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ON SOME TYPES OF COMPLETENESS IN
TOPOLOGICAL VECTOR SPACES

J. A. MARTI

A type of closed family is defined for which problems
of existence, construction and approximation are examined in
some topological vector spaces or their conjugate spaces.

1. Definition of a type of completeness.

1.1. Let E denote a real or complex topological vector space,
E’ its conjugate space, I a set of indices (occasionally I = N),
(2;);e; @ family of elements in E, V the vector space of families
X = (N\;);e; of real or complex numbers, where \; = 0 except for a
finite number of indices, ' a semi-norm on V. It is recalled that
the family (x;);c; is total if the subspace generated by the z; is
everywhere dense in FE, and it is closed (or .complete) if @ = 0 is
the only @ e E’ satisfying @(x;) = 0 for every 1eI. If E isa locally
convex space, these definitions are equivalent; then, the existence
of a closed sequence is for E a necessary and sufficient condition of
separability. New types of completeness have been studied for I=N
by Ph. Davis and Ky Fan [5] in a normed space, and by S. Ja
Havinson [6] in a locally convex topological space. The following
definitions seem to be more convenient than Havinson’s point of
view for the generalization to locally convex spaces of some results
given by [5].

DEFINITION 1.2. According to precedent notations, we said that
the family (x,);c; is F-closed wn K if:

(C) the conditions pe E'; | Sicv@(@y) | < F(O\) for all v = () e V
imply @ = 0.

Clearly a F-closed family is a closed family. Let (e,) be a
given sequence of nonnegative numbers, let »p =1, 1/p+1/q = 1.
Writing F,\(\)=Snen [ M| @03 Fp(N) = Sneny [N [917 0 p > 15 F,(\) =
SUDsex | M| if » =1, for each M = (A,)e V, we see that definitions
of [5] are special cases of the Definition 1.2.

2. Characteristic property for F-completeness.

THEOREM 2.1. Let E be a locally convexr space. Let P =
(0;);es be a basis of continuous seminorms on E defining the topology
of E. The family (x,);.; of elements in E 1s F-closed if and only if:
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®P) For any xec E, for any p;e <, and for any € > 0, there
exists N = (\)ier € V such that:

(1) pj(x—iezlhixi><e; F\) <e.

Proof. “If part’. Let @e E’ be such that |3.;Me@)| =
FQ\) for all v = () e V.
There exist a constant K > 0 and a seminorm p, such that

|o(y)| <Kpi(y) for all yecE.

Given any 2 ¢ E, there exists p = (¢;) ¢ V such that

pk(w -2 in) <ej Ay <e
We write:
OB CEDWENRD WL
then:

lp@)| = 1+ K)e.

This shows that @(x) = 0 for all x€ E. Hence @ = 0.

“Only if part”. Let us put on V the topology defined by the
seminorm F, and consider the topological product E x V with its
locally convex product topology. Let us denote by w; = (0:)i.; the
family whose i-th term is 1 and all other terms are 0; by ¢&; the
element of E x V defined by & = (z:;, w;); and by & the subspace
of E x V spanned by the &. The condition (P) of theorem is implied
by the following:

Q) (Yee E)(VVe V) ((Vie I)(p(@:) + ¥(u;) = 0) = = 0) because
if (P) is not verified we have:

(P) (3w, E)3p;e 57 )3e>0)(YA = (\) € V()P (%o~ Diier M) =
e or F(\) = ¢). The existence of x, implies that xz, #+ 0 otherwise
the two inequalities of (1) are contradicted by the choice of A = 0.
Let us denote by B; the “open ball” whose centre is (x,, 0) which is
the product of open balls b, = {y e F/p;(x, — ¥) < ¢} and

B ={ve VIF(v) <é¢}.

It is easily seen that there is no element of % in B;, the elements
of & being:

Z )\liEi = (Z Xix,-, Z 7\,,~u,~> Where ): = ()\:,) c V
iel iel iel
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because otherwise we should have:
pj(% - ZM%) <é€; F(Z M’U/i) =FQ)) <e
iel 1el

and that is in contradiction with the two inequalities of (I1).

Then (x, 0) is the centre of an open “ball” which contains no
element of % and (x,0)eE x V — . And then there exists a
linear continuous functional ® on E x V such that &(z, 0) = 0 and
vanishing on % and & (cf., e.g., [8, Th. 3.8. E]).

Now @ is written in unique way: (cf., e.g., [4, Ch. IV])

O: (x, v) —> @(x) + ¥(v) where @ekE', yeV’,
and we have:
P() = D(x, 0) = 0 .
Then @ # 0, and that involves:
@@pe E)@ve V') (Vie ) (@) + ¥(u) = 0) and @ = 0) .
The implication (P)= (Q) is proved, i.e., the implication (Q) = (P).

It only remains to prove that condition (C) implies (Q). For a
given @ e E’, if there exists v e V’ such that for all 11

P(x;) + ¥(u) = 0;

we have, for all A = (\,)e V:

| Spd| = | S| = [(Sra)| = vor 1= v i Fo
where || || is the usual norm on V’. Hence ¢ = 0.

REMARKS 2.2. It is easily seen that for any semi norm F on V
a F-closed family is total because the first of inequalities (1) of
Theorem 2.1 proves that the subspace generated by (x;) is every-
where dense in E. Then taking F' = 0 we have: In a locally convex
space a closed family is total. The converse is easily proved and
we find again the equivalence of these two properties. If E is a
normed space, the Theorem 2.1 has as corollaries Theorems 1 and
2 of [5]; moreover it extends them in the case of families in locally
convex spaces. At last it results of the demonstration that the
condition (Q) is also necessary and sufficient for the family (x;) to
be F-closed. We shall make use of this result at §6.
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3. F-closed families in the conjugate of a locally convex
Hausdorff space.

ProprosiTiON 3.1. Let E be a locally convex Hausdorff semi-
reflexive space. A family (L;);.; of elements in K’ is F-closed for
the stromg topology of E' if and only if the conditions:

e B; | S nLix)] £ FOV) for all x=M\)eV
smply x = 0.

We do not give the proof which results from the fact that F
being semi-reflexive, and @ e E” (second conjugate of E) is written

@: L — L(x) where zec¢kFE,

for each L e E’, and that, by Hahn-Banach, © = 0 is the only 2 ¢ F
for which L(z) = 0 for all Le E”.

ExAmMPLES 3.2. We denote by 57 (2) the space of holomorphic
functions is the unit disc, with the topology of compact convergence.
Let (2.)..y be a sequence of complex numbers such that 0<|z,| <1,
lim,. 2, = 0. We denote by (L,)..y the sequence of elements in
[57(Q)]) defined by L,(f) = f(z,) for all ne N and all fe 57(2). Let
F be a semi norm on V:

3.2.1. If lim,_ . (F(u,)/|2%]) = 0 for all ke N where u, = (0,.)50
then (L,),.y is F-closed for the strong topology of [SZ(Q)].

3.2.2, If F'=F, with p finite (c.f. §1). Then (L,),.y is F,-closed
for the strong topology of [ ()]’ if and only if the series > |2,|*
diverges for all a > 0.

4. Construction of F-closed sequences in Fréchet spaces.

PRrROPOSITION 4.1. Let (%,)..x be a closed sequence of elements in
a Fréchet space ., whose topology is defined by an enumerable
family of continuous seminorms (;);cy+ such that

(1) 327 pi@,) = A, < +eo; Tm AP < 1.
Let (L,)..y be a sequence of elements in [S7(Q)] F-closed for the

strong topology. Then the sequence (Y.)..y OfF elements in F
associated with (L,) by
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(2) Y = i(;‘ Ln(g)k)xk (@k: g Zk)
for all ne N s F-closed.

Proof. From the continuity of L, e[5#7(Q)] we have

lim | L,(p) ["* < 1.

k—r00

The topology of & being equivalent to the metric defined by the
distance:

Az, y) = Sio-_ P& =Y
= 1+ pie —y)

we have, with p(x) = d(z, 0):

2 gmi Pl L (P)m]
Pl L (Pr)x] = 1_2:12 1+ pilL.(@0] = [Lu(®w)

= | L(Pw) | Ai .

g; 2~ipi(xk)

Then from (1) we have:
Iim [p[L,(@)e ] < Tm | Ly(@,) [ Tm 4}* < 1.

That proves the convergence of the numerical series 3} p[L.(Pn)2:]
and as & is complete, the convergence of the series giving ,.
Now, let ¢ &’ be such that, for all » = (\,) e V:

< F(\) .

| S )

The power series > ®(x,)2* has a radius of convergence R = 1.
Indeed there exists a constant C, and an index 7 such that |p(x)| <
Cp;(z) for all xe &, and from (1) we have:

Iim [py(,)]"" < 1
for each 1e N*. Finally
m | p(a) [ < Tim €V T [p(ar)] ™ < 1.

Then the indicated series defines a function holomorphic at least
in Q,

f=3p@pe (@ and L(f) = 3 e@)L(P) = P1.) -

Then we have:
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{ > an,,(f)' < FO\) forall v=()eV.

As (L,) is F-closed in [5#(2)]' that inequality implies f = 0, from
which we gather @(x;)=0 for all £ and as (x,) is closed in & @=0.

EXAMPLES 4.5.

4.5.1. If & is a Banach space for which p,(x)=||z|| for every
i, the precedent condition (1) of 4-1 is written Iim | x,|["” <1, and
we find again, as a corollary, the Theorem 3 of [5].

4.5.2. Let (a,).,.y be a given sequence of numbers = 0, (2,)nen
a sequence of complex numbers such that, KX being a constant > 0;
al"< Klz,l; 0<]z,] <1; limz,=0. Let g =3\ @, e 22(2) with
a, =0 for all k. Then, the sequence (y,) of elements in S#(Q)
defined by ¥.(z) = g(z#,) for all ze 2 is F, ,-closed.

5. Existence of semi norms associated to a given family.
For a given family (x;);.; of elements in £ when does one know
whether there exists a semi norm F' such that (x;) is F-closed?

DEFINITION 5.1. On the space V' we defined the order relation
(not total) < by: A < M if every term == 0 in A is a term in A with
the same index. We shall denote F'* any semi norm increasing on V.

THEOREM 5.2. Let us suppose (x;);c; to be topologically free
([4], Ch. I]). If (%)ier ts F'*-closed, then F* = 0.

Proof. Let u; = (0)kes€ V. If F* =0 there exists jel such
that F*(u;) # 0. Let E; be the subspace spanned by the elements
of (x;) other than x;. Then by Hahn-Banach, there exists @c E’
such that o(E;) =0 and @(x;) = 1. Let us write ¥ = F*(u,)p: ¥
does not vanish, and that is in contradiction, if (x;) is F'*-closed, with

g} Nv(s)

= N Fru) = F0vqup) = F*(5 ) = F*()
sel
for all » = (\)e V.
COROLLARY 5.3. In a topological wvector space (resp. metrizable
and complete) any Schauder basis (resp. any basis) is F*-closed if

and only if F'* = 0.

COROLLARY 5.4. In the comjugate of a locally convex Hausdorff
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semi reflexive space (resp. Eréchet semi reflexive space) the sequence
of the coefficient functionals associated with any Schauder basis
(resp. any basis) is strongly F*-closed if and only if F*=0. (See,
e.g., [2, Ch. VII, §3], [7, p. 431-432], [1, Th. 2]).

ExAMPLE 5.5. The sequence (®,),.y®P.: # — 2" is a Schauder basis
for 57(2). Then it is F*-closed (e.g., F*=F,, or F*=F,) if and
only if F*=0. From 5.4 we have the same results with the
sequence of the coefficient functionals in [SZ2(2)]": (L.)..y such that
L.(f) = (f"(0)/n!) for all fe 57 (2) and also from 5.3 because S#(2)
being reflexive, (L,) is a strong Schauder basis for [S#(Q)].

6. Neighboring F-closed families in Paley-Wiener sense. (On
the Paley-Wiener theorem see, e.g., [3, Th. 1.1]; [5, Th. 4]; [1]).
We shall prove that F-completeness of a family (x;) is carried into
another family (y;) closed to (x;) in the sense of the following:

THEOREM 6.1. Let E be a locally convex space. Let P =(p;);cs
a basis of continuous seminorms on K defining the topology of E.
Let (x:)ier and (¥);c; be two families of elements im K. Let us
suppose that there exists a family (k;);c; of real numbers (0=k;<1)
such that, for all xe(N\;)e V:

(1) pg(g.l i@ — yi)) = kjp,-(iei‘; Mm)
for every jed. Then, if (x;) is F-closed, so is (¥;).

Proof. The notations are those of Theorem 2.1. According to
Remarks 2.2, to prove that (y;) is F-closed we must show that the
conditions:

(2) pel , veV' o)+ WU)=0

for all ¢eI imply @ = 0.
Then, Let # and + be such that the conditions (2) are verified,
and let

a; = p(x;) + WU, = p@; — v,) .
There exist a constant K > 0 and an index j e I such that:
|o(x)| < Kp;(x) for all xek,

and as ||@||; = inf {H/(Vz ¢ E)p(z) < Hp;(x)} is a norm on E’, we
also have:

|P(x)] < ||@|;pi(x) for all zekK.
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Then, from (1), for all A = (M) e V:

Sona| = e lles (5 M — 1)) £ 19 1ipo( 3 0w -

By the generalization of Banach’s result ([2, Ch. IV, §3, Th. 5]),
this proves the existence of Pe B, (that is to say a linear func-
tional on E continuous for the semi norm p; topology and consequently,
for the initial topology of E) such that:

el £ ki llell; and @(x) = a;
for all 1€ 1. Then we have:
(@ — p)(@;) + ¥(v;) =0 for all iel.

As e B’ and ¢ — @, ¢ E’', according to F-completeness of (x;) we
have, from (2) # — @, =0. Then [[®[; < k;([@|; with 0 <k, <1.
Hence @ = 0.

COROLLARY 6.2. If (x;) and (y;) satisfy the hypothesis of Theorem
6.1 with 0 < k; < 1/2 for all te I, then these families are stmultane-
ously F-closed or mnot.

COROLLARY 6.3. Let E be a Fréchet space, of which the topology
is defined by an enumerable family of continuous norms (|| [|:)icyr
Let us suppose that E is a wunitary normed algebra for each || |;.
Let (2,),.y be an absolutely comvergent basis in K, and (€,)..y be @
sequence of elements in H:

&, = kz:;) gpk(en)xk ’
such that
k% | Pr(E)erll: =1

(a given constant) for every 1€ N*. Let (Y,).cx be the sequence of
elements in E defined by

Yo = 2, (1 + ¢€,)

for every ne N. Then

(i) If 1l <1 and if there exists a semi norm F on V such
that (z,) is F-closed, so is (Y,).

(il) If 1<1/2, (x,) and (y, are simultaneously F-closed or
not. Particularly (y,) is F*-closed if and only if F* = 0.
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