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ON THE NUMBER OF NONPIERCING POINTS
IN CERTAIN CRUMPLED CUBES

ROBERT J. DA VERM AN

Let K denote the closure of the interior of a 2-sphere S
topologically embedded in Euclidean 3-space Ez. If K — S is
an open 3-cell, McMillan has proved that K has at most one
nonpiercing point. In this paper we use a more general con-
dition restricting the complications of K — S to describe the
number of nonpiercing points. The condition is this: for some
fixed integer n K — S is the monotone union of cubes with n
holes. Under this hypothesis we find that K has at most n
nonpiercing points (Theorem 5). In addition, the complications
ofK—S are induced just by these nonpiercing points. Gener-
ally, at least two such points are required, for otherwise n = 0
(Theorem 3).

A space K as described above is called a crumpled cube. The
boundary of K, denoted Bd K, is defined by Bd K = S, and the in-
terior of K, denoted Int K, is defined by Int K — K — Bd K. We also
use the symbol Bd in another sense: if M is a manifold with boundary,
then Bd M denotes the boundary of M. This should not produce any
confusion.

Let K be a crumpled cube and p a point in Bd K. Then p is a
piercing point of K if there exists an embedding / of K in the 3-
sphere S3 such that f(BdK) can be pierced with a tame arc at f(p).

Let U be an open subset of S3. The limiting genus of U, denoted
LG(U), is the least nonnegative integer n such that there exists a
sequence Hlf H2, of compact 3-manifolds with boundary satisfying
(1) U = UHi9 (2) H{ c Int Hi+ι, and (3) genus Bd H, = n (i = 1, 2, •).
If no such integer exists, LG(ί7) is said to be infinite. Throughout
this paper the manifolds Hi described above can be obtained with con-
nected boundary, in which case Ht is called a cube with n holes.

Applications of the finite limiting genus condition are investigated
in [6] and [14]. For any crumpled cube K such that LG(IntiΓ) is
finite and Bd K is locally peripherally collared from Int Ky it is shown
that Bd K is locally tame (from Int K) except at a finite set of points.
Under the hypothesis of this paper, Bd K may be wild at every point;
nevertheless, with a collapsing (in the sense of Whitehead [15]) argu-
ment comparable to [13, Th. 1], the problem of counting the nonpierc-
ing points of K is reduced to one in which the results of [6] and [14]
apply.

A subset X of the boundary of a crumpled cube K is said to be
semi-cellular in K if for each open set U containing X there exists
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an open set V such that XczVaU and loops in 7 - 1 are null
homotopic in U — X. In the last section of this paper semi-cellular
sets are discussed in order to characterize those sewings of two
crumpled cubes which yield S3, in case the limiting genus of one of
the crumpled cubes is finite.

A simple closed curve J is essential in an annulus A if J lies
in A and bounds no disk in A.

If X is a set in a topological space, then Cl X denotes the closure
of X.

2* A cellularity criterion*

LEMMA 1. Let H be a sphere with n handles. Then there exists
an integer k(n) such that if JΊ, , Jk{n) are mutually exclusive simple
closed curves in H, no one of which bounds a disk in H, then some
pair {Jr, Js} bounds an annulus in H.

Proof. The number k(n) = 2 is known to work if n = 1. Other-
wise, the proof proceeds by induction, using k{n) = Sn — 2 when-
ever n *t 2.

THEOREM 2. Let C be a crumpled cube such that LG(Int C) —
n < °o. Then there exists a finite set Q of points in Bd C such that
for each open set U z> Bd C, each point of Bd C — Q has a neighbor-
hood V such that any loop in V — Bd C is null-homotopic in U —
BdC.

Proof. Assume n > 0. Using Lemma 1 we associate with a
sphere with n handles an integer k(n). Let k — max {3, k(n)}. Sup-
pose plf p2, , p2k are points in Bd C and U is an open set containing
Bd C. It suffices to show that one of these points has a neighborhood
V such that each loop in V — Bd C is nullhomotopic in U — Bd C.

Step 1. Preliminary constructions. There exists a collection of
mutually exclusive disks Dly •••, D2k on BdC with p^elntA (i — 1>
• • ,2&). Furthermore, BdC contains another collection of mutually
exclusive disks E19 , Ek such that for i = 1, , k

Aί-i U D2i c Int Ei .

We consider C to be embedded in Sz so that the closure of Ss — C
is a 3-cell [8, 10]. We select a point b of IntC and construct arcs
Blf , B2k such that (1) distinct arcs Bt and Bό intersect only at the
point b, (2) the endpoints of B{ are b and pi9 and (3) Bt is locally
tame mod pt (i = 1, , 2k).
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By Theorem 1 of [3] there exist pairwise disjoint annuli

A*, A*, , A*., Ef, E*, ., Eϊ

in Sz such that
(4) B d A ^ B d A and BdEfz)BdE3,
(5) A*Γ)BdCcA,
(5') Ef Π Bd C c Ed - ( A M U DU),

(6) (U(BdA* -BdA))U(U(Bdj&; - B d ^ ) ) c I n t C ,
(7) A*(^*) is locally polyhedral modBd A (Bd£y, and
(8) ((uAίt)u(uί?;))n(uA) = 0.
If a surface approximating Bd C is to intersect the D*'s and Ef's

properly, we must force it to lie very close to Bd C. To do this,
first we thicken certain subsets of Bd C, thereby obtaining mutually
exclusive open sets W09 Wu , WBk such that

FIGURE 1
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(9) W.nCdU- (({jBdDf)U(ΌBάEf)),

(10) W0^BdC - ( ( U A ) U ( U ^ )),
(11) TΓiDlntA (i = 1, -- ,2k),

(12) Wafc+i 3 Int Et - (A*-i U A*) (i = 1> , ft),
(13) (U TF, ) n JB* = F i Π B< (i = 1, , 2k).

In addition, we require that Bd Dζ Π Cl Ws Φ 0 only if s = 2& + i
or s = i and Bd E5 n Cl TF8 Φ 0 only if s = 0 or s = 2k + j. Then
we construct a neighborhood Y of Bd C — U TF* such that Y Γ) C c U
and any arc in Int C f) (YI) (I) W$) from a point of TF* to a point of
PΓy intersects all the annuli in between. For example, if A is an
arc from Wo to W19 then A intersects both Ef and Df.

By hypothesis Int C contains a cube with n holes ikί such that
C - ( 7 U ( U "FT,-)) c Int M. Without loss of generality, we assume that
Bd M is polyhedral and in general position with respect to

(UlntJS?;)U (Ulnt Df) .

Step 2. A special disk in Bd M. Let G denote the collection of
those components of Bd M f] (U Ef) U (U Df)) which are essential simple
closed curves in any annulus Ef or Df. Each annulus Ef(Df) contains
a curve in the collection G, because Bd M separates the components
of Bd^KBdA*).

In the next paragraphs we show that at least one of the curves,
in G bounds a disk in Bd M. Suppose the contrary. From Lemma 1
we find that Bd ikf contains an annulus A such that Bd A = Jr U J8>
where Jr and Js are essential curves on Ef and Ef, respectively, and
r Φ s. This reduces to the case in which each component of
Int A Π (UEf) bounds a disk in UEf. Assume r Φ 1 Φ s.

Case A. No component of A Π (U Ef) separates the components
of Bd A. Let L be a simple closed curve in S3 — (Ef (J Ef) such that
L π C = B2 U B2r. It follows from the constructions of Step 1 that
each point of L f] A is separated (in A) from Js by a component of
Int A n (Ef U Ef); thus, by trading certain disks in Int A for disks
in Ef U Efy we see that Jr and Js are homotopic in S3 — L. But
this is impossible, since Jr links L and Js does not.

Case B. Some component of A Π (U £?*) separates the components
of Bd A. By considering all components of i n ((UEf) U (UDf)), we
find that A contains an annulus A! such that no curve in

IntA'Π((UEf)U(Df))

is essential in A' and J r c B d A \ Let J ' denote the other component
of BdA', and without loss of generality assume that J"ΠA* — 0 -
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Let U be a simple closed curve in S3 - ((\jEf) U (UA )) such that
U Π C — B2 U B2r. Each point of U Π A' is separated in A' from either
Jr or J ' by IτAA'((\jEf) U (Uΰ*))> and each curve of this intersection
bounds disks in both A' and (UEf) U(UA ) Hence, by the usual
disk trading, we see that Jr is homotopic to /' in S3 — U. Again
this leads to a contradiction, for Jr links I/; on the other hand, J'
either is contained in A*-i or is an inessential curve in some Ef, which
implies that J' does not link U.

Neither of the two cases can occur. Consequently, some simple
closed curve J in the collection G bounds a disk in Bd M.

Step 3. A neighborhood V of one of the points pit Correspond-
ing to one of the points, say piy there exists a disk D c Bd M such
that BdD is an essential curve in Z)*, but each component of Int
D n (UA*) bounds a disk in UA Repeating this process, it follows
that for one of the p/s, say pι again, and for each open set Uf con-
taining Bd C, there exists a polyhedral disk E in U' Π Int C such that
BdE is an essential simple closed curve on Df but each component
of (Int Ef) (UA )) bounds a disk in UA*

To find the desired open set in C, let V be a spherical neighbor-
hood of p, such that F ' n C c W19 and define V = F ' ί lC. For any
loop L in F — Bd C, another linking argument shows that L is separated
from Bd C (in F) by some disk E c U as described above. Since L
is contractible in V, it follows from [5, Lemma 1] that L is con-
tractible in U — Bd C This completes the proof.

THEOREM 3. Suppose C is a crumpled cube such that LG(Int C) <
oo and C contains at most one nonpiercing point. Then Int C is an
open 3-cell.

Proof. Assume C is embedded in S3 so that the closure of S3 — C
is a 3-cell K [8, 10]. Equivalently, we show that K is a cellular
subset of S\

Let Q denote the finite set of points of Bd C given by Theorem
2, p the nonpiercing point of C (the argument when C has no non-
piercing point is essentially the same), and U an open set containing
K. There exists an open set V containing K such that loops in
V — K are null-homotopic in U — (Int K U p). Let / be a map of a
disk Δ into U - (Int K U p) such that /(Bd J) c F - K. It follows
from [12, Th. 2] and techniques of [2, Th. 4.2] that / can be adjusted
slightly at points of Int A so that f(A) Π Bd C is O-dimensional and
f(Δ) Π Q = 0 . Finally, there exists a finite number of mutually ex-
clusive simple closed curves Sly •••£?* in Δ whose union separates
Bd J from f~ι(f(Δ)) n BdC) and such that / | ^ is null homotopic in
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U — K (i = 1, , k). This implies that f\BdΔ extends to a map
of Δ into U — K. According to McMillan's Cellularity Criterion [11,
Th. Γ], K is a cellular subset of S\

3* Topological collapsing* The following result generalizes
Theorem 1 of [13]. The argument below necessarily differs from
McMillan's, since we have no mapping criterion to determine the finite
limiting genus condition.

THEOREM 4. Suppose K is a finite connected simplίcial complex,.
L a subcomplex of K such that K collapses to L, and h a homeomor-
phism of K into S3 such that LG(S3 — h{K)) — n. Then

LG(S3 - h{L)) ̂  n .

Proof. It is sufficient to show that the result holds if L is
obtained from K by a single elementary collapse. Suppose that σ is
a principal simplex of K, τ is a proper face of σ such that τ is a
proper face of no other simplex in K, and

L = K - Int σ - Int τ .

We consider the case when σ is a 3-simplex, because the applications
of Theorem 4 in this paper can be viewed as involving collapses of
this type only; for the remaining cases a similar argument applies.

Let U be an open subset of SB containing h(L). There exists a
neighborhood Z7* of h(L) in U such that some component Z of h(σ) — Ϊ7*
contains h(σ) — U. Using [4, Th. 4] we find a tame disk D in
Ϊ7* — h(L) such that Bd D Π h{K) = 0 and exactly one of the com-
ponents of D Π h(σ) separates Z from h(L Π σ) in h{σ).

There exists a neighborhood W of h{K) such that W Π Bd D = 0
and W can be deformed to h{K) in S3-Bd D by a homotopy keeping
h(K) pointwise fixed. For each point a? in U Π /̂ (iΓ) define an open
set Nx as

jV. - {y e S 3 ! ^ , ») < p(x, Bd ?7 U Bd W)}

and for each point x in Λ(σ) — U define ^ as

ΛΓ. = {V e SΊ<Φ, y) < <Φ, D U Bd TF)} .

Then let V=\J.*kiκ)Nβ.

Claim. D Π V separates Z from h(L) in F, and i7 contains the
component Y of V — D that contains

Suppose there exists an arc a in V — D from a point of Z to a
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point of h(L). Then a is homotopic in S3 — BάD (with endpoints
fixed) to a path a! in h(K), and a! is homotopic in h(K) (with end-
points fixed) to a path α* such that a* π £> consists of a finite set
of points at which α* pierces D. But then the number of such points
must be even, contradicting the separation properties of D in h(K).

To establish the other part of the claim, suppose there exists a
point y in Y — U. Then y eNx for some x in h(σ) — U. Let A be
the straight line segment from y to x in Nx, and let 5 denote an arc
from y to h(L) in F. Since A U B does not intersect D, deforming
A U J5 to a path in &(if) leads to a contradiction as before. This
completes the proof of the claim.

By hypothesis S3 — h(K) contains a polyhedral cube with w holes
H such that Int £Γ=> S3 - F. We adjust H slightly so that Bd Hf]D
consists of a finite number of simple closed curves. Note that D U
(Bdiϊn U) separates h(L) from h(σ) — U (inS3). Thus, the unicoher-
ence of S3 — D implies that some component F of Bd H — D, where
Fez U, separates h(L) from h(σ) - U in S3 - D.

We observe that Cl F is a disk with k (k ^ n) handles and (possi-
bly) some holes. By attaching disks to BdF near D, we see that F
is contained in a sphere with k handles Sk in C1(S3 — h(L)) and that
Sλ bounds a cube with fc holes M satisfying

S 3 - ί / c J I ί c S 3 -h(L) .

This implies that LG(S8 - h(L)) ^ w.

4* The number of nonpiercing points •

THEOREM 5. If C is a crumpled cube such that LG(Int C) — n
(1 ^ n < oo), ί^e^ C fcαs αί mosέ ^ nonpiercing points.

Proof. Suppose to the contrary that C contains at least n + 1
nonpiercing points plf , pn+ί. As before we assume C is embedded
in S3 so that the closure of S3 of S3 - C is a 3-cell i ί [8, 10]. Let
h denote a homeomorphism of a 3-simplex A3 onto £Γ.

Some triangulation K of J3 collapses to a subcomplex L such
that h(L) is a 3-cell locally tame except at pl9 , pk+1; thus, each
point j)4 is a nonpiercing point of C1(S3 — λ(L)). Theorem 4 gives
that LG(S3 — h{L)) ^ n. This leads to a contradiction, however, for
either [6, Th. 2] or [14, Th. 1] implies that C1(S3 - h(L)) has at most
n nonpiercing points.

COROLLARY. If C is a crumpled cube such that LG(Int C) ^ 1,
then Int C is an open 3-cell.
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The techniques used to prove Theorem 5 can be reapplied to obtain
the following result.

THEOREM 6, If H is a cube with k handles in S3 and

LG(S 3 - H) = n ( l ^ n < oo) ,

then Bd H is pierced by a tame arc at all but (at most) n — k of its
points.

To describe the number of nonpiercing points precisely requires
some additional definitions. Let A be an arc in Sz locally tame modulo
an endpoint p. The local enveloping genus of A at p, denoted LEG
(A, p), is the smallest nonnegative integer r (if there is no such in-
teger r, LEG(A, p) — oo) such that there exist arbitrarily small neigh-
borhoods of p, each of which is bounded by a surface of genus r (a
sphere with r handles) that intersects A at exactly one point. Chapter
4 of [14] gives illustrations of arcs An, each locally tame mod an
endpoint pnf such that LΈG(An, pn) — n (n — 1, 2, , oo).

Let B = {(x, y, z) eEz\x* + y2 + z2 ^ 1}. Let / be a homeomor-
phism of B onto a 3-cell C in S3, and p a point of Bd C. The local
enveloping genus of C at p, denoted LEG(C, p), is defined by

LEG(C, p) - LEG(/(α), p) ,

where a is the line segment in B from the origin to f~\p).

THEOREM 7. If C is a 3-cell in S3 such that LG(S3 — C) = n
(2 S n < oo) and pL, , pk are the nonpiercing points of Sz — Int C,
then

n = Σ LEG(C, p^ .
t = l

Proof. As in the proof of Theorem 5, let h be a homeomorphism
of a 3-simplex Δz onto C. Some triangulation of Δ% collapses to a
subcomplex L such that h(L) is a 3-cell locally tame modulo U p*. It
follows from the definition of local enveloping genus that the subcom-
plex L can be chosen to satisfy

LEG(C, ft) - LEG(h(L), ft) (i = 1, •••, Λ) .

Since LG(S3 - fe(L)) ^ w, Theorem 6 of [14] implies

n^ΣLEG(h(L), ft) - J£LEG(C, ft) .

Let U be an open set containing C. To establish the inequality
in the other direction, we shall find pairwise disjoint disks with handles
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G19 , Gk in U — UPi subject to the following conditions: the number
of handles on G* is bounded by LEG(C, p^, Bd G{ bounds an annulus
A* in Gi such that G = Cl (G{ - A{) is contained in U - C, Int A* Π Bd C
is contained both in a null sequence of pairwise disjoint disks in
Bd C — UPi and in a null sequence of such disks in Int Au and UBd G{

bounds a disk with (k — 1) holes in BdC— Ujp*. Furthermore, G{

can be obtained arbitrarily close to pζ. Thus, in the next two par-
agraphs we describe how to find one such surface Gx near plm

In Bd C there exists a Sierpinski curve X locally tame mod p1 and
containing pι in its inaccessible part. By removing a null sequence
of nice 3-cells from C we obtain a 3-cell C* such that C* n Bd C = X
and C* is locally tame mod pλ. It follows from the definition of local
enveloping genus that arbitrarily close to pί is a surface H such that
H n C* is a disk D, with D n Bd C* = Bd J9, and px lies interior to
the small disk on Bd C* bounded by Bd D. Adjust H near Bd C* so
that Bd D lies in the inaccessible part of X. Without moving any point
of D adjust H further so that the nondegenerate components of
(H — D) Π Bd C comprise a null sequence of simple closed curves
and that (H - D) n C* = 0 [4, Th. 4J. Hence,

(IT - 2?) Π X - 0 .

Now consider the component K of H — C whose closure contains
Bd D. Associate with each simple closed curve S3- of (Bd K — Bd D)
a disk Fj in C — C* such that

(1) Fjf)BdC = BdFj = Sj,
(2) ^ 0 ^ = 0 if SjΠSk = 0 ,
(3) lim^oo diam Fs = 0.

Define GL = (Ui^ ) UCliΓ. Then Gx is a disk with handles, and the
number of handles is bounded by LEG(C, pλ). Note that Bd Gt = Bd D.
Since components of (Gt — Bd Gx) U C are either arcs or points, we can
readily obtain an annulus A1 in Gλ such that Bd Ax contains Bd Gλ and
Int Aλ contains (Gx — Bd Gt) Π C, and now the remaining requirements
on Gx must be satisfied.

Applying Theorem 2 and techniques from the proof of Theorem
3, we find a map / of a disk with (k — 1) holes E into U — C such
that

f(E) n Gί = f(BάE) Π G[ = BdGl (i = 1, . . , fc)

and / has no singularities near Bd E. According to [9, Lemma 1]
there exists a homeomorphism / ' of E into U — C such that

f(E) n G< = /'(Bd#) Π Gί = BdG^ (i = 1, •••, k) .

Thus, if S denotes f'(E) U (UG ), S is a sphere with handles, and
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the number of handles is bounded by ΣLΈG(C, }><). Moreover, S can
be obtained so as to separate S3 — U from C. Finally, since U is an
arbitrary open set, we have that

n ^ Σ LEG(C, p4) .

5* Semi-cellular subsets*

THEOREM 8. Suppose C is a crumpled cube such that

2 ^ L G ( I n t C)< oo ,

and X is a nonseparating subcontinuum of Bd C containing only
piercing points of C. Then X is semi-cellular in C.

Proof. Let p19 , pk denote the nonpiercing points of C, and D
a disk in Bd C — U ft whose interior contains X. If C is embedded
in S3 so that C1(S3 - C) is a 3-cell K, then K collapses to a 3-cell K!
which is locally tame mod (D U ft), with p1 a nonpiercing point of
S3 - Int IT = C. According to Theorem 4, LG(Int C") < oo. Since
each point of D is a piercing point of C", it follows from Theorem 3
that I n t C is an open 3-cell. Then X is semi-cellular in C [7, Lemma
2.7]; clearly X must also be semi-cellular in C.

Theorem 8 can be applied to characterize those sewings of two
crumpled cubes which yield S3, when one of the crumpled cubes has
finite limiting genus. With minor changes, such as in the references
to the number of nonpiercing points, we can use the proof of [7, Th.
5.7] to prove Theorem 9.

THEOREM 9. Suppose Ct and C2 are crumpled cubes, h is a
homeomorphism of Bd Ct to Bd C2, and LG(Int C2) < oo. Then Ct [Jh C2 =
S3 if and only if each nonpiercing point of d is identified by h
with a piercing point of C2.
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