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EXTREMELY AMENABLE ALGEBRAS

ANTHONY TO-MING LAU

Let S be a semigroup and m(S) the space of bounded real
functions on S. A subalgebra of m(S) is extremely left
amenable (ELA) if it is (sup) norm closed, left translation in-
variant, containing constants and has a multiplicative left in-
variant mean. S is ELA if m(S) is ELA. In this paper, we
give a method in constructing all ELA subalgebras of m(S);
it turns out that any such subalgebra of m(S) is contained
in an ELA subalgebra which is the uniform limit of certain
classes of simple functions on S.

A subset E g S is left thick if for any finite subset σ £ S, there
exists seS such that {as; ae σ) g E. In §3, we strengthen a result
of T. Mitchell and prove that a semigroup S is ELA if and only if
for any subset E g S, either E is left thick or S — E is left thick.
We also show how this result may be generalized to certain subalge-
bras of m(S).

ELA semigroups and subalgebras have been considered by Mitchell
in [9] and [10], and Granirer in [5], [6] and [7]. ELA semigroups
S are shown to be characterized by the fixed point property on com-
pact hausdorff spaces by Mitchell [9] and by the algebraic property:
"for any a, b in S, there is a c in S such that ae = be = c" by
Granirer [5]. ELA subalgebras are characterized by Mitchell [10] by
a fixed point property on compacta (under certain kinds of actions of
S on a compact hausdorff space).

1* Some notations and preliminaries* Let S be a semigroup.
For each aeS,fe m(S), denote by the sup norm of/, | | / | | = sup s e 5 |/(s) |
(and it is only this norm that will be used throughout this paper),
afts) = f(as) and pa(f) = f(a) for all seS. Then pa is called the point
measure on m(S) at a and any element in Co {pa; ae S} is called a
finite mean on m(S) (where Co A denotes the convex hull of a subset
A in a linear space).

If A is a norm closed left translation invariant subalgebra of
m(S) (i.e., afeA whenever fe A and ae S) containing 1, the constant
one function on S, and φeA*, then φ is a mean if φ(f) ^ 0 for / >̂ 0,
and φ(l) = 1; φ is multiplicative if φ(fg) = φ(f)φ{g) for all /, ge A;
φ is left invariant if φ(J) = φ(f) for all seS and feA; and φ is a
point measure {finite mean] on A if φ is the restriction of some
point measure [finite mean] on m(S) to A. It is well-known that the
set of [point measure] finite mean on A is w*-dense (i.e., σ(A*, A)
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-dense) in the set of [multiplicative] means on A. Furthermore, the
set of multiplicative means on m(S) is precisely βS, the Stone-Cech
compactification of S ([3], p. 276).

A subalgebra of m(S) is [extremely] left amenable, sometimes
denoted by [ELA] LA, if it is norm closed, left translation invariant,
containing constants and has a [multiplicative] left invariant mean
(LIM). A semigroup S is [ELA] LA if m(S) is [ELA] LA.

For any subset E § S>, ae S, we shall denote by E = the closure

of E in βS, a~xE = {s e S; as e E}, 1E e m(S) such that lE(s) = {J jf * g f[

and φ(E) = φ{lE) for any φem(S)*.
A subset E g S is left thick if for any finite subset (7gS, there

exists s e S such that {as; a e σ) £ E, or equivalently, the family
{s~ιE\seS} has finite intersection property. Left thick subsets are
first considered by Mitchell in [11]. Clearly, any left ideal of a semi-
group is left thick. If S is left amenable, then every right ideal /
is left thick, since if φ is a LIM on m(S), then <p(I) = 1; consequently,
the family {s^I seS} has finite intersection property.

2* The class of extremely amenable subalgebras* For any
semigroup S, and J7~ an algebra of subsets of S (i.e., a collection of
subsets of S containing S and which are closed under complementa-
tion and finite union), we shall denote by

m(J^7 S) — norm closure of the linear

span of the set {l

Then m(j7", S) is a norm closed subalgebra of m(S) containing con-
stants. Furthermore, if μ is a mean on m(S), denote by

^ = {59 S; μ{s~Έ) = μ(E) = 1 for all seS}

^ μ = algebra generated by g^ .

REMARK 1. For any semigroup S:
(a) g^ is nonempty for all mean μ on m(S) since Se g^.
(b) If μ is a multiplicative LIM on m(S), then m ( ^ , S) = m(S).
(c) If S has f.i.p.r.i. (finite intersection for right ideals),

μe C){sS; seS} then aSe g^ for all aeS. In particular, all right
ideals of S are left thick. To see this we only have to observe that
for each a,teS, t^iaS) 3 bS where b is chosen such that tbeaS.
Conversely, if all right ideals of a semigroup S are left thick, then
S has f.i.p.r.i. since for any α, b e S, there exists c e S such that
be e aS.

(d) If S generates a group (?, S has f.i.p.r.i. and μe Π {sS; se S},
where the closure is taken in βG, then gS e ξ?μ for all g e G. In
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fact, for any geG,, gS contains a right ideal of S ([12], Lemma 5.1)
and hence μigT^gzS)) = 1 for all gίfg2eG. In particular, each gS
(and therefore S) is a left thick subset of G, geG.

Our first main result is to show that for any semigroup S, every
EL A subalgebra of m(S) is contained in an EL A subalgebra m{j?~μ, S)
for some mean μ on m(S). We shall prove this result in a series of
lemmas.

LEMMA 1. Let S be a semigroup, F £ m(S) such that 8feFfor
all feF and seS. If A is the smallest norm closed subalgehra
containing F and the constant functions, then A is left translation
invariant. If φ(8f) = φ(f), φ e βS, for all se S and feF, then φ is
a multiplicative LIM on A.

Proof. A is the norm closure of H, where H consists of all
functions of the form aol + aγgγ + + angn and for each i = 1, , n,
g{ is a finite product of functions in F. Then as readily checked,

sheH for all seS and heH. If feA, and ha e H such that
limα || ha — f\\ = 0, then limα || sha - β / | | ̂  limβ || ha — f\\ = 0, and
hence J e A for all seS. The last assertion can be proved similarly.

LEMMA 2. Let S be a semigroup, fem(S) and φeβS be such
that φ(J) = φ(f) for all seS;

(a) if φ(f) Φ 0, then {s e S; f(s) Φ 0} e c£ψ

(b) if φ(f) = 0, then {s e S; f(s) < c} e ξ?φ for all c > 0.

Proof, (a) If N - {s e S; f(s) Φ 0}, then φ(f) = φ(lNf) = φ(lN)φ(f)
and φ(J) = φ(s(lNf)) = φ(ls-\)φ(J). Hence φ(N) = φis^N) - 1 for
all seS.

(b) Let A be the smallest norm closed subalgebra containing /
and all its left translates and constants. Then as well-known, A is
a lattice [2]. Define h(s) — max{c — /(s), 0}, then he A, and φ(8h) ~
φ(h) for all se S (Lemma 1). Since φ(h) ̂  c > 0, it follows from (a)
that {s e S; h(s) Φ 0} = {s e S; f(s) < c} e &φ.

LEMMA 3. For any semigroup S and E £ S, if E is left thick,
then there exists φ e βS such that φ(s~ιE) = φ(E) = 1 for all se S.

Proof. Let ψeΓ\seS s~Έ and define φ e βS by φ(f) = ψ(h) where
h(s) = ψ(J) for all a e S.

THEOREM 1. Let S be a semigroup and A be a norm closed left
translation invariant subalgebra of m(S) containing constants, then
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A is EL A if and only if AS mi^μ, S) for some [multiplicative]
mean μ on m(S).

Proof. For any mean μ on m(S), m(j7~μ, S) is the smallest norm
closed subalgebra containing F = {1 ;̂ E e g y and constants. It fol-
lows from Lemma 1 that m(g% S) is necessarily left translation in-
variant. Furthermore, any φef\E&^ E (which is nonempty by com-
pactness of βS) is a multiplicative LIM on m(^~μ, S) since <p(E) =
φ(s~ιE) = 1 for all seS and £ e ^ (Lemma 1). Consequently, the
restriction of ψ to A is a multiplicative LIM.

Conversely, if A has a multiplicative LIM ψ, and {paa}, aa e S, is
a net of point measure on m(S) such that limα paa(f) = ψ(f) for all
feA, then any cluster point μ of the net {paj in βS is a multiplica-
tive extension of ψ to m(S). Let / = {/ e A; μ(f) = 0 } , / G I be arbi-
trary and λ > 0. For each neZ, the integers, define

K(n, X) = {se S; Xn ^ f(s) < X(n + 1)} .

Then S - K(n, λ) e ξ?μ for all neZ - {-1,0} (by Lemma 2b) and
11/— Σ (λ>n)lκin,χ) II ̂  λ» where the sum is taken over all n e Z— { — 1, 0}.
Thus A = J φ C c m ^ , S), where C is the algebra of constant
functions, since m(^~μ, S) is closed in m(S).

REMARK 2. If S is endowed with a noncompact hausdorίf topology
such that for each compact subset σ g S, s"1^ is compact for all s e S ;
order E = {σ; c compact subset of S} by upward inclusion. For σ G £7,
let aσe S — σ. If μ is a cluster point of the net of point measures
{pao; σeE}, then for any σ e E, μis-'iS - σ)) = /̂ (S - σ) = 1 for all
se S. Hence, S — σ is left thick for all compact subsets σ Q S and
the EL A subalgebra m ( ^ , S) includes all functions fe m(S) which
vanish at infinity. In fact for any such / (fixed but arbitrary), let
λ > 0. For each n e Z, the integers, define

K(n, λ) = {s e S; Xn ^ f(s) < X(n + 1)} .

Since each S — K(n, X) is included in a compact subset of S, K(n, X) e
for all ne Z and

Theorem 1 yields the following consequence:

COROLLARY. For any semigroup S, m(S) has a nontrivial ELA
subalgebra (i.e., other than the algebra of constant functions) if and
only if S has a proper left thick subset.

Proof. If S has a proper left thick subset E, let μ be a mul-
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tiplicative mean on m(S) such that μ{E) = μ(s~Έ) = 1 for all s e S
(Lemma 3), then Ee &μ, and m(J7"μ, S) is a nontrivial ELA subalgebra
of m(S) (Theorem 1). Conversely, if A is a nontrivial ELA subalgebra
of m(S), then A £ m ( ^ , S) for some mean μ on m(S). Consequently,
oni^μy S) is nontrivial and hence ^μ contains a proper subset of S,
which is necessary left thick.

REMARK 3. The class of semigroups S for which m(S) has a
nontrivial ELA subalgebra is extremely big and they include semigroups
S which satisfy any one of the following conditions:

(a) S is finite and not right cancellative.
(b) S is infinite and left cancellative.
(c) S is infinite and has finite intersection property for right

ideals (note that any left amenable semigroup has the latter property).
(d) S has finite intersection property for left ideals and the factor

semigroup S\(s) is infinite, where (/) is the two-sided stable equivalence
relation defined by a{/)b if and only if ca = cb for some c e S (an
equivalence relation E on S is two-sided stable if aEb implies acEbc
and caEcb for all ce S).

In fact, we only need to show that the semigroups listed in (a),
(b), (c) and (d) have proper left thick subsets, (a) If a, b, ce S are
such that a φb and ac — be, then Sc is a proper left thick subset in
S. (b) It follows from Remark 2 (with the discrete topology) that
for any finite subset σ gΞ S, S — σ is left thick, (c) We may assume
that S is not cancellative (for otherwise (b) shows that S has a proper
left thick subset); then S has either a proper left ideal or a proper
right ideal, which must be left thick (Remark l(c)). (d) The factor
semigroup S/(/) if left cancellative ([4], p. 372). It follows from (b)
that S|(/) has a proper left thick subset A. If A = {s; se A), where
s denotes the homomorphic image of s in S/(s), then A is a proper
left thick subset in S.

Examples of semigroups S for which the only ELA subalgebra of
m(S) is the algebra of constant functions include all semigroups of
the form Er x Gf where E' is a left zero semigroup (i.e., a-b = a
for all α, beEf) and Gr is a finite right cancellative semigroup as the
following proposition shows:

PROPOSITION 1. The following conditions concerning a semigroup
S are equivalent:

(a) S is right cancellative and has no proper left thick subset.
(b) S has an idempotent and has no proper left thick subset.
(c) S is the direct product E x G of a finite group G and a

left zero semigroup E.
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(d) S is the direct product E' x G' of the finite right cancella-
tive semigroup Gr and a left zero semigroup E'.

Proof, (a) implies (b) follows from theorem 1.2.7 in [13] (p. 38).
If (b) holds, the same theorem in [13] shows that S is the direct
product E x G of a group G and a left zero semigroup E. G is finite,
for otherwise G has a proper left thick subset T (Remark 3(b)) which
implies that S has a proper left thick subset E x T. (c) implies (d)
is clear. Finally if (d) holds, then as readily checked, S is right
cancellative. Finally if if is a left thick subset in S, t e E' is arbi-
trary, there exists (ί0, g0) eE' x G' such that {(ίί0, gg0); g eG} =
{(ί, g);geG}QK. Consequently, K = S.

3* A characterization theorem* Mitchell ([9], Th. 1) shows
that a semigroup S is ELA if and only if for each finite collection of
subsets Ei S S, i = 1, , n such that S = \Jf=ι Ei9 it follows that at
least one of the subsets Et is left thick in S. We show in this sec-
tion that Mitchell's result can be sharpened and generalized to certain
subalgebras of m(S). Our proof is completely different from that of
Mitchell [9].

THEOREM 2. For any semigroup S, and J7~ an algebra of sub-
sets of S such that s~ιE e j^7~ for all s e S and E e ̂ 7 the following
conditions are equivalent:

(a) m(^S) is ELA.
(b) For each finite collection {Ely , En} of disjoint sets from
with union S, at least one of E{ is left thick.

Proof, (a) => (b) Let ^ be a multiplicative LIM on m{^~, S),
then 1 = <p(S) = Σ?=i φ(E%) Hence <p(Ei) > 0 for some i, which im-
plies φ(s~ιEi) = φ(Ei) = 1 for all s e S, since φ is multiplicative. Con-
sequently, the family {s^E^seS} has finite intersection property,
and hence Ei is left thick.

(b) ==> (a) Let & be the set each of whose elements is a finite
collection {Ely , En} of disjoint sets in ^~ with union S. Let &
be ordered by defining Pγ <: P2 to mean that each set in Pγ is the
union of sets in P2, P19 P2 e &. It is easy to see that <: renders &
into a directed set. For each Ee ^ 7 let KE = {φ e βS; φ{s~Έ) = ̂ (£7)
for all s e S}. iΓ^ is a nonempty and closed subset of βS, and the
family {KE; Ee^} has the finite intersection property. In fact, if
Ely , En e ̂ 7 let P4 = {£7̂ , S - EJe &*, and choose Po e ̂  such
that Po ̂  Pi for each 1 ̂  i ^ n. By assumption, there exists F in
PQ such that F is left thick. Let φ0 e /3S such that φQ{s~ιF) = 9>0(F) = 1
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for all seS (Lemma 3). If F g Ei9 then s~'F g s~Έi for all seS.
Hence φQ(β-Έi) = φo(Ei) = 1 for all seS. If FQ g S - #„ then
φois^iS - Ei)) = φo(S - Ei) = 1 for all s 6 S. Consequently, φ^s^Ei) ==
<po(#<) = 0 for all s e S . Hence cp0e P|Γ=i #*<• If φe C[Ee^KE (which
is nonempty by compactness of /ΘS), then φ{s~ιE) = ̂ (£7) for all s e S
and Ee^l Consequently, ^ is a multiplicative LIMonm(^7S)
(Lemma 1).

LEMMA 4. A semigroup S is ELA ΐ/ and only if for each subset
E g S, ί/̂ βrβ exists a mean μE on m(S) such that μ^s^E) =
μE{E) e {0,1} for all seS.

Proof. If φ is a multiplicative LIM on m(S), then for any subset
E g S, <p(2£) is either 0 or 1. To see the converse, for each i? g S,
let ^ = {̂  G /SS; φ(s~Έ) = φ(£?) for all s e S}. Then KE is nonempty
since if μE{s~ιE) = ̂ (J?) = 1 for all seS, then μE(s~Έi\ E) = 1 for
all S G S and hence the family {s~λE f] E: se S} has finite intersection
property. Let φ e f)seSs~ιE Π E, then φ(s~Έ) = φ{E) = 1 for all se S.
If μE{s-ιE) = μE{E) = 0 for all s e S, then ^(s-^S - #)) -
jw (̂S — E) = 1 for all se S. Hence as above, there exists φe βS
such that φis-'iS - E)) = φ(S - E) = 1 for all seS, or φ(s~ιE) =
φ(E) = 0 for all seS. In both cases, KE Φ 0. Furthermore, J Γ =
{KE; E g S} is a family of nonempty w*-compact subset of /8S. If
we can show that JΓ* has the finite intersection property, then any
Ψ e Π E S S ^ satisfies φ(s~Έ) = φ(E) for all s e S and E Q S. By
Lemma 1, 99 is even a LIM on m(S). To this end, let If be a family
of subsets of S such that f U e , K E Φ 0 , and let 2?o g S. Pick
<p e ΓΪESΪKE and μeKF where F = {s e S; φ(s~Έ0) = 1}. Define ψeβS
by f (/) = μ(fc), where λ(s) = ̂ ( s/) for all s e S . Then t e (f\E^KE)
since ψ{E) = //(Λ) = /ί(βΛ) = ψ(a~1E) for all α e S, where
φ(s~Έ) = φ{s~\a~ιE)) = A(αs) for all a, seS, and

= μ(a~ιF) = f(α" 1 ^) for all α e S .

This finishes the proof.

Lemma 4 yields the following new characterization theorem for
the class of ELA semigroups:

THEOREM 3. 4̂ semigroup S is ELA i/ and only if (*) /or eαc/̂
subset E g S, either E is left thick, or S — E is left thick.

Proof. Necessity follows from Theorem 2 (a) => (b). Conversely
if (*) holds, it follows from Lemma 3 that for each E g S, there
exists a mean μ on m(S) such that μ(s~1E) = μ(E) = 1 for all se S
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if E is left thick, or μ(s~Έ) = μ(E) = 0 if S - E is left thick. Con-
sequently, S is ELA by Lemma 4.

REMARK. Note that condition (*) in Theorem 3 is formally weaker
than condition (b) and (c) in [9], Theorem 1.

The author would like to thank the referee for his many stimulat-
ing suggestions leading to the addition of Proposition 1 and a simpler
proof of Theorem 1.

The author is most indebted to Professor Granirer for his valuable
suggestions and encouragement during the preparation of the thesis.
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