? p, if y^iRaVi
then we replace the link y^R^i by y^Rayϊ, if y^RaVi then by
Lemma 2.1 yi-1Raxm+1 and xm+1Rayif and we replace y^iRβyi by
Vi-iRa^m+i and Xm+iRaVi- Thus αĵ RβO .̂ The relations £JSα£ for x e α :

follow from #,βα?/ and 3/i2α# where ?/ is any element of a different
from x. Therefore xRay for all x, yea. This completes the induc-
tion step and hence the lemma is proved.

3. For later reference we state the following trivial observations
as lemmas.

LEMMA 3.1. If x, yeBcA where A is a topologίcal space,
B is a subspace, and x is separated from y in A then x is separated
from y in B.

LEMMA 3.2. If a, β e ^~ and x, y e β c a then xRay implies
χRβy.

In the next lemma we start to investigate the relation between
connectedness in X and connectedness in Xn — GDn.

LEMMA 3.3. Suppose a = {xly , xn+1} and xι Φ xs for I Φ j .
If XiRaxn+1 then x = (xlf , x{_if x{, xi+1, •••,#*) cannot be separated
from y = (xlf , x^lf χn+1, χi+1, . . . , xn) in Xn - GDn.

Proof. Consider the set Γ ^ ^ x ^ x x x^γ x X x xi+1 x
• x xn c Xn. Xf is homeomorphic to X under the projection onto the
ith coordinate pt and

Pt(X' Π (Xn - GDJ) = X- {xlf . . . , xt_lf xi+ι, ...,».}

= (X-a)\J {xif xn+1} .

The conclusion now follows from x4Raxn+1 and Lemma 3.1.

COROLLARY 3.4. Suppose a — {xlf , xn+1} and x{ Φ x5 for
i Φ j and 1 <; i, j ^ n + 1. If aczβe J^ and XiRβxn+1 then x =
(α?i, , #;_!, α?i, a?i+1, , xn) cannot be separated from
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V —

in Xn - GDn

Proof. By Lemma 3.2 xiRβxn+ι implies x{Raxn+l and so the con-
clusion follows from Lemma 3.3.

(3.5) Pictorial interpretation of Corollary 3.4. (see Figure 1.)
Given a n α e ^ let the vertices of the network Ra be represented
by dots on a sheet of paper with lines between dots corresponding
to the edges of Ra. That is two dots corresponding to points x, y e a
have a line between them if and only if xRay. Suppose we have n

Figure 1

markers labled 1, 2, , n. Then an w-tuplet (yu , yn) e Xn — GDn

such that y{ e a for 1 <S i ^ n, corresponds in a natural manner with
an arrangement of the n markers on n distinct dots. Call such an
arrangement of markers admissible. The above correspondence is one
to one and onto from the set of all (ylf , yn) e Xn — GDn such that
Vi e a for 1 <̂  i ^ n, to the set of all admissible arrangements of
markers. Now the content of Corollary 3.4 is that if one admissible
arrangement of markers is altered by moving one marker from the
dot it is on to an unoccupied dot which is connected to the original
dot by a line (such a change in the positions of the markers is called
allowable) then the new and old arrangements correspond to connected
(i.e., nonseparated) points of Xn — GDn.

DEFINITION 3.6. The relation S is defined on Xn — GDn by:
for α, b G Xn — GDnJ aSb if and only if a can be separated from b in
Xn — GDn. Note that Sf is transitive and symmetric and reflexive,
i.e., S' is an equivalence relation.

DEFINITION 3.7. Let Sn be the permutation group on n objects.
If (x19 , xn) e Xn then set σ(x19 , xn) = (^_1(1), , &σ-i(n)) Note
that σ(X* - GDJ = Xn - GDn for each σ e Sn.

DEFINITION 3.8. Let R be a relation on a set S. An JS-chain
x09 , xm is simple if and only if x{ Φ x3- for i Φ j . If x0, , xm is
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an i?-chain from x0 to xm9 x0 Φ xmy then one may obtain from x09 x19 , xm

a simple ϋJ-ehain from x0 to xm by removing "loops".

LEMMA 3.9. If x = (x19 , xn) and y = (y19 , #») are elements
of Xn — GDn then xS'σy for some σ e Sn.

Proof. Since S' is transitive and {y19 , yn) = B can be obtained
from {xl9 , xn} = A by replacing elements of A — B one by one
with elements of B — A it is sufficient to consider the case where
A - B = {xt} a n d B - A = {yό}. T h e n a = {x19 •• 9xn,y19 , y n ] i s
really a set of n + 1 distinct elements of X. Because each τ e Sn acts
as a homeomorphism on Xn — GDn we have τxS'σy if and only if
xS'τ~ισy. Thus we need only show that τxS'σy for some τ, σ e Sn.
According to Lemma 2.6 there is a iϋα-ehain from y3- to xi9 Let
«0, , %N be a simple iϋα-chain from y, to a?iβ Let zN+19 , zn be an
enumeration of a — {z0, , ̂ } . Then α = {̂ 0, , zn}9 zk Φ ZX if JC Φ I,
%* = ZNI Vj = ô and z^RaZjc for l^k<^N. It follows that (20, •••,«») =
τ^ and (̂ 0, , zN9 9 zn) = σy for some τ, σ e Sn where the hat (")
signifies that the element is missing. From Lemma 3.3, (with zk^
and zk taking the parts of the xn+1 and x{ of Lemma 3.3 respectively)
(So, ι «jfc-i, , *n) S' (z0, , zk9 zn) for 1 ̂  k ^ N. Thus τxS'σy
as we wished to show.

LEMMA 3.10. If a e Xn — GDn then aSσa for some σ e Sn.

Proof. Let aeXn — GDn and assume aS'σa for all σe Sn.
According to Lemma 3.9 for each b and ceXn — GDn there exist
σ, zeSn such that δS'tfα and cS'τa. Since S ' is transitive it follows
from bS'σa, σaS'a, αS'τα, τaS'c that &S'c for all b and c e X * - GJD%.
But this contradicts our fundamental assumption that Xn — GDW is
not connected.

4* DEFINITION 4.1. If i? is a relation on a set F and xeY
then we will set spBx — *{y e Y \ xRy}.

LEMMA 4.2. If xeae^ then spRoύx <̂  n.

Proof Assume the contrary, i.e., assume xeaej^" and
SPRJC ^ n + 1. (see Figure 2.) Then there are n + 1 distinct points
#!, a?2, , χn+1 of α such that xRaXt for 1 ^ i ^ w + 1. From the
definition of Ra we have x distinct from each xi9 1 <L i <^ n + 1.
Let a = (x19 ---,xn)eXn - GDn. We will show t h a t aS'σa for all

σeSn. Since S' is transitive it is sufficient to show aS'σa for all
simple permutations σ. Also because each τ e Sn acts as a homeomorph-
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ism on Xn — GDn we have τaS'τσa' if and only if. aS'σa and con-
sequently we may assume σ(x19 x21 xs, , xn) = (x29 x19 x39 xn). Using
Corollary 3.4 it follows from x^aX, xRaxn+1, x2Rax, xRax19 xn+1Rax and

<£> <D <D <£>

Figure 2

x R a x 2 t h a t (x19 x29 x39 , α j S ' (x, x2y xZ9 •••,««) S ' ( α Λ + 1 , a?2, α 8 , , α?n)
O {Xnjrl1 X, X%, , Λ/w) <b ( X % + 1 , X19 X3J , ΛJΛ) o (X, Λ?!, Λ?3, , Xn)

S' (x2j%i,%3, ,%n) This calculation is illustrated in Figure 2.
Thus (xlf x2, x3, , xn) Sf (x2, x19 xB, , xn) as we desired. So we
have aS'σa for all cr e Sn which contradicts Lemma 3.10. Therefore
the present lemma holds.

In the light of Lemmas 2.6 and 4.2 the following lemma tells
us that for *a large, a must contain at least one long simple J?α-chain.

LEMMA 4.3. If R is a relation on a nonempty set Y such
that no simple R-chain has length more than N, xRy for all x, y e Y9

and spRx <Ξ M for all xeY where M Ξ> 2 then *Y ^ MN+1.

Proof. Pick an xQ e Y. Set Ym — {y e Y | there is a simple i?-chain
of length m from x0 to y) for m ^ 0. Note that x0 is an 2?-chain
of length 0 and the only jR-chain of length 0 starting at x0.
Thus Yo = {xQ}. Let Zm = {all simple iϋ-chains of length m from
x0 to some point oΐ Y) for m ^ 0. Clearly *Ym ^ %Zm for all m.
From the hypothesis we have Zm = 0 for m > N. Hence Ym — 0
for m > N. Also aλ% for all x9 yeY implies \JΓYm = Y. Thus
Y = \J?Ym - i t f Γ * and consequently # Γ ^ Σ£*Ym ^ Σ f ^ Now
each simple iϋ-chain of length m + 1 starting at a?0 is obtained from
a simple i?-chain of length m starting at x0 by adjoining a link.
Since spRx ^ M for all xe Y we see that each simple iϋ-chain of
length m can give rise to no more than M simple i?-chains of length
m + 1. It follows that *ZW+1 £ M%Zm for m ^ 0. Since % - *{x0} = 1,
an easy induction gives *Zm ^ Mm. Thus

^ Σ
0 M —

ikί iV+1

LEMMA 4.4. Let a e &~ and x19 , xN be a simple Ra-chain
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2n + l<^i<^N — 2n then XιRay holds only for y — x^

ύXi = 2 .

Proof. Assume t h e hypotheses and suppose y ea, y Φ x{_γ, y Φ

xi+1, and XiRay. (see Figure 3.) We will show t h a t (xl9 ••-,#») S'

000 ^ i - l Xι Xi-Vl

Figure 3

σ(x19 •••,»«) for all σeSn. I t is sufficient to consider only simple

interchanges of two adjacent objects. So assume σ(x19 , xn) =

(x19 , a?i-i, Xι+i, Xu χι+2, •> #»)• We will consider three cases. Case

1: yφχk, i — n^k<^i + n. Case 2: y = xk with i — n <^ k <^ i — 2.
Case 3: ^ = % with i + 2<^k<^i + n.

Consider Case 1. The diagram of dots is illustrated in Figure 3.
It is now easy to see in light of the discussion 3.5 that (x19 , xn) S'

Thus (»„ •••,«») S' σ(x19 , xn) as desired.

Next consider Case 2. I t is easy to see t h a t (xίf •••,«») S '

xi+1, , aJi+n-z-O iS' (a?lf , xt_lf xι+1, xl9 xι+2, , xn). Thus (^, , xn)

S' σ(x19 •••,#„) as we wished to show.

Case 3 is perfectly analogous to Case 2 and is left to the reader.

This completes the proof.

5. LEMMA 5.1. / / *α: Ξ> n8n+1 + 1 then there is a unique sub-

set C(a) of a satisfying

( i ) C(ά) is a simple Ra-chain—i.e., C(a) can be indexed so

that C(a) = {xl9 , xm), *C(a) = m, and x19 , xm is a simple Ra -chain.

O

Figure 4
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(ii) *C(α) ^ 4 ^ + 1
(iii) x e C(a) => spR(x = 2
(iv) C(a) is a maximal set satisfying (i), (ii) and (iii). (see

Figure 4.)

Proof. By Lemma 4.2, spR x <^ n for all xea. Thus from
Lemma 4.3 there must be a simple chain CΊ = xίy , x8%+1 of length
8w + l . Consider the simple chain C2 = $2%+i> #2*+2» * *> aWi By Lemma
4.4 spR x{ = 2 for 2% + 1 <̂  ΐ fg 6% + 1. Thus the set of points in
the chain C2 satisfies (ί), (ii) and (iii). Since a is a finite set it is
easy to see that there must be a maximal set C3 satisfying (i), (ii),
and (iii).

We will now prove that C3 is the only subset of a satisfying
(i), (ii), (iii) and (iv). Let C4 Φ C3 be another such set and let C3 =
{Vi, ' , Vn] and C4 = {zιy , zp) where yi Φ yό for i Φ j , z, Φ zs for
i =£ 3i Vi-JtaVi for 2 ^ i ^ m, z^JR,^ for 2 ^ ί ^ p , m ^ 4 ^ + l and
p ^ 4π + 1. Since spRjjι = 2 there must be a unique element y0 of
α such that yjlayι and τ/0 ^ ]/2. Similarly there exists a unique ym+1

such that ymRaym+i and τ/w_! ^ ?/m+1. Analogously we have zQ and
^p + 1 with corresponding properties.

We break up the proof into three cases. Case 1: y0 = ym or
z0 = zp; Case 2: y0 Φ ym, z0 Φ zp and C3f]C4Φ 0 ; Case 3: C3 n C4 = 0 .
We will reach a contradiction in each case. Consider Case 1 and for
definiteness assume yQ = ym. Note that in this case ym+ι = ^ Since
C4 ^ C3 and C4 is maximal we cannot have C4 c C3. Thus there is a
zea — C3. By Lemma 2.6 we know that there is a simgle i2α-chain
C5 from z to y19 Let ^ be the first element of C5 in C3 and ί the
element of C5 preceding 2/i# Note that t £ C3. Since y0 = τ/m, C6 =
2/<-2», l/*-2n+i, •> 2/i-i> 2/*» Vi+i, •» ̂ + 2 % is a simple Bα-chain where we
temporarily have set yi = ym+j if j ^ 0 and #i = ί/, _m if y > m.
But, because yi^Rayiy yiRayi+1, tRayi and £ =£ y^lf yi+1 and ^/^i ^ yi+1

we must have spxjft ^ 3. This contradicts Lemma 4.4.
Next consider Case 2. y0 Φ ym, z0 Φ zp and C3 Π C4 Φ 0 . In this

case 2/w+1 ^ i/i. Also note that y0 £ C3 for otherwise yJ-Rayl for some
i, 2 < j" < m which would contradict spB yd = 2. Similarly 2/m+1 g C3,

ô, p̂+i ί C4. Since C3 Π C4 ^ 0 we have y{ = zά for some i, j satisfy-
ing 1 <Ξ; i ^ m and 1 ^ i ^ p. Because yi+lRayi, spR(z3 = 2, z^^Raz^
and ZjRazj+1 we must have either # i + 1 = ^^i or ^/ί+1 = z i + 1. By re-
numbering if necessary we may assume yi+1 — zί+ί.

If i + 1 = m + 1 but y + 1 < p + 1 we can conclude that
spRaym+i = spRazj+1 = 2. This then implies τ/x, , ym, ym+1 is a simple
i2α-chain and in fact C7 = {y19 ---,ym, ym+i} satisfies conditions (i), (ii)
and (iii). This contradicts the maximality of C3. Using the same
argument with the roles of C3 and C4 reversed we can conclude that
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either i + 1 = m + 1 and j + I = p -\- 1 or i + 1 < m + 1 and
j + 1 < p + 1. Now if the latter condition holds we may reason as
above and use the additional facts that yi+2 Φ y{ — z3- to conclude
that yi+2 = zj+2. And again either i + 2 = m + 1 and j + 2 = p + 1 or
i + 2 < m + 1 and j 1 + 2 < p + 1. The latter condition leads to
another step in this process and since a is finite the process must
stop. Hence i + k = m + 1 and j + k — p + 1 for some k.

Now start the above process going the other way. That is, consider
2/i—i- It is easily seen that without renumbering again we must have
yi_1 — Zj_ί9 Continuing as far as we can we discover that i — I — 0
and j — I = 0 for some I. Thus i = I — j and from above m + 1 —
i-\-Jc = j-{-Jc = p + l. Hence yq — zq for 1 <^ q ^ m = p and so

C3 — C4 a contradiction.
Finally consider Case 3—C3 Π C4 = 0 . By Lemma 2.6 there is a

simple iϋα-chain C8 from yλ to ^ . Let ?/r be the last element of C8

in C3 and 2;s the first element of C8 following yr and in C4. In order
not to contradict condition (iii) for either C3 or C4 we must have
r = 1 or m and s = 1 or p. By renumbering if necessary we may
assume r = m and s = 1. Let C9 = ί0, ίn •••,*„ be that portion of
C 8 f r o m 2/ r t o z 8 . T h e n C 1 0 = y l y y 2 , , y m = y r = t0, tly > .,tv = z s =
Zu z2, ••*, zp is a simple i?α-ehain of length at least An + 1. It follows
from Lemma 4.4, m ^: in + 1 and p ^ 4=n + 1 that spR(tι — 2 for
0 ^ I ^ v. Thus C n = {ylf y2y , ym, tlf , ί^j, ^, , zp) satisfies
conditions (i), (ii), (iii) and contradicts the maximality of C3.

Since all cases lead to contradictions we conclude that there is
no C4 Φ C3 satisfying conditions (i), (ii), (iii) and (iv).

The following corollary follows readily from the proof of Lemma
5.1.

COROLLARY 5.2. If a e ^ and a^n1On+1 + 1 then *C(α) ̂ 6 ^ + 1.

LEMMA 5.3. If a, βeF and *a, *β ^ n8n+ι + 1 then C(a) = a if
and only if C(β) = β.

Proof. It is sufficient to prove the lemma in the special case
aaβ, for the general case then follows by applying the special case
to (X, a U β, and a U β, β. Now since β can be obtained from a by
adjoining the elements of β — a one at a time we may further
assume that β — a ~ {z}.

First assume C(β) = β. The conclusion C(a) — a follows readily
from the definitions and the fact that Ra = Ra

β.
Now assume C(a) = a. Let a = #0, x1? x2, , xm with cc0 = x

m,
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XiRaxi+1 for 0 <Ξ i ^ m — 1 and spBaXi = 2 for all i, i.e., XiRaxi+1,
0 <̂  i <̂  m — 1 are the only JSα relations to hold. (Such a representa-
tion of a is arrived at by writing a = C(α) = {â , ce2, , #m} and
nothing that sps<Xi — 2 all i leads to 0^2?^.) Since β is 2^ con-
nected (see Lemma 2.6) we must have zRβxd for some j , 1 <£ j <£ m.
Renumbering a if necessary we may assume j = 2n + 1. If XiRβxi+1

for all i, 0 ^ i <£ m — 1, then spRβxό ^ 3 and Lemma 4.4 is con-
tradicted since j = 2n + 1. Thus XiR'βxi+ι for some i, 0 <Ξ i ^ m — 1.
Let ί0 be any such i, i.e., &io.β£α?io+1. Consequently, by Lemma 2.1
α^ϋ^z and zRβxio+1. Since xiQRβz, zRβxά and i?α = J5j[ we can conclude
that i0 e {j - 1, j , j + 1}. Similarly i0 + 1 e {j — 1, i, i + 1} and there-
fore % — j — 1 or j . We have thus shown that x{Rpxi+1 for all
1 Φ j — 1 or jf and yet XiR'βxi+1 for some i. We have two cases.
Case 1. Xj^RβXj and XjRr

βxj+1. In this case we can conclude as above
that xά_γRβz and zRβxj+1. Combining this with zRβxό we have spRβz ^ 3
and thus Lemma 4.4 is contradicted. Thus we are left with Case 2:
Xj^RβXj or XjR'βxj+1 holds but not both. For definiteness we will
assume x^Jt'βXj and x3 Rβxj+ί. Again we can conclude that zRβX^.
We cannot have zRβXi for i g {j — 1, j} for if we did then zRβXj^ and
zRβxd would imply XiRaXj-ι and XiRaxd which is impossible. (Note
that m ^ 4̂ ι + 1 ^ 9 and thus xj+ι = ίc2w+2 ^ α;2%_i = x3 ~2 ) It follows from
Lemma 3.2 that XiRr

βxk for all ΐ, fc, 0 < i, fc ^ m, | i — Λ | ^ 1, m — 1.
We have thus determined Rβ completely and it is easy to see that
C(/3) = β. In fact β is the simple closed (circular) iϋ rchain xQ, xu ,
%-u %i %j%j+i * #«• This completes the proof.

6. Let ^ ' ^ { α e ^ l ^ ^ ^1 0 % + 1 + 1}. Lemma 5.3 implies
C(a) = a for all a e j ^ " ' or C(a) Φ a for all a e J ^ ' . We will call X
circular or noncircular according to whether the first or second
possibility holds. In §'s 6 through 11 we will consider the noncircular
case exclusively. Thus in §'s 6 through 11 we assume X is non-
circular, i.e,. C(a) Φ a for all a

DEFINITION 6.1. Let α e / ' , If (x19 •••,»») is an m-tuple such
that m = *C(α), C(a) = {xιy , xm} and XiRaxi+l for 1 ^ i ^ m — 1,
then (#!, , a?TO) is called a presentation of C(α) (in symbols C(α) ^
(a?!, m ,xm)). Condition (i) of Lemma 5.1 implies that C(ά) always
has at least one presentation for a e ^~''. It also follows from Lemma
5.1 that if (x19 * ,xm) is a presentation for C(a), aeJ^~', then

i — 2 and consequently XiRf

aXj when | i — j \ Φ 1 and {%, j} Φ {1, m}.

L E M M A 6.2. If (x19 •••,«?») α^cί (T/!, "-,yp) are two presenta-

tions of C{a), a e &~\ then m — p and either x{ — y{ for 1 ^ i <̂  m

or Xi = τ/w_ί+i /or 1 ^ i ^ m.
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Proof. First, m = *C(α) = p. Next, we claim that xJR'aX*.
Assume the contrary, xjtaxm. Since C(a) Φ a there is a zea — C(a).
By Lemma 2.6 there must be an i?α-chain d from z to # lβ Let xi

be the first element of C(a) on d and t the preceding element of d
Then tea — C(a) and tRaXi. Consequently spBaXi ^ 3 which con-
tradicts condition (iii) for C(a). Thus xjl'axm and similarly yJSaVn

Now note that {x19 , xm} — C(a) — {y19 , ym) and that ^ and
xm are distinguished from all other elements of C(a) by the fact that
{z 6 C(a) I zi?Λ} and {z e C(a) \ zRaxm) are singletons, ({x2} and {α^}
respectively), whereas {ze C(a) \ zRaXi) = {a^, a;1+1} a set with two
elements provided x{ Φ χ19 xm. The same thing holds for yx and ym

and thus {x19 xm} = {̂ , ^/m}. Stated briefly,

{α>lf ^w} = {ί e C(α) I *{z e C(α) | zRat] - 1} - {ylf τ/2} .

Case 1: xx — yγ and xm = ?/m. Case 2: ^ = 2/m and xm = /̂̂  Con-
sider Case 1: ^ = 2/i and xm — ym. x2 is the unique element z of C(α)
such that XyRaZ. But this is also true of y29 and thus x2 = y2. x3 is
the unique element of C(a) different from xt — yx such that x2Raxd.
But this is also true of y3, and thus xs = y3. Proceeding in this way
we arrive at the desired conclusion, xt = y{ for 1 <̂  i <* m. Case 2
can be reduced to Case 1 by renumbering the yt

9s in the reverse
order (?/• = ym-i+1). We then conclude that xt = y\ = 2/w_i+1 as we
wished.

In the first paragraph of the proof of Lemma 6.2 we proved the
following result.

L E M M A 6.3. / / C(a) — (xίy , xm), a e ^ f then

DEFINITION 6.4. Let ae^' and C(ά) ~ (x19 •••, xm). Since
s/pRaxι — 2 and x2 is the only element ίx of C(α) such that ^iZαίi there
must be a unique tea — C(a) such that xjiat. Designate this t by
xQ. Similarly, let xm+ι be the unique t2ea — C(a) such that xmRat2.
Note that the definitions of x0 and # m + 1 depend on a and the presen-
tation (x19 •••,#») of C(α). Taking into account Lemma 6.2 we see
that if the presentation of C(a) is changed from one of the two
possibilities to the other, then x0 and xm+ι simply interchange places.
We will use the following notations:

= {x0, xm+1}

= a - {x0, x19 , xm9 xm+1}

= a - (C(a) U

Thus a is the disjoint union of C(a), Sf(a) and
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L E M M A 6 .5. Let ae^' and C(a) ~ (x19 •••, x m ) . If xiRaxj and
0 <; ί, j <, m + 1 £Λ,ew I i — j I = 1.

Proof. Since XiRaxi+1 for i = 0, 1, , m and spBcXi — 2 for
1 <̂  ΐ <Ξ m the conclusion clearly holds for all i and j such that
{i>> i} Γl {0, m + 1} = 0 . Next we shall show that xQ Φ xm+1. Suppose
the contrary, x0 = xm+1. Using already familiar techniques and
Lemmas 2.6 and 4.4 it is easily shown that a — C(a) = 0 , i.e., a =
C(α). But then X would be circular contrary to our assumption.
Thus xQ Φ xm+1. The same line of reasoning shows that x0R'axm+ί.
From spRaXi = 2 for 1 ^ i ^ m it now follows that xQRaXi and 1 <* i <L m
implies that i = 1. Similarly xmΛ.γRax{ and 1 <̂  ί ^ m implies i — m.
Thus we have established the conclusion in all but one case, {% j}~
{0, m + 1}. But £ o iϋ^ m + 1 (see above) and so in this case the lemma
is vacuously true. The lemma is thus proved.

7* In the proof of Lemma 7.1 we go into a fairly complete
analysis of the structure of Rβ in terms of that of Ra when a c β,
β — a = {z}, and a, β e ̂ " ' We will have several occasions to refer
back to this analysis.

LEMMA 7.1. If a, βe &~' and aaβ then &(a) c gf (/3).

Proof. It is sufficient to consider the case where β — a = {z}.
In the following discussions it will be important to remember that
due to Ra = Ra

β we have xRay if and only if either xRβy or xRβz and
zRβy. Let C(a) - (αlt , ««).

We will consider two cases.
Case 1: &β£g{ for i = l, « , m . In this case we must have

XiRβxi+1 for i = 0,1, , m, and XiR!βt for £ = 1, , m and t £ {x^l9 xi+1}.
Thus C(a) is an i^-chain at least 4^ + 1 long such that spBβt = 2
for each teC(cή. Since C(α),can be extended to a maximal such set
in β we can conclude that C(a)czC(β). Let C(β) - (i/i, •• ,2/P). It
is clear that with the proper choice of presentation for C(β) we may
write yj+i = xt f or i = 1, , m where 0 <: j ^ p - m. (see proof of
Lemma 6.2) It follows that x0 — yά and xm+1 = 2/y+w+i.

We now claim that j = 0 or 1 and if i = 1 then z = 2/0 In order
not to contradict the maximality of C{a) we must have spRβxQ Φ 2.
We distinguish two cases: Case la, spBax0 = 1; Case lb, sp^^^o ^ 3.

Consider Case la, spBcx0 = 1. Assume i > 0. Then spRxQ =
sPRβVj = 2. Since x0Rβx{ only for i = 1 we must have α ^ ί for some
ίί{a?0, «i, •••,«», a?m+i}. If ί e α then x0Rat which is impossible and
so t = z. We assert that sp^z = 1. Suppose the contrary. Then
zRβs for some s Φ x0. Since we are considering Case 1 we have
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assumed zRf

βx{ for 1 <̂  i <£ m. Thus we can conclude that s Φ xL.
From x0Rβz and zRβs we have x0Ras which contradicts spRax0 ~ 1.
Since zRβyjy x0 = yjf and z Φ yj+1 = xλ e a we must have z = y^x. It
follows that j — 1 = 0 and z = yQ as we claimed. Thus the claim is
established for Case la.

Case lb, spRax0 ^ 3. Assume j > 0. Now there must be distinct
elements ί1? t2ea — {x0, xu , xm, xm+ι} such t h a t tJRax^ and t2Rax0.

Since spRβx0 = spRΆyό = 2 and x0Rβxί we must have tiR'βx0 for i = 1 or

2, say for i = 1. Then ίji?^ and zRβxQ. Hence t2Rβx0 (spRx0 = 2)
and consequently t2Rβz and zRβx0. Thus sp^ 2 ^ 3, (^ =£ x0 since
tiRaxQ). Since zRβyό, (x0 — ί/y), 2 must be t/^i. It then follows that
j — 1 — 0 and so the claim has been established for Case lb. This
completes the proof of the claim.

Using the same arguments (or just renumbering the x{ and ^
backwards) one may show that j + m + 1 = p or p + 1 and if
j -f m + 1 = p then z = yp+l. In all the above eventualities we never
have an element of cS"(pc) — a — {xQ, xt, , xm, xm+1} become an element
of {1/0,2/1, , 2/p, 2/p+i} as we go from α to β. Thus g"(α) c ^(/δ) =
β — {Vo, Vi, , 2/yι 1/p+i} as we wished to show. This proves Case 1.

Case 2. zRβXi for some i, 1 ^ i <^ m.
Case 2a. zRr

βy for all y Φ Xi yeβ. In this case t, sea and
ίi2αs implies tRβs. Thus C(α:) — (x:, , xm) is a simple i^-chain.
From Corollary 5.2 we have m = C(a) ^ 6 ^ + 1. Lemma 4.4 implies
i ί (2n + 1, 2n + 2, , m — 2n}. We may assume without loss of
generality that m — 2n < i ^ m. Then d = {xx, , ^_J satisfies
conditions (i), (ii) and (iii) of Lemma 5.1 with respect to β and from
spR(%o = spR x0 Φ 2, x0Rβxlf spR Xi — 3 and x^JRβXi it is easily seen

that d is maximal. Thus d = C(/3), d ~ (2/if •> 2/<-i) with x5 — yj

for 1 <: i < i, 3/0 = xoy and ^ = ^ . It follows that

<ί?(a) = a- {x0, x19 , xm, xm+1} a β - {y0, yίy , y^19 y{} = ξ?(β) .

This completes the proof of Case 2a.
Case 2b. zRβy for some y Φ x{. Then x{Ray and so y — x^ or

y = xi+1. If both relations zRβx{_γ and zRβxi+ί held then αjί_1i2α#{+1

would hold, which is impossible. Thus just one holds.
We distinguish Case 2b (i) zRβXi_x and Case 2b (ii) zRβxi+ί. Con-

sider Case 2b (i) zRβXi_x. Since zRf

βx for all xe β except x = x^ or
Xi it follows that, provided x, y e a and {x, y] Φ {a?f-1, «<}, we have

î?α?/ if and only if xRβy. If x^Jlfai then clearly

C(/S) — (α?!, , »,._!, 2, x^ xi+1, , xm)

and =S^(α) - ^"(/S). Thus if (a) = &(β) and hence ί?(a)aξ?(β) as
desired. On the other hand if x^JlβXi then x19 " ,xm is a simple
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ϋ^-chain and from Lemma 4.4 we can conclude that

iφ{2n + l,2n + 2, ••-,m-2n}.

Assume i ^ m — 2n + 1. Then as in Case 2a we can conclude that
C(β) ~ fa, •••, Xi_2). It follows that if (α) c gf (/2) as we wished.
This proves Case 2b (i). The proof of Case 2b (ii) is very similar and
thus left to the reader. Thus we have shown that g"(α)cg"(/9) is
all cases and the lemma is established.

With the notation as in Lemma 7.1 and β — a — {z}, C(a) ~
fa, •••,»») we list possible presentations (yly , yp) for C(β) occuring
in all the various cases.

Case 1.
fa,

C(β)

Case 2.

, xm, xm+ι) and z = ?/p+1

fa, xly , &m) and a; = yQ

(x0, , xm, xm+1) and yQ = z = yp+ί.

(This case is impossible by Lemma 6.5.)

fa, , #y) some j , m — 2n — 1 ^ j " < m

(a y, , ίcm) some j , l ^ j ^ m

i, 0 ^ i ^ m .

LEMMA 8.1. X is infinite.

Proof. Since X71 - GZ?% is disconnected, Xn - GDn Φ 0. Because
n^t 2, X has at least two distinct elements. Now using the fact
that X is a TV-space we see that if X were finite it would be dis-
connected. But X is assumed connected and hence X is infinite.

REMARK. This lemma and its proof obviously hold in general,
not just the noncircular case.

LEMMA 8.2. If xe$f(a) and C(a) ~ fa, , xm) then

Figure 5
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either there is a simple Ra-chain C not intersecting C{ά), C Π C(a) =
0 , from x to xQ or from x to xm+1 but not both, (see Figure 5.)

Proof. By Lemma 2.6 there is an i?α-chain Cίf which we may
assume to be simple, from x to xQ. Let xi be the first element of
{x0, x19 * ,xm, xm+1} on the i?α-chain CΊ. In order not to contradict
sΊ>RaKj — 2 for 1 ^ j <; m, we must have i = 0 or m + 1. Thus, that
portion of Cλ from a? to xt is the desired simple iϋα-chain.

Now if C2 and C3 are simple JŜ  chains from x to x0 and xm+1

respectively each not intersecting C(a) then we may construct from
them a simple Ra chain CA = y19 , yp from xw+1 to x0 not inter-
secting C(α). Now if we apply Lemma 4.4 to xm+1 and the simple
i^-chain xm_2n, a?m_2Λ+1, •••,&„, £ m + 1 (= 2/i), 2/2, , VP (= ^o), #i, , »2»
we see that spBcxm+1 = 2. But this contradicts the maximality of
C(a). Consequently both C2 and C3 cannot exist. This completes the
proof.

DEFINITION 8.3. Set if = \Ja**-,&((*).

LEMMA 8.4. £f is a finite set.

Proof. In light of the fact that ξ? (a) cz ϊf (β) for aaβ, a,
β e &~\ it is sufficient to establish the inequality *gf (α) S 2nin+1 for all

a 6 ά?"'. Assume the contrary, *gf (α) > 2n4n+1 for some a e <Jr"'. Let

C(a) ~ (xly , xm) and consider the sets A{±) — Ix e &(a) \ there is a

simple i?α-chain not intersecting C(a) from x to ( ° )L Accord-

ing to Lemma 8.2 we have A+ U A~ = ^ ( α ) and 4 + fi 4 " = 0 .
Consequently either *A+ > w4%+1 or *A~ > ^4 % + 1. For definiteness we
will assume *A+ > n4n+\ Now consider the set A+ U {̂ 0} and the
restriction iϋ of the relation Ra to A+ (J {̂ 0} It follows from the
definition of A+ that xRy for all x,yeA. Thus by Lemma 4.3
A+ U {x0} must contain a simple iϋ-chain Cλ = yίy , yp of length at
least An + 1. By considering an ΐJ-chain C2 from x0 to /̂i we can
obtain a simple jβ-chain C3 (made up of parts of Cx and C2) of length
at least 2n + 1 and starting from a?0. C3 is actually an J?α-chain
disjoint from C(a) and by combining C3 and C(α) and using Lemma
4.4 we find that spB x0 = 2. But this contradicts the maximality of
C(a). This completes the proof.

DEFINITION 8.5. Set ^ T ^ X - g 7 . Note that C(a)d^e all
a G ̂ " ' . Since X is infinite and g7 is finite, ^€" must be infinite.
Pick two distinct elements u and v of ^€ and let them be fixed in
all discussions of the noncircular case. Set & — {ae J^f \ u, v e a).
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For each ae ZΓ set (ώ\a) — C(a) U Jzf(pc). By a presentation for
%\a) (notation: (^{a) ~ (xQ, χί9 ., χm, xm+1)) we will mean an m + 2
tuple (&0, a?x, , xm, xm+1) such that C(α) - (xly - -, x j , x0 and xm+1

are as is Definition 6.4 and if u — x{ and v = x3- then i < j . It is
clear from Lemma 6.2 that for each a e 5, there is exactly one pre-
sentation for (S"(a).

DEFINITION 8.6. If ae2? and x e (~tf(a) then set Ia(x) = the
unique i such that ^ ( α ) ^ (x0, , ^w + 1) and α? = ^ with 0 <̂  ΐ ^ m + 1.

DEFINITION 8.7. We define a relation < on ^/f as follows. If
xy y e Λi? pick any ae & such that x> y ea and set x < y iΐ and only
if Ia(x) < /α(2/). We proceed with the obvious task of showing
that < is well defined.

LEMMA 8.8. For x, ye^/f x < y is well defined.

Proof. Let α, β e gr and x j e α : , and x, y e β. By considering
the pairs α, α U /5 and a [J β, β we can reduce the proof to the case
where a c β. Then using induction we can further reduce the proof
to the case aaβ, β — a — {z}. In the proof of Lemma 7.1 we
worked out a presentation for C(β) in terms of one for C(a) in each
of various cases. The present lemma follows by a direct inspection
of these related presentations.

Now that we have seen that the relation x < y is independent
of the a used in its definition it is easy to see that < is a total
(linear) ordering of ^,/ίf. We now take up the problem of extend-
ing < in a natural way to a partial ordering on X.

DEFINITION 8.9. Let ae %, and ^F{a) — (x01 . . . , xm+1). Set
c^{±)(a) = Ixe (6\a) \ there is a simple iϊ^-chain not intersecting

C(a) from x to (^w+1)} From Lemma 8.2 we have £f(α) =

if+(a) U if-(a) and ^ + (α) Π &-{<*) = 0 . (see Figure 5.)

From the analysis in the proof of Lemma 7.1 and the idea in
the proof of Lemma 2.6 we can draw the following conclusion.

LEMMA 8.10. If a, β e Z? and aaβ then ^+(a) c <f+(β) and
%"(a) c gf~(/3).

DEFINITION 8.11. Set gf+ = \Ja^^+{a) and gr~ = \Jae^-{a).
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It follows from g7(α) = &+(a) u c<£~(μ) for α e ^ 7 that g7 =
g"+ U if ~. Also, it is not hard to show from if+(a) Π $?~(a) = 0 for
α e g 7 and Lemma 8.10 that &+ f)ίf~ = 0 .

DEFINITION 8.12. Extend the definition of < by setting g*- <
^€ < gf+, i.e., by setting y < α?, £ < 3 and 2/ < z for all 7/ e έf ~,
xe^/ί and 2e£f+. The resulting relation is still antisymmetric and
transitive (i.e., a partial ordering) and of course is a total ordering
when restricted to ^€.

9* In this section we relate the ordering < to the topology of
X. This leads to a complete determination of all the Ra's, a e J^
in terms of <, and sharp bounds on the size of the sets £f + and g"~.

L E M M A 9 . 1 . If x e ̂ #Z t h e n { y \ y < x} and { y \ y > x} a r e open
subsets of X.

Proof. Consider first the case where there exists s, t e ^/// such
that s < x < t. Let a e gf be such that s, x, te a. Set β = {sf x, t}.
Since Rβ = Rβ

a it is easy to calcμlate Rβ. The important relation is
that sRf

βt. This means that there are disjoint open subsets U and V
of X such that UU V = X - {x}, sεU, and te V. We will show
that U = {y 12/ < x] and F = {y | y > x}. First suppose y eX and
y < x. Let γ e ^ 7 be such that y, s, xe7. Since y < x we must
have either ye^(j) and Ir{y) < Iγ{x) or ye^"(y). Also because
s e ^ = Γlae.^(δ) and s < x we have s e ^ ( γ ) and /Γ(s) < Jr(x).
We now have a clear enough picture of Rr to partially calculate
2ϋσ = Rσ

τ where σ = {7/, s, a?}. We get yRσs. This means that 3/ cannot
be separated from s in (X — σ) U {y, s) — X — {x}. This implies y eU.
We have thus shown that {2/1 y < cc} c U. Similarly {y \y > x} c F
and consequently {2/12/ < #} = ί7 and {2/1?/ > x] — F as we wished to
show.

Now we will consider the case where x is either an initial or
terminal element of ^€. For definiteness we will assume that x is
an initial element, i.e., y Ξ> x for all y e ^fί'. Since X is infinite and
g7 is finite we must have a ί e ^ f such that x < t. If {y \ y < x) —
0 then {7/12/ < #} and {y \y > x) — X — {x} are clearly open. So
assume {y \ y < x) Φ 0 . Next note that {y \ y < x} = g"~. Let 2/ < x
and consider α/r = {y, x, t}. Let a e & be such that ^ c α, and ζ?-(a).
Then since a;, ί e ^ f we have x, te^f(a) — (xQ, , a?m+1).

Next, from Rψ = i?Γ it follows that 2/iẐ .ί. Thus there exist
disjoint open sets Uy and Vy such that ί/̂  U Vy = X — {x}, 1/ e Z7̂  and
ί e F r As in the first case above we have {z \ z > x] c Vy. Set ί7 =
[Jvee-Uy and F = Πa/er-F^. Then we have {z\z < x) = ξf~a U and
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{z I z > x] c F. Thus {z I z < x] = U and {z \ z > x} = V and because
If" is finite U and F are open. This completes the proof.

LEMMA 9.2. If ^// contains a minimum element then (ό ~ ~
0 . Similarly, if ^/f contains a maximum element then ^ J~ — 0 .

Proof. Suppose x e ̂ // and x^y for all y e ̂ /^ Then {yjy < x] —
g'f- is an open set. gf~ is also finite and thus closed. (X is a
Trspace.) But this implies X is disconnected unless έf~ — 0 . Thus
(^f~ — 0 as we wish to show. The second statement follows similarly.

LEMMA 9.3. Let ae V and %'{a) — (xQ, •••, xm+ι) Then

xey/~((%) implies xRnx0, and xe<f+(a) implies xm^λRax. (see

Figure β.)

Figure 6

Proof. Suppose xeW~(oc) and xR'axQ. Since in general xe&~(a)
implies xRr

ay for all ye (rS?(a) u %P+(<%)) — {XQ} there is no i2Λ-chain
from x to x0 which does not intersect f&~(a) — {x}. Thus xR^x0

where φ = gΓ~(α) U {xQ}. Therefore there are disjoint open sets U and F
s u c h t h a t U U F = X - (<f~(cή - {x})9 xeU a n d xQ e V.

We now claim that . / c F o r ^/S a U. Let t,yeM. Set β =
& U {ί, ?/}• We must have ί, y e rόy(β) and consequently there is an Rβ

chain from y to α;0 which does not intersect ?Γ~(β) ίf~(cc). Set 7 =
(C6~{a) — {x}) U {£o> 1/} and observe that tQRry. Thus a;0 cannot be
separated from y in X — (t'f~(0L) — {x}) and so t, y e V or t, y e U.
This shows that ^/S U £?+ c F or ^/f c C7 as claimed.

Now from ^// c F it follows that U c gΓ. Thus 27 would be a
nonempty open finite set which clearly contradicts the connectedness
of X. Similarly, ^/f c U leads to a contradiction. Therefore $i?α$0

as we wished to show. The second statement of the lemma follows
similarly.

LEMMA 9.4. If aeZ? and x, ye if~(a) or x, ye ξfJr(a) then
xRay. (see Figure 7.)
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Figure 7

Proof. Let ae%7 and x,ye c£~(μ), and cέ?{a) ~ (x0, , xm+1).
According to Lemma 9.2 ^f cannot contain a minimum element.
Thus there is a z e ̂ /έ such that z < x0. Set β — a U {z} and note
that z G W(β), gf~(α) c gr~(/3), and g ' ^ c ^ + d S ) , It follows that
IP 08) c ^ ( α ) U {z} and since £ < x0 ̂  ί for all teW(cή we must
have Iβ(z) ^ //,(*) for all t e cW(β). Thus z = y0 where <ίF(£) ~
(Voi -—iVp+i)- Now from Lemma 9.3 we have xRβz and yRβz. It
follows immediately that xRay. The case where a;, ye&+(a) is com-
pletely analogous. This completes the proof.

LEMMA 9.5. Ra for aej^~ is completely determined by < .
In fact for x> y ea, xRay if and only if x Φ y and there does not
exist a zea such that either x < z < y or y < z < x. (see Figure 8.)

O
O
o
o

o
o
o

Figure 8

Proof. First consider an αegf such that g"~ = gf~(α) and
g"+ — g^+(a). We have a complete description of Ra. Indeed, a is
the disjoint union of ^""(α), ^(ά) and t?+(a). For x j e α we have
xRay i f a n d o n l y i f x Φ y a n d e i t h e r (1) x, y e c£~(pί), (2) x,ye &+(a),

(3) a;, y e <g?(a) and | Ia(x) — Ia(y) \ = 1 (Lemma 6.5), (4) #0 e {x, y) and
{a?, y) Π ̂ ~(α) ̂  0 where W(a) - (cc0, , xm+1), or (5) xm+1 e {x, y)
and {a?, 2/} Π &+(a) Φ 0. _

It follows from gf- = ^ - ( α ) and g"+ - έf+(α:) that C^{μ)c_^/S.
Now recalling the definition of < (Definitions 8.7 and 8.12) we see
that the lemma holds for a.

Next consider an arbitrary β e J^T Pick an ae 5f such that
gf- = gf-(α), gf+ = gf+(α:) and β c α . The lemma now follows for
β from the equation Rβ = Rβ

a.

LEMMA 9.6. *ξf ^ n, < n and *ίT~ < n.

Proof. We will rely heavily on the visual method introduced
in (3.5). Consider the claim *g* ̂  n. Suppose *ĝ  ̂  n + 1. Set
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*g*- = N and ^g74

g* + = g^+to). Let
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= ikΓ. Let a e ^ such that g 7- = and

We know that m ^ 6% + 1 (Corollary 5.2). Consider the w marker
placed on the "dots" x19 x2, ---,xn in their natural order. We wish
to rearrange them into an arbitrary permutation of this original
placement through allowable changes, (see 3.5.) It is obviously
sufficient to show how to interchange an arbitrary pair of markers.
Let the markers be called m19 m2, etc. Then at the start mx is on
xί9 m2 is on x2, etc. We wish to interchange the positions of m* and
m5 where i < j . We distinguish three cases. Case 1. j ^ N, Case
2. n — M < i. Case 3. i ^ N and n — M < j . There are no other
cases since N + M > n. In either Case 1 or Case 2 one simply uses
the dots in g 7 " or gf+ to perform the desired interchange. The
moves are very similar to those in Lemma 4.2 and will be left to
the reader.

Now for Case 3. Since N+M = *%?^n + 1 there must be a
k <£ N and n — M < k. Using Cases 1 and 2 on the pairs mi9 mk

and mi9 w, and mk9 mύ in that order one can interchange m< and mό.
Thus the markers can be rearranged into an arbitrary permutation
of their original placement through allowable changes. But this
contradicts Lemma 3.9. Thus *i? ^ n as we wished to show. The
inequalities *g?+ < n and *g" < n follow from the same considerations
as in Cases 1 and 2 above.

LEMMA 9.7. #gf~ Φ 1 and *gf+ Φ 1.

Proo/. Suppose g7 ~ = {y}. Pick an α e ^ such that g 7- = ^~{a)
and g^+ = g^+(α). It then follows from Lemma 9.5 that yRaxQ holds only
for xeξf- {J {x,} where W(a) ~ (α?0, , α?w+1). Since then spRa(x0) = 2
we must have x0 e ^ ( α ) which contradicts the definition of x0. Thus
g"~ cannot be a singleton, i.e., *g7" ^ 1. *g"+ ^ 1 follows analogously.

10* In this section we will determine all the connected subsets
of X.

LEMMA 10.1. If x, ye

ί a?-

VII
V

II 
V

 
V

IIΛ

V
 

V
II 

V

-2/

then the sets

n ί | *

VII

<

>

-X

J
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and ^ are connected. Furthermore, any connected subset of ^f
is of one of the above forms.

Proof. We will show that A — {t | x ^ t < y) is connected. The
other cases are very similar and so will be left to the reader. Suppose
A is not connected, that is suppose U and V are open subsets of X
such that U\J VZDA, UπVnA = 0 , UΓ\AΦ 0 and Vf] Aφ 0.

Let ae UΠ A and be VΓ\ A. We may assume without loss of
generality that a < b. So we have x <£ a < b < y. Set

U' = (UC){t\t<b}){J{t\t<a}

and V = (Vf){t\t> a}){J{t\t> b}. Then it is easy to see t h a t U'

and V are disjoint nonempty open sets whose union is all of X.
But this contradicts the connectivity of X. Thus A is connected.

Next we will show that if A is a connected subset of ^€ then
A is of one of the above forms. First we need to observe that
Lemma 9.1 and the connectedness of ^ (proved in the above para-
graph) imply that if S is a subset of ^f with an upper bound a in
^f then S has a least upper bound b (notation: b = lubS). For if
S had no least upper bound then S could not have a maximum
element and so U = Uses{£ e ̂ /Γ 11 < s} and

' — U can upper bound for s in ̂ f\* ^ ^ ^ C <C t\

would be two disjoint nonempty open sets such that U U V — ^ .
But this contradicts the connectedness of ^g'. Similarly each subset
of ^/ί with a lower bound has a greatest lower bound (gib).

Now A may or may not have a lower or upper bound in ^/ί and
should gib A or lub A exist, these points may or may not be elements
of A. These various possibilities lead directly to the various forms
given above. We will consider one typical case. Suppose A has an
upper bound but no lower bound and that x — lub AeA. We claim
that A = ̂ € Π {t 11 ̂  x}. Clearly A c ^ T Π {t \ t ^ x}. Next we will
show that ^/ί Π {ί 11 < x} = {t e ̂ /ί \ t < x) c A. Suppose z e ̂ £ and
z < x. Suppose further that zί A. Because A has no lower bound
U — {te A\t < z) Φ 0 . Because x = lub A and

z<x, V = {teA\t> z} Φ 0 .

Clearly U and V are disjoint open (in the relative topology of A)
subsets of A such that U U V = A. Thus A is not connected con-
tradicting our hypothesis. Therefore

n {ί 11 < x} c A c ^€ n {ί 11 s χ\.

Only the fate of & is left to be decided. But xeA by our hypothesis.
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Thus A = ^f n {t 11 ̂  x) as we wish to prove.

C O R O L L A R Y 10.2. // x, yeX then {t\x < t < y}, {t\x < t}y

{t I t < x) are connected, {t \ x :g t) and {t \ t ^ x) are also connected
provided x e ^£ί

Proof. We will consider the set {t \ t < x) and leave the others
to the reader. It is sufficient to consider the nontrivial case where
g"~ Π {t 11 < x} Φ 0. Then x g g 7- and x is not a minimum for ^
(see Lemma 9.2). Thus {t \ t < x] Π Λ? Φ0. Now assume {t\t< x)
is not connected and let U and V be disjoint nonempty open subsets
of {t 11 < x) such that U U V = {t \ t < x). Then neither U nor V can
be completely contained in {t \ t < x) — ({t \ t < x] Π ̂ f ) = g7"" because
g 7- is a finite set and X is connected. Thus U Π ({ί | ί < x) Π ̂ ^ ) ^ 0
and F Π ({ί 11 < x) Π ̂ Γ ) ^ 0 and consequently {t\t < x) f] ^£ is not
connected. But {t \ t < x} f] ^f is connected when x e ^ by Lemma
10.1 and if xe&+ then {ί 11 < x) Π ̂ ^ = c^f and again is connected
by Lemma 10.1. Thus {t \ t < x) must be connected.

LEMMA 10.3. A is a connected subset of X if and only if A
is of the form A — I — E where I is one of the sets listed in either
Lemma 10.1 or Corollary 10.2 or is X or is a singleton and E a g*.

Proof. First suppose A is a connected subset of X. If A Π & =
0 the desired conclusion follows from Lemma 10.1. So assume
4 Π ? ^ 0 . Consider the set B = A π ^ C Consider the case where
B = 0. Then i c g 7 and is thus a finite connected space. Since X
is a Γrspace, A is also a 2\-space in its relative topology. Thus A
has the discrete topology and because A is connected it must be a
singleton. So the lemma holds in this case. Now assume B Φ 0.
If B = ^€ then the conclusion is obvious. So assume x e <_J€ — B.
Then either {t \ t < x) Π A or {t \ t > x} Π A is empty for otherwise A
would be disconnected. For definiteness assume {t \ t > x} n A = 0 .
Since we assumed at the outset that A f) & Φ 0 we must now have
Af)&- Φ 0. Set b = lub £. Clearly £ z> {t | £ < 6} f! <-^ for other-
wise we could disconnect A. Therefore A — I — E where / is either
{t\t <b} or {t 11 ̂  b} and # = g7" - A. This proves the "only if"
part of the lemma.

Now assume A = / — E where I is one of the sets listed in
either Lemma 10.1 or Corollary 10.2 or is X or is a singleton and
ficg7, If / is a set listed in Lemma 10.1 then A —I and thus
connected by Lemma 10.1. If / is a singleton / — g7 is a singleton
or the empty set and is thus connected. Consider a typical case
where I is a set listed in Corollary 10.2. Say / = {t 11 g x} for some
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x e ̂ fί Suppose U and V are open sets such that Uf]Vf]A - 0 ,
UΓ\Aφ 0 , 7 n A ^ 0 , and UUVZDA. We may assume without
loss of generality that x £ U. Replacing U by U Π {t \ t < x) if
necessary we may assume Z7c {t \ t < x}. Set

W e h a v e xeVΠB so Vf)B^0. W e also m u s t h a v e U [~)B Φ Q)
for otherwise £7cgf~ and Z7 would be a finite open subset of X
which is impossible. But this shows that B is disconnected con-
tradicting Lemma 10.1. Thus A is connected. The other cases can
be handled similarly. This completes the proof.

Since the connected subsets of X are determined by a finite
number of yes or no choices and at most two choices of points from
X we have the following corollary.

COROLLARY 10.4. The cardinality of the set of all connected
subsets of X equals the cardinality of X.

11. In this section we determine the number of components of
Xm - GDm for all m ^ 2.

DEFINITION 11.1. Let a; be a point of a topological space Y.
The quasicomponent of x is the set [x] = {y e Y | y cannot be separated
from x).

LEMMA 11.2. Suppose #gf~ = N and *ϊf+ = M. Then Xm - GDm

has exactly ml/(NlMϊ) components provided m J> 2 and N + M ^ m.
/ / N + M > m then Xm — GDm is connected.

Proof. We will first investigate how the symmetric group Sm

acts on the set Q of quasicomponents of Xm — GDm. It turns out
that Q is in one-to-one correspondence with the left cosets of a
certain subgroup G of Sm. We then determine G completely and
calculate *Q by *Q = *SJ*G. Finally, because the number of quasi-
components turns out to be finite, the quasicomponents of Xm — GDm

are in fact the components of Xm — GDm.
If y e Xm set yι = the ith component of y, for 1 ^ i <Ξ m. Then

V = {Vι<> •••>#»). For each σeSm (Sm considered as the permutation
group of the set {1, •••, m}) and yeXm, define σy by setting (σy)i —
yΘ-iίi}. It follows that τ(σy) = (τσ)y for all τ,σeSm and yeXm.
Clearly each σeSm considered as a function from Xm into itself
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takes Xm — GΌm into Xm — GDm and is a homeomorphism of
Xm — GDm with itself. Hence each σ takes quasicomponents of
Xm — GDm into quasicomponents of Xm — GDm and thus induces a
function π(σ): Q-^Q. We have for each yeXm — GDm and σeSm

the equation π(σ)([y]) = [σy].
Now let yL, y2, , ym be m points of ^ ^ such that yL < y2< * <

2/w. Set 2/ = (l/i, •• , y e l f f l - GDn. Consider the subgroup G of
Sm consisting of all σeSm such that π(σ)[y] = [y]. It is easily seen
that rc{σ)[y] = 7r(τ)[?/] for σ, τ e Sm if and only if σ and τ are in the
same left coset of G. Furthermore, according to Lemma 3.9 for
each qeQ there is some σeSm such that q — π(σ)[y], (Lemma 3.9
is stated for the case where m = n but its proof does not use the
assumption that Xn — GDn is disconnected and hold for any m Ξ> 2
in place of n.) Thus there is a one-to-one correspondence between
Q and the set of left cosets of G. Therefore *Q = *Sm/*G.

We will now find G explicitly. We claim that G = G' =
{σ e Sn I σ(i) — i for N < i ^ m — M, and σ(i) <̂  ΛΓ for i <^ N, and
<7(i) > n — ikf for i > n — M}. The argument used in Lemma 9.6,
Cases 1 and 2, show that G ' c G . We will now prove the reverse
inclusion. To this end, suppose σ e Sm — G\ We will show that
π(σ)[v] ^ [v]> ί e ^ oySy {σy is separated from y in Xm — GDm).
Consider the sets U = \w e Xm — GDm \ w{ < wά for i ^ N and j >m — M,
and Wij^W for N<j^m~M and 4>} i l and V= {w e Xm - GDm |
either wt > wά for some i <. N and i > m — M or wt > wά for some
i and j" with N < j ^ m ~ M and i < i or w4 < Wj for some i and
j" with N < j ^ m — M and i > i}. Using the fact that X is con-
nected and that ^f has no initial (terminal) point if c£~ Φ 0(gf+ Φ 0 )
it is not hard to see that U and V are open. They are obviously
disjoint and clearly y e U and σ̂ / e F. It is only necessary now to
establish that U U V = Xm - GDm to show that σySy. So let
ω e Xm — GDm and suppose ω & U U F. Then from ω g ?7 we can
conclude that ω^ < ω^ fails for an appropriate pair i, j . Consider a
typical case: i ^ N and N < j ^ m — M. Since ω ί F w e have that
ω^ < cύi fails. Because ^ f is totally ordered and if ~ < gf+ we must
have (ύi, cύjQ^- or ωiy ω i e g 7 + . We take the second case leaving
the first to the reader. Now since ω $ F, ωfc < ωό cannot hold for
any k>m — M. Thus ωk e g p + for all k = m—M+ 1, m —Λί+ 2 , m.
Combining this with ωiy ω3-e^+ we see that we have M + 2 distinct
(ω G X m — GDm) elements in a set g^+ of Jlί elements. This is absurd.
Thus ω g !7 (j F is untenable and so Z7 U F = X m - GDW as we wished
to show. Hence U and F separate y and cr?/ and consequently σySy.
Therefore σ <t Gf implies σ g G and this combined with Gf czG shows
that G = Gf as claimed.
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Now we can calculate *Q = *SJ*G. *Sm = ml and clearly #G = NIMl.
Thus *Q = ml/(N\Ml) and because there are only a finite number of
quasicomponents, the quasicomponents coincide with the components
and thus the first statement of the lemma is proved. The proof of
the second statement is completely analogous to the proof of Lemma
9.6.

REMARK. It is not hard to show that the set U = [y].

12* The circular case* We will now consider the circular case.
That is, in this section we assume that cώp{a) = a for all a e ^~\
Since a is Ra connected (i.e., xRay for all x,yecή and spRax = 2 for
every xea it is clear that the network representing Ra (i.e., the
network consisting of the points of a as vertices and having a line
segment between two points x, yea if and only if xRay) is one
simple circular chain, (see Figure 9.) Choose a triplet (u, v, w) of

Figure 9

distinct points of X and let it be fixed from now on. (Recall that
X is infinite—see Lemma 8.1 and the remark that follows it.) Set
5^ = {ae^! \u,v,wecή. It is clear that for each α e ? there is
a unique presentation (x19 x2, , xm) of c^{a) = a such that x1 — u
and if v = x{ and w = xi then i < j . We change our notation
slightly and now write a ~ (x19 , xm) only for the distinguished
presentation (xL1 , xm) mentioned above. Next, let ae gf and xea,
and a — (x19 , xm). Set Ia(x) = the unique i such that x — xim

DEFINITION 12.1. Let x,yeX and pick an αeSf such that
x, yea. Set x < y if and only if Ia(x) < Ia(y). We need to show
that x < y is well defined, i.e., does not depend on choice of a.

L E M M A 12.2. If x, yeX, a, βe gf and x, yea n β then Ia(x) <

Ia(y) if and only if Iβ(x) < Iβ(y).

Proof. As in Lemma 8.8 it is sufficient to consider the case
where β — a — {z} and ad β. From Ra — Ra

β it follows that the Rβ
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network is obtained from the Ra network by removing the link between
Xi and xi+1 and adding the vertex z along with a link from xt to z and
one from z to xi+1. It is now clear that Ia(x) < Ia(y) if and only if
Iβ(x) < Iβ(y). This completes the proof.

It is clear that < is a total order on X.

L E M M A 12.3. If a,beX and a < b then A = {x \ a < x < b} and

B = {x\x < a or b < x} are open subsets of X.

Proof. If either A = 0 or B = 0 then the other set equals
X — {α, 6} and consequently both A and B would be open. So we
may assume there is a c e A and d e B. Let a e & be such that
α, b, c, de a. It is clear from the definition of < that a and b
separate c and d in the Ra network. That is in going around a we would
come to a then c then b then d then a. It follows that cR\d where
Ί = {a, by c, d). Consequently, there exists disjoint open sets U and
V such that c e U, d e V and U U V = X - {α, &}. We claim that
EΓ = A and V = B. Let α e A . Choose a / 9 e ^ such that δ =
{α, δ, c, #} c/8. From c, xeA it follows that Iβ(a) < Iβ(c), Iβ(x) <
Iβ(b). Consequently cRδx and so c cannot be separated from x in
X-{a, b}. Thus xeU. This shows that A c i 7 . Similarly Bcz V
and it follows that U = A and V = B as claimed. Hence A and 5
are open and the proof is complete.

L E M M A 12.4. Let α, beX and a < b.

nonempty and connected:

<

The following sets are

X Xi }-a or

< \

, {x I x Φ a}

Proof. Consider the sets A = {x | a < x < b} and B = {x \ x < a or
6 < a?}. We will show that A Φ 0 . Suppose A = 0 . Then B Φ 0
for otherwise X = {α, &} contradicting the fact that X is infinite.
Let c e B and assume c > b. The case where c < a can be handled
similarly. Consider U = {x\a < x < c) and F = {x | » < b or as > c}.
The sets U and F are open by Lemma 12.3 and we have U U V =
X— {c}. Also J 7 Π F c A = 0 , α e F and δe ί7. By considering an
ae & such that 7 = {α, ί ,c}cα we see that aRrb and consequently
a cannot be separated from b in X — {c}. This is a contradiction.
Thus A Φ 0 . Similarly we must have J5 Φ 0. The other sets
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mentioned in the lemma are nonempty because they contain either
A or B.

We will now show A is connected. Suppose W and Z are two
open subsets of X such that WΓiZnA = 0, Wΐ\ Aφ 0, Zΐ] AΦ 0,
WU ZZD A. Let de WΠ A and eeZf) A and we may assume with-
out loss of generality that a < d < e < b. Let feB. We assume
f < a. The case / > b can be handled similarly. Now set WΊ =
({W Π {x I a < x < e}) U {x I / < x < d) and

ZL = (Zf){x\d<x<b})U{x\e<x oγ x < f} .

Then W1 and Z1 are open in X,

W1ΠZ1czWf]ZC]{x\d<x<e}c:WnZnA= 0 ,

deWlfee Z19 and Wί\jZ1 = X - {/}. Now by considering a / S e ^
such that δ = {/, d, e} c β we see that dRδe and so d cannot be separated
from 6 in I - {/}. We have reached a contradiction. Thus A is
connected. A similar argument shows that each of the other sets
mentioned in the lemma are connected. This completes the proof.

The proofs of Lemma 10.1 and Corollary 10.4 are easily adapted
to prove the following lemma and corollary.

LEMMA 12.5. If C is a connected subset of X then either C is
a singleton or C = 0 , X or C is of the form of one of the sets listed
in Lemma 12.4.

COROLLARY 12.6. The cardinality of the set of all connected
subsets of X is equal to the cardinality of X.

LEMMA 12.7. Ra for a e ̂  is completely determined by < .
In fact, for x, y ea, x ^ y the relation xRay holds if and only if
x Φ y and there does not exists z and t elements of a such that
x < z < y, and either t < x or y < t.

Proof. The conclusion is obvious for a e &\ The conclusion
follows for an arbitrary βe ^~ by picking a n α e ^ such that βaa
and then calculating Rβ by Rβ = Rβ

a.

LEMMA 12.8. Xm — GDm has exactly (m — 1)1 components for
all m ^ 2.

Proof. We may proceed exactly as in the proof of Lemma 11.2
except for the determination of G. So we now address ourselves to
the determination of G for the circular case.
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First we set up a little machinery. For each σ e Sm set

A(σ) = {(x19 •••tXjeX™ - GDm \ x σ - H ι ) < x σ - H 2 ) < < xσ-iln)} .

Let τ be the element of Sm given by τ(i) = i + 1 for i = 1, , m — 1
and τ(m) = 1. Let H be the subgroup of Sm generated by τ, i.e.,
H = {r, τ2, , τm = identity}. Now set U = \JOeHA{σ) and F -

Now we claim that G = H. The inclusion HaG follows easily
from 3.5. To see the reverse inclusion we will separate y (see proof
of Lemma 11.2) from σy for each σ g H. We claim that the sets U
and F do separate ?/ from all σy with σ £ H. Clearly yeU and σ?/ e F
for all σ g H. It is also easy to see that U Π F = 0 and J7 U F =
X m — GDm. Finally using Lemmas 12.3 and 12.4 one can readily estab-
lish that each point of U or F is an interior point of U or F respectively
and thus U and F are open. Therefore U and F produce the
desired separation as claimed. Consequently G c H and so G = H as
claimed. It only remains for us to note that %G — m and so *Q =
*Sm/#G - m!/m = (m - 1)!.

13* In this section and all the following sections we do not
assume a priori that X is circular or noncircular.

This section is devoted to presenting simple characterizations of
the circular case, the noncircular case, ^f, If, if+, g7", and {xeX\x
is either a terminal or initial point of ^P under <}. (The sets
^ C g7, ^ + , and g 7 " are of course defined only in the noncircular
case.) We also delineate here the nature and number of cut points
of X.

LEMMA 13.1. X is circular or noncircular depending respectively
on whether X has none or at least one cut point.

Proof. This lemma follows readily from Lemmas 9.1 and 12.4
and the fact ^/ί is infinite. This latter fact comes from the obser-
vation that X is infinite, g" is finite and ^€ = X ~ if.

NOTATION 13.2. Let Λ ~ stand for the set of noncut points of
X and T — {x\x is either a terminal or initial point of Λ€ under <} .

LEMMA 13.3. Λ^ — ̂  U T provided X is noncircular.

Proof. This follows from Lemmas 9.1, 9.2 and 10.3.

We now wish to characterize the sets g^+, | ? ~ and T.
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LEMMA 13.4. Suppose that x is a cut point of X. Let U and
V be nonempty disjoint open sets such that U U V = X — {x}. Set

f U (Ί ^V if U Π ^K is not a singleton
U — \

1 0 if U Pi iΛ" is a singleton

Define V similarly. Then
(a) {g7-, g^+} = {U, V) and
(b) τ= {P\{P} - un^r or {P} = vn^r}.

Proof It follows from Lemma 10.3 that

{U, V} = {{t\t<x}, {t\t>x}}.

Now the conclusion follows easily from Definition 8.12 and Lemmas
13.3, 9.2 and 9.7.

With the above characterizations of g7", g"+ and T in mind, the
formulas ^f = X - gf, if = ^ - T, and g7 = g7- U g3"1" provide
the desired characterizations of ^ ^ and g7.

In the following theorem we state some facts about the cut
points of X which follow readily from the theory we have developed
but do not involve that theory in their statement.

THEOREM 13.5. Either X has no cut points or all points of X
except for at most n points are cut points. If x is a cut point
then X — {x} has exactly two components. If X has no cut points
and S is a subset of X with exactly m elements, m ^ 1 then X — S
has exactly m components. The set of cut points of X is a con-
nected Hausdorff space.

Proof. The first statement follows easily from Lemmas 13.1,
13.3, 9.2, and 9.6. The second follows from Lemmas 13.3, 9.1, and
10.3. The third conclusion follows from Lemmas 13.1, 12.3, and
12.4. The last statement follows from Lemmas 13.3 and 10.3 (for
the connectedness) and Lemma 9.1 (for being Hausdorff).

14* This section is concerned with the concept of local con-
nectivity at a point. Recall that a topological space Y is locally
connected at a point p if for each open set U containing p there is
a connected open set V such that p e V c U. A space is locally
connected if it is locally connected at each of its points.

If < is a partial ordering of a set Y then we distinguish two
topologies on Y induced by <. The first is the linear topology,
denoted by <', and has as a sub-base the sets {yeY\y<b} and
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{y e YI y > 6} where b is an arbitrary element of Y. The second is
the circular topology, denoted by < c , and has as a base the sets
{ye YI a < y < 6} and {# e F | # < α or b < #} where α and b are arbitrary
elements of Y.

Let τ be a topology for Y and p e Γ . We will mean by τ at p
the neighborhood system of τ at p, i.e., the set {A\p eint A}. Let r
be the given (original) topology of X.

LEMMA 14.1. // X is circular then X is locally connected at p
if and only if τ at p — < c at p. If X is noncircular then X is
locally connected at pe ^ if and only if τ at p — <ι at p.

Proof. The key observation is that most intervals with a closed
condition at one or both ends, i.e., sets like {t\a<ίt<b} are not
open. We will consider an example to display the technique. Suppose
X is noncircular and a, be ^ C a < 6, α is not an initial point of ^f,
and A = {t\a <L t < b}. We will show that A is not open. Assume
the contrary, A is open. Then U = {t\t < a} and V = A U {t \ a < t}
are disjoint nonempty open sets such that U U V — X- This is
impossible since X is connected and so A is not open. The theorem
now follows easily in the circular case from Lemmas 12.3 and 12.5.
In the noncircular case we make the observation that the sets
{x I x < a}, {x I x > a), and {x \ a < x < b) where a and b are arbitrary
elements of X form a base for <ι and then the theorem follows
readily from Lemmas 9.1, 9.2, and 10.3.

LEMMA 14.2. Suppose X is noncircular and x, i / G g 7 ^ ^ ^ . / /

there are disjoint open sets U and V such that xeU and ye V

then X is not locally connected at x.

Proof. Let c e ^f and set U' = U Π {t \ t < c). Suppose A is a
connected open set such that xe Ad U\ Then from Lemma 10.3
and A Π &~ Φ 0 we conclude that A = I — E where / = {t 11 < a}
or I — {t\t ^ a} for some a e ^t and E a ξf. Now since

U' f)VaUC)V= 0

we have V = V Γ\ {t \ t < a} c έf~. Thus V is a finite nonempty
(y e V) open subset of X which contradicts the connectedness of X.
Therefore no such A exists and so X is not locally connected at x.

COUNTER EXAMPLE 14.3. The following example shows that the
Hausdorίf type of separation assumed in Lemma 14.2 cannot be
dropped. Let X — { — 1} U [0, 1] with the topology generated by all
sets of the form {t \ t < x] with x > 0, and {t \ t < x] - {0} with x > 0,
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and {t 11 > x) with x arbitrary. Then X is Tl9 connected, Xn — GDn

is disconnected for n > 2, { —1, 0}c g*~ (provided we make the right
choice in ordering X) but X is locally connected at — 1 .

THEOREM 14.4. If X is locally connected and Hausdorff then
there is a total ordering < of X such that

(a) if X has any cut points then all points of X are cut points
except an initial or terminal point of X under < (which if one of
both exist are not cut points), and the topology of X — <\ and

(b) if X has no cut points then the topology of X — < c .

Proof. This theorem follows readily from Lemmas 14.1, 14.2,
9.7, 13.3, and 13.1.

15 • In this section we consider the concept of local compactness
and obtain results very analogous to those of § 14. Let z be the
given topology of X.

LEMMA 15.1. If X is circular and locally compact at p then z
at p = <c at p. If X is noncircular and locally compact at pe ^
then z at p = <ι at p. (Note that the implications in Lemma 15.1
are only one way in contrast to the two way implications of Lemma
14.1.)

Proof. Consider the case where X is noncircular and locally
compact at p e ^ and p is not an initial or terminal point of ^ .
Let C be a compact subset of X such that p e interior of C = int C.
We wish to show that z at p = < ι at p. The inclusion < * at paz
at p follows immediately from Lemma 9.1. Now let Bez at p.
Then p e int B. We must show that there exists a,beX such that
p e {t I a < t < 6} c B.

Consider the open set U = int C Π int B. Then pe U and it is
sufficient to show that pe{t\a<t<b}czU for some a,beX.

First we claim that either {t\z<t<p}f)UΦ 0 for all z < p
or {t I p < t < y} Π U Φ 0 for all y > p. Suppose this were not so.
Then we would have a z < p and a y > p such that {t\z<t<y}Γ\U =
{P}. We now have a finite open subset of X which is impossible.
Thus the claim is established.

For definiteness we will assume {t\z<t<p}πUΦ0 for all
z < p. We now claim that {t | z < t < p) c U for some z < p. Suppose
the contrary. Consider the open covering of C consisting of all the
sets {t 11 < z} with z < p and the set U U {t \ p < t}. Since C is
compact there is a finite subcovering and we thus conclude that there
is a z0 < p such that {t \ z0 ^ t <̂  p) Π C c U. By our assumption of
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the contrary to the claim we know that there must be a zt such
that z0 < zx < p and zλ £ U. Next, there must be a z2 such that
zL < z2 < p and z2 e U. Finally there is a z3 such that z2 < z3 < p and
z3 ί *7. It follows that F - {t \ zγ ^ t ^ 23} Π C = {t \ z, ^ t ^ 23} Π ί7 -
{t\z1^t^z3}ΓiU. Thus F is a nonempty open subset of X which
does not equal X (pίV). We now assert that V is also closed.
To see this, first note that since z0 < zx < z3 < p we must have
zl9 z3ε^€. Thus {t I zγ g ί ^ z3} = X - ({£ | ί < z,} U {ί 11 > z3}) showing that
{t I z1 < t < z3} is closed. V is consequently a closed subset of C and
is therefore compact. It follows from Theorem 13.5 that {t\zί ^ t ^ z3)
is a Hausdorff space and thus V is a closed subset of {t \ zx rg t ^ 3̂}
in the relative topology of {£ | z1 ^ ί ^ ^3}. But, since {t\zι ^ t ^ z3}
is closed in X, V must be closed in X as we asserted. We have
thus contradicted the connectedness of X. Therefore {t\z < t < p] all
for some z < p as claimed above. Let a be such a z.

Next we claim that {t\p < t < y) f\U Φ 0 for all y > p. Assume
the contrary. Then {t \ p < t < yQ} Π U = 0 for some #<, > p. Now
consider the set A = {£ | α < t < y0} f] U = {ί | α < t ^ p}. A is clearly
open. Consequently Z = {ί | a < t ^ p) U {ί | ί < p) and TF = {t \ t > p}
are nonempty (p e Z, yQe W) disjoint open sets such that Z U W =
X. This is impossible and thus {t\p<t<y}f]U^0 for all 7/ > p
as claimed.

Now we claim that {t\p < t < y) aU for some y > p. The
proof of this claim is completely analogous to the proof of the second
claim above and so will be left to the reader. Let b be such a y.
We then have p e {t \ a < t < b} c £7c int B as desired.

The cases where X is circular or p is an initial or terminal point
of ^// can be handled in a manner very similar to the above argu-
ment and so will be left to the reader. This completes the proof.

LEMMA 15.2. Suppose X is noncίrcular and p, q e g? +(g7~). //
there are disjoint open sets A and B such that pe A and q eB then
X is not locally compact at p.

Proof. Suppose C is a compact set such that p e int C. Consider
the open set U = A Π int C. In order to avoid the absurdity of a non-
empty finite open subset of X we must admit that {t\z < t < p) f\U Φ
0 for all z < p. Next it follows, just as in the proof of the second
claim in the proof of Lemma 15.1, that {t | a < t < p] c Ua A for some
a < p. Similarly there must be an a' < q such that {t \ a' < t < q] c B.
Lemma 9.2 implies that ^ f has no maximum and hence

0 Φ{t\a<t<p}n{t\a'<t<q}aAnB=
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which is absurd. Therefore no such C exists which shows that X
is not locally compact at p.

THEOREM 15.3. // X is locally compact and Hausdorff then X
is locally connected and so the conclusions of Theorem 14.4 hold.

Proof. This follows easily from Lemmas 15.2, 15.1, 14.1, and
14.4 used in that order.

16* In this section we prove the major results of the paper.
They are obtained from the preceding results with the help of the
following well known result. We give a brief proof since our state-
ment of it may not coincide exactly with the statements of it in the
standard references.

LEMMA 16.1. Let •< be a simple order on a set S. Let S have
the topology <ι and suppose S is connected, D is a countable dense
subset of S, and a and b are minimum and maximum elements
of S respectively, a φb. Then there is an order preserving
homeomorphism of S with the unit interval I = [0, 1].

Proof. Observe first that there is a one-to-one order preserving
function / from Ώf = D — {a, 6} onto D" = diatic rationals in (0, 1).
(see Hocking and Young [1], Th. 2-22.) Next observe that the con-
nectedness of S implies that S has the least upper bound property
(see the proof of Lemma 10.1). Thus we can define the order pre-
serving functions φ: S —> I and ψ: 7—> S by

φ(x) = lub/(2/) f(t) = lub f-\s) .
yen' seD'
y<χ s<t

It is easy to verify that ψ is the inverse of φ and thus φ is one-to-
one and onto. Since the topologies of S and I are determined by
their respective orders, φ must be a homeomorphism.

DEFINITION 16.2 We will say that a topological space S is
locally separable at a point p e S provided there is a neighborhood
U of p and a countable set D which is dense in U. If S is locally
separable at each of its points then S is locally separable.

THEOREM 16.3. // X is Hausdorff, locally connected (or locally
compact), and locally separable then X is locally homeomorphic
to R+ = {t e R11 ^ 0} (i.e., X is a 1-dimensional manifold with
boundary).
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Proof. First note that the locally compact case reduces to the
locally connected case by Theorem 15.3. There are four cases which
depend upon X and the point p in question: Case 1, X circular and
p the initial point u of <; Case 2, X circular and p not the initial
point of X; Case 3, X noncircular and p either an initial or terminal
point of _ ^ ; Case 4, X noncircular and p not an initial or terminal
point of ^£ In the last three cases p has a closed neighborhood of
the form S = {t\a <̂  t ^ b] with the property that < is a simple order
on S and S has a countable dense subset. In the first case we can
adjust < in an obvious way so that the preceding statement holds
for p. In each case it follows immediately from either Lemma 12.5
or Lemma 10.1 that S is connected. Besides, by Theorem 14.4 S has
the <ι topology. The desired conclusion now follows from Lemma 16.1.

REMARK. Note that the local homeomorphism in the above proof
also preserves the order (adjusted order in Case 1).

COROLLARY 16.4. Under the hypothesis of Theorem 16.3, X must
be locally compact.

THEOREM 16.5. // X is Hausdorff, locally connected (or locally
compact) and separable then X is homeomorphic to one of the following
spaces:

(a) the closed interval [0, 1],
(b) the open interval (0, 1),
(c) the half open, half closed interval (0, 1],
(d) the circle, {(x, y) e R2 \ x2 + y2 = 1}.

Proof. This is a corollary to the proofs of Lemma 16.1 and
Theorem 16.3. If D is a countable dense subset of X then D Π S is
a countable dense subset of S if S is as in Theorem 16.3. Now by
lining up D" (D" — D — possible initial or terminal points) with the
diatic rationale in (0, 1) once and for all, the local homeomorphism
we get in Theorem 16.3 will be all coherent. (In fact we need only
consider at most an appropriately chosen pair of sets like S.) The
four possibilities (a)—(d) are determined by whether X is noncircular
or circular and if noncircular whether X has 0, 1, or 2 end points.

THEOREM 16.6. If X is a compact metric space then X is
homeomorphic to either the closed interval [0, 1] or the circle
{(x, y) e R21 x2 + y2 = 1}.

Proof. Since a compact metric space is separable and locally
compact the present theorem follows immediately from Theorem 16.5.
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LEMMA 16.7. // either X is circular or X is noncircular and
has an initial and a terminal point then local compactness and

local separability for X implies compactness and separability.

Proof. Assume X is noncircular, locally compact and locally
separable, a = min ^f = min X> b = max ̂ f = max X. Let A be
the set of all x such that {y | a ̂  y ^ x) is compact and separable.
We will show that A is nonempty, open and closed.

First of all ae A so A is nonempty. Secondly, by Theorem 16.3
the remark that follows we see that A is open (X is obviously
Hausdorff under the hypothesis). Finally, let x0 e closure of A. Con-
sider a neighborhood of x0 of the form S = {t | c <̂  t ^ d) which is
order preservingly homeomorphic to [0,1]. Since xQe closure of A
there is some xeAf]S. It then follows that {t \ a ^ t ^ x0} =
{t I a <^ t <̂  x) U {t I x ^ t ^ #0} is a compact and separable set being
the union of two compact and separable sets. Thus xoeA which
shows that A is closed.

Since X is connected A = X. Thus X = {t \ a ^ t <̂  6} is compact
and separable. The circular case can be handled very similarly using
a point p as both a and 6 simultaneously. The details are left to
the reader.

THEOREM 16.8. If X is Hausdorff, locally compact and locally
separable and X has at least two noncut points then X is
homeomorphic to either the closed interval [0, 1] or the circle

Proof. This follows immediately from Theorem 15.3, § 13,
Lemma 16.7 and Theorem 16.5 used in that order.

17* In this section we will present an example of an X like we
have been studying and then show how this example is rather typical
of a large class of possible X's

The example is pictured in Figure 10. It is not hard to show

r°
Ό

o
Figure 10

that this space really is an example of an X with n ^ 10, and with
a proper choice of < we ave *g?+ = 4 and t(g~ = 6. This space is
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clearly metric and separable and locally compact at points of ̂ /S.
The following theorem is a sort of converse to this example.

THEOREM 17.1. // X is metric, separable, and locally compact
at cut points and there are cut points then X can be embedded in
R\ In fact, X is homeomorphic to the union of a finite number of
points of R3 with the graph of a continuous one-to-one map of (0, 1)
into R\

Proof. First note that the set L of cut points of X is homeo-
morphic to (0, 1) by the general arguments presented in § 16, where
L = ̂ £ — possible end points. We will assume L = (0, 1). Con-
sider R? = JR x C where C is the complex numbers. Let *g7~ = N,
*gf+ = M, g7- = {e19 , eN) and gf+ = {eN+1, , eN+M). Set eά =
(0, exp 2πi(j/(N + M))) eR x C for 1 ̂  j ^ N + M. Now for t e R
set t+ - {J jj 11 J. Finally define φ: X-+ R* = i2 x C by

— βj for 1 <. j <L N

φ(e5) = es + (1, 0) f or N + 1 ^ j ^ ΛΓ +

^ ' ( 1 " e " 1 ^ * , «y))+βy + (ί, 0)

where d is the metric for X and

ε = — min d(βy, ek) .
2 JV*

The verification that φ is the desired homeomorphism is left to the
reader.

18* In this section we show how one of our fundamental
hypotheses may be weakened and draw from this a theorem on "con-
nectedness" in the deleted product Xn ~ GDn.

DEFINITION 18.1. We define the relation T in Xn — GDn by
setting xTy for x,yeXn - GDn if and only if y = (y19 •••, yn) =
to, , &*_!, y3; xj+ί, , xn) for some j where x = (xiy ., χn), and »
cannot be separated from y in

{a?J x {a?2} x x K _J x X x {ai+1} x . . x {a?H} Π {X% - GZ>J .

We observe that the fundamental hypothesis of this paper that
(h): "Xn - GDn is not connected" can be replaced by the apparently
weaker hypothesis (h')\"x(T)'y for some x,yeXn - GDn" (see De-
finition 2.4 for T). In fact hypothesis (h) was used only to prove
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Lemma 3.10 and the proof of Lemma 3.10 essentially uses only
hypothesis (hf). We can now prove the following theorem.

THEOREM 18.2. If Y is a connected Trspace and x = (x19 , xn)
and y — (y^ •••,#») cannot be separated in Z = Yn — GDn(Y) then
xTy where GDn{Y) and T are the same as GDn and T above except
defined for Y instead of X.

Proof. Assume xT'y. Then from above we know that all the
analysis of this paper holds for Y in place of X. In the proof of
Lemmas 11.2 and 12.8 we saw that the set of z e Z such that xTz
coincided with the set ofzeZ such that xSzz when x was of the
form x — (a?!, x2, , xn) with xx < x2 < < xn and Xι e ^f, i —
1, •••,?&, in the noncircular case. This can be seen to hold for any
x e Z by noting the following two facts. Fact 1: The proof of
Lemma 3.9 really shows that if ΰ,veZ then ΰfσv for some σeSn.
Fact 2: For each σeSn the map σ: Z—+Z preserves all the structure
(e.g., T, Sz) for which we are concerned. It follows that xSzy a
contradiction. Thus xTy as we wished to prove.

REMARK. Theorem 18.2 holds without the hypothesis that Y is
connected. The proof consists of reducing the general case to Theorem
18.2 by seeing how the partition of Yn induced by the partition of
Y into components behaves with respect to GDn(Y). The details are
left to the reader.
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components X — S has #S components set of cut
points is Hausdorff space.

14 D locally connected at p, <\ <% τ at p
14.1 L locally connected at p <=> order top. at p
14.2 L X not locally connected at xe&~ if •
14.3 Counter Example
14.4 T Hausdorff and locally connected ==> nice < , τ— <ι (< c )

• cut points.
15.1 L locally compact at p ==> order top. at p
15.2 L X not locally compact at x e c£~ if
15.3 T Hausdorff and locally compact => locally connected => 14.4
16.1 L . . . ( S , < ) = (/, < )
16.2 D Locally separable at p
16.3 T X Hansdorff and locally connected (locally compact) and

locally separable ==> X manifold with boundary
16.4 C => X locally compact
16.5 T X Hausdorff, locally connected and separable => X ~ (0, 1),

(0, 1], [0, 1], or circle
16.6 T X compact metric => X = [0, 1] or circle
16.7 L locally separable and locally compact ==> separable and

compact if •
16.8 T X locally compact Hausdorff and separable and ==> X ~

[0, 1] or circle
17 Example
17.1 T can be embedded in R3

18.1 Ό T
18.2 T ---xTy
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