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VOLTERRA TRANSFORMATIONS OF THE WIENER
MEASURE ON THE SPACE OF CONTINUOUS
FUNCTIONS OF TWO VARIABLES

WirriaM N. HupsonN

The transformation of Wiener integrals over the space C,
of continuous functions of two variables by a Volterra operator
T is investigated, The operator 7 is defined for functions
X E Cz by

Tax(s, t) = x(s, t) + SSS‘K(% v)a(u, v)dudy ,

where the kernel K(u, v) is continuous, A stochastic integral
analogous to K. 1Ito’s is defined and used to determine a
Jacobian J(x) for T such that if F'(x) is a Wiener measurable
functional, I" a Wiener measurable set, and m Wiener measure,

SPF(x)dm = ST_I(”F(Tx)J(x)dm.

Let C, be the collection of real valued functions f defined on D =
[0, 1] x [0, 1] such that f(0, t) = f(s, 0) = 0. The space C, is topologized
by the sup-norm. In [3], Yeh defined a measure m on C, over the
Borel c-algebra and extended it to the Caratheodory o-algebra relative
to m. It is the purpose of this paper to investigate the transforma-
tion of the measure m when the elements of C, are transformed by a
Volterra integral operator of the second kind. The effect of such
transformations in the Wiener space of continuous functions of one
variable was studied by Cameron and Martin in [1].

Let 0 =5, <5, < oo <8, <l and 0 =¢,<t, <+ <t, <1 and let
E be a nm-dimensional Borel set. We denote by (s, ++«, Su, tiy =+, )
the o-algebra of sets of the form {xe C,: [x(sy, t), <+, 2(Sn, t,)] € B}
and let &, = UZ(sy, *++, Sms t, ==+, t,) Where the union is over all such
partitions of D. The measure m is given on §(s,, +++, Spy by * =, t,) by

mix e C: [o(sy, 1), +++, @(Sm, ta)] € B}

(1.1) = K(81, ***y Spy by + 22, 1)

'g(/mén)s W(Su ce ey Sy by ooy by Uy 00, umn)du’u’ ) dumn ’

where

K(s” oo Sy by v, tn)
1
= {(2n)—mn[sl(82 - Sl) e (Sm - Sm-—l)]n[tl(tz - tl) e (tn - tﬂ—'l)]m}Q )

335
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W(su coey Spy by v ooy Ty Uy "'yumn)

1 = (ui]‘ — Wiy,; — Ui + Uiy j~1)2}
= exp{ —— . : . ,
p{-323 (5 — 5t — )

and #,; = u;, = 0. Yeh showed that m was a probability measure
over (C,, %, and considered the Caratheodory extension § of the algebra
%o relative to m. It is well known that §§ contains the Borel c-algebra.

We consider the stochastic process X(s, t, x) = x(s, t), v € C,. X(s, t)
is analogous to ordinary Brownian motion and proceeding accordingly,
we define a stochastic integral analogous to Ito’s and denote such in-

tegrals of a process f(s, t, z) on C, by S Sf(s, t, v)d X .
D
Next, the Volterra operator T defined by

s(t
(1.2) (To)(s, £) = (s, 8) + S S K(u, v)a(u, v)dudv

0J0
is considered. The kernel K(s,t) of T is assumed to be continuous
over the unit square D. Itis well-known that T is a one-to-one map
of C, onto C, with a bounded inverse. We can now state our main
results.

2. Statement of main results.

THEOREM 1. Let F(x) be bounded and continuous on C, and vanish
outside a bounded subset of C,. Let K(s,t) be continuous over the
unit square D. Then

@.1) S F@)dm(z) = S F(Tw)J (z)dm(z)

Cy Cs
where (Tx)(s, t) = x(s, t) + STK(u, v)x(u, v)dudv, x€ C, and J(x) 1s
given by the formula

2.2) J() = exp{—LK(u, ) X(u, v)dX — %SDK(u, 0, v)zdudv} :

The first integral in the expression for J(x) is the stochastic integral
of the process K(s, t)X(s, t, x) with respect to the process X(s,t, x) =
x(s, t).

THEOREM 2. Let T and J(x) be as in Theorem 1. Then for
every I'e@®, T (MePF and TN eF and

2.3) m(I") = ST_I(”J(x)dm(x) and
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2.4) m(T(I")) = S J@)dm(z) .
r
Furthermore, tf F(x), x € C, 1s measurable with respect to %, then

(2.5) SFF(x)dm(x) - ST_I(F)F(Tx)J(x)dm(m)

(2.6) ST(F)F(x)dm(x) = SFF(Tw)J(x)dm(x)

wn the sense that the existence of one side 1mplies the existence of the
other and the equality of the two.

3. Definition of the stochastic integral. In this section the
basic definition of the stochastic integral is given and some funda-
mental properties are listed. The proofs are omitted since they are
strictly analogous to those of K. It6 in [2].

Let (2,8, P) be a probability space and let {X(s, ©): s, t e [0, 1]} be
a stochastic process with two time parameters defined over (2, B, P).
If for any pair (m, n) of positive integers, and any set S = {a,, +-a,,
by sy by, €y oo, 0, dy o0, d,} of real numbers in [0,1] such that
a1<b1§az<b2§"'éam<bmandcl<d1§62<dzé"‘§Cn<dm
the “increments” X(b;, d;) — X(a;, d;) — X(b;, ¢;) + X(a;y ¢;) 1 =1, -+, m,
j =1, .--,n are independent random variables, the process X(s, t) will
be called biadditive. If a biadditive process X(s, ¢) is Gaussian and
has the additional properties that for all (s,t)e D FE(X(s, t)) =0,
var (X(s, t)) = st, and X(0, t) = X(s,0) = 0, then X(s,¢t) will be said
to be a generalized Brownian motion. The process X(s, ¢, x) = x(s, t),
x € C, defined on (C,, ¥, m) is an example of a generalized Brownian
motion.

Now let X(s, t) be a fixed generalized Brownian motion and denote
the increments X(b,d) — X(a,d) — X(b, ¢) + X(a,¢) by 4(a,c,b, d).
Let ® denote the Borel subsets of D. For each choice of (s, t)e D,
let 2A(s, t) be a sub o-algebra of B which contains o{X(u, v): u < s
and v < t}, the og-algebra generated by X(s,t) up to (s, t), and which
is independent of o{4(s, t, u, v): w = s or t = v}. Assume also that if
s<s and ¢t =< ¢, U(s, t)cU(s’, ). Let IN denote the class of stochastic
processes f(s, t, w) defined on (2,B, P) with domain of definition D
which satisfy

(i) f(s,t, ) is D x B measurable and

(ii) f(s, t, -) is U(s, t) measurable.

M, will denote the subset of I such that if f(s, t, w) € M,, there
are real numbers 0 =, <, <-.++<a,=land 0=p3,<B, <+ < B, =1
such that f(s, t) = fla;_,, Bi—) Whenever ¢;_, <s<e«; and B, <t < Sy
M, will denote the subset of IN such that f(s, ¢, w)e IR, whenever
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EDXQ( fu, v, ®))’dP x < o where ~ denotes two dimensional Lebesgue
measure. M, will denote the set of all fe I such that for almost
all we 2, g flu, v, w)’d, < . We define the stochastic integral suec-
cessively foll)r fe IR, then for feM,, and finally for fe IM,.

DEFINITION. For f(s, t) € M,, the stochastic integral of f(s, ) with
respect to X(s, t) is denoted by <S de)(s, t) and is defined by

1

(/X)) = S 5 far 1o 809,18 00 82
+ :;Z::f(ap—-u Bk—l)d(ap—u Bk—l! a;ﬂ t)

+ gf(a’j—l» Bq—1)A(aJ‘—1y Ba-1y 8y Bq)
+ f(aj—v lek—l)A(aj—lv Br—ir 8y t) .

where the a’s and g’s are taken as in the definition of IN,.

The following properties follow from this definition for fe 9, in
the same way as for the usual stochastic integral.

TaEOREM 3.1. If fe SR, then (Sde)(s, t) has the following

properties.
(1) For f,9eM, w,e2, if f(s,t,w) = g(s,t, ®;) on D, then

(Sde)(s, t, @) = <§ng)(s, t, @) on D.
(2) For f,geM, a8 real mumbers, (s,t)e D <S(af+,6’g)dX>
(5 1) = a(S fAX)(s, 8) + B(Sng)(s, b).
(3) For almost every , (Sde)(s, t, ) is continuous over D.
(4) E’[(Sde)(s, t)] — 0 for all (s,t)e D and
(5) var|({7aX)s 0] = 1712 where 1712
= S f(s', ¢, wyde x P

{0,8]x[0,t]1xQ

As in the one variable case, M,N I, is dense in IR, with respect
to the Hilbert norm on L.(D x 2). Denoting this norm by | -| and
using property (5) above, we make the following definition for fe I,

DEFINITION. For fe IR, the stochastic integral of f is defined to be
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() = mfrax

where the limit on the right is that of convergence in the norm of
L,(Q) and {f,} is any sequence of functions in I ,N M, such that

limn—voo ”fn - f“ = 0.
The following properties hold for functions in I%,.

THEOREM 3.2. Let f and g be in M,. The following statements
are true.

(1) If fis,t,@)=g(s,t, ) on D for we Ac®, then <Sde>(s, t, )=

<Sng>(s, t, @) for we A, A where AyeB and P(A) = P(A).

(2) If a and B are any two real numbers and (s,t)e D then
almost surely

<S(at + BOAX 5, 1) = a(X faX)is, 1) + B(Sng)(s, 5.

(3) For every point (s,t) in D, var [(Sde)(s, t)] — 1f e and

E[((de)(s 0] =o.

Let #1,.:(t) denote the indicator function of [0, n], i.e., ¥, (6) =1
if 0 <¢ < n and y,,,,(¢) = 0 otherwise. In order to define the stochastic

integral for a function fe N, we observe that SD fids < n implies
Sogt £, vydudv < m for all t[0,1] and so f(s, t, ®) = farn(s, t, @) for
m=0,1,2 - where fi(s, ) = X”<H FYu, v)dudv> f(s, ). Let F,=
{a): ipfzd/é n} Then F,e®B and F,c F,cF,c --- and from the de-

finition of M., P(Us F,) = 1. Using property (1) of the last theorem,
we see that there is a set F,,cCF, such that F,,e®B, P(F,,) = P(F,)
and for we F,,, (s,t)e D,

(S fndX)(s, {, w) = <§ fm_de>(s, o) me=1,2 ..

DEFINITION. Let f be a function in I,. The stochastic integral
of f is defined to be

( Sde)(s, t, @) = (S £AX)s b @) it @eF,,

and is defined to be zero if w¢ Uy, F,,..
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The next theorem gives easy properties of such integrals.

THEOREM 3.3. Let f and g be in M,. The following statements
hold for stochastic integrals of f and g.

(1) Iffis,t,®) = g(s,t, ) on D for we Ae B, then(gfdx)@, t, @)=
(Sng)(s, t,@) on D for we A,eB where A,c A and P(A) = PA).
(2) If a« and B are real numbers, then
(S(af + 59X (s, t) = a(&de)(s, f + B(Sng)(s, )

holds almost surely.

4. Lemmas for Theorem 2.1. Let K;; = K((i/n), (j/n)) where
K(s, t) is a real-valued continuous function on D and define the trans-
formation T,: C,— C, by

5)

|

(a)(s, ) = o, 0) + 30 3V K, w( 1,4

. s 18 (), A1) Dl
s (s ”“:fl )~ )
KL - 500 =50

For s = (,/n), t = (k/n), we have for ~,k=1,2, ..., m

(4.2) (Tnx)<ni, %) - x(é, £> L 1ss K“x(i L)

n n N i=1 j=1 n n

LEMMA 1. Let H(%y, =+, Ju) be a real-valued bounded and con-
tinuwous function on R™ and let G(x), x e C,, be defined by

(4.3) Glx) = H@(% —i—) x(% %)) :

then

gch(x)dm - g A(T.) exp{ DS KH,j_lzv<i —15-1 d“}

“@s) g} n n
. exp {_._]'_.Zn" N K%_l’j_l,;ﬁ(_?_—__l, ‘7 —1 >_L}dm
2i=1 =1 n n n?

where
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A-'=w<i,i>—x(——i_l,i>—x<-i—,j'_1>+x<———i_1,—_j—l),
Y n’ n n o om n o n n

Proof. From the definition of m, we have

S G(m) dm = (271'_2%)_”2/25 QH(771U Tty 7]m)
Cy R

. exp {— %—; ;1 Mi; — Nicayi — Niimr + vi_l,j_l)z}dnu, ey AN o

Let S, denote the linear transformation of R onto itself defined by

1—1 j—1 .
~€z7+-];'ZZKmléml 'l:y.?:lvzr"°yn-
nk =1 /=1

The Jacobian of S, is equal to 1. Applying S, to the right side of
(4.6) we obtain

SCZG(x)dm = (2r—tm)—"

@n - [t (G e b oSS Ky Vol o0 Eu)duy =+, A

n? =1 7=
where
Jal6iry <+ 1 Ean)

= exp{ )y ﬁ Ki 1 jiicnimaGis — Eimni — & Ei_l,j_l)}

i=1

.

1 n n n n
* €Xp {"EEZK3—1 ]—1$z~1 J— 1 2 "—‘ZZ (Eu Ei—l,j"‘Ei,j—1+5i—1,j~1)2}-
=171 n 2i=ii=

On the other hand,

o= o 2) 1 2)
1

= Holr ) o ) + R 2 Kl 3)-

Again from the definition of m, we see that the right side of (4.7) is
equal to

S G(Tnx) eXp{ é é Ki—l,j—lw( i1 ’ j —1 >Aif
Oy i=1 j=1 n n
%ZZK—11—1x<Z—1y:]—1)L2}dm
i=1j=1 n n n

which is precisely the right side of (4.5).
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LeMMA 2. Let X be a random wvariable on a probability space
(2, B, P) which is distributed normally with mean 0 and variance v.
Let 'Y be a random wvariable on (2,8, P) which ts measurable with
respect to a o-algebra ANCB. If the o-algebra o{X}CB generated by
X and the o-algebra A are independent, then

(4.8) E( exp {XY - %v Yz} o) =1.

Proof. To prove the lemma we show that for every Ae A

S exp {XY~ isz}olP = S dP.
4 2 A

Let Py be the restriction of P to . Let us write o{%} to mean
the o-algebra generated by a collection of sets M. Consider the trans-
formation T of the measure space (2, %) into the measure space
(R* x 2, o{®B" x A}) defined by T(w) = (X(w), w). This is a measurable
transformation since T'(o{®B' x W) = o{T*(B' x W)} which is con-
tained in B since T(B' x A) is. Let U be the transformation of
(R'x 2, o{B'xA}) into (R', B') defined by

U, 0) = exp {{Y(0)—1/2Y*(@)} .

This too is a measurable transformation since Y is 2-measurable.
Let P, be the probability measure on o{8' x B} induced by 7.
For Be®B' and Ae DB, we have from the independence of ¢{X} and U

P,(B x A) = P(T™(B x A)) = P{Xe BIP(A) = Py(B)Pua(A)

where P, is the probability measure on %' induced by X, i.e., the
normal distribution with mean 0 and variance v. Thus P, is the
product measure of P, and Py.

Now for Aec U we have by Tonelli’s Theorem

SAeXp {XY - %v Yz}dP (UT)(@)dP = SRIXAU@’ @)dP,

\
| L] exp {v@) = Sov@)ap: iy
§

F e Tl

- S Py .
A
This completes the proof of the lemma.

LEMMA 3. Let X(s, t, x) be the stochastic process on the probability
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space (C,, &, m) and the domain of definition D = [0,1] X [0,1] de-
JSined by X(s, t, x) = x(s, t) for x€C, and (s,t)e D. Let g(s, t) be a
real valued fumction on D and let f,(s, t, x) be a stochastic process on
(C,, B, m) and D defined by

4.9 Suls, t, ) = g( [";/S], [n] )x( ['"’s], [m]) for xeC,.

n n n

Then the stochastic integral <S f,,dX)(s, t,x) of the process f,(s,t, x)

with respects to the generalized Brownian motion X(s,t, x) satisfies
1{ - —
(4.10) E’[exp {(S fAX)A, 1, 2) ~ _2_S £3(s, ¢, m)d/}] —1
D

Proof. Since f, is a stochastic step function,

(frax)an =55 a(=L, Lo,

9=1 g=1 n n
where
AM:X(j_,_j_)__X(’i——-1’i>_X<i’j_1>+X(?:—1,j__1>.
n n n " n n n n

Let

f(z—~1 y—l)d__~iz<z~l _7——1)_1_

"\ n Yoo2t"U T n
Since

|- St o)L

> ifnfgln
Z,; = exp {E ax(* —”—) - lg : S 'f5(s, t)dsdt}
n n 2Jo Jo

1

J
= exp {Z, .,Z;l ,,q}
Let 2;; denote the o-algebra o{X(s,t):s <i/n or t = j/n}. Then
fu@ = D/n, (5 — 1/n is A,_,, ;_,-measurable for 7,5 =1,2, .-+, n. The
random variable 4;; is normally distributed with mean 0 and variance
1/n*. Furthermore o{4;;} and %,_,;_, are independent. By Lemma 2

(4.11) E(exp {T;;}| WA yin) = 1.

To prove the lemma, we must show that EZ, = 1. Now for
m=1, «+«.m X(m —1)/n,0) =0 and hence f,(m — 1)/n,0) =0 and T,, = 0.
We have Z,, = exp {32, T,.} = 1. The proof will proceed by induection.
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Consider E(Z, ;,_exp{>t_ T.}. If k=1
E(Z,,;-, exp{T;}) = E[E(Z,,;_, exp {T.;}|%,,;-)] .
Since Z,,;_, is 2, ;_,-measurable

E(Z,,;- exp{T.}}) = E[Z,;_ Elexp {T,;}|%s,;-)]
= E’[Zn,f—ll

by (4.11). Now suppose that
k
B(Z, ex0 {3 To) = B0 -

Then

B(Z,,.exp {fniz T,,”-}> - E[E(Zn,j_l exp {% ij} | *zt,c,,._l)] .

Since Z,,;_,exp {3V, T,;} is U, ;_,-measurable

k41 k
B Z,5 exp {3 Tush 1| = Zussexo {3 Tl Blexp (Th) 20,02

k
= Zn,i exp{Z_, Tm}~
By the induction hypothesis, we have
k41
B(Zussexp {3, Tus}) = E(Zuso) -

In particular for k =n,Z,; = Z, ;_ exp {3%-, T,;} and EZ,; = EZ, ;_..
It follows that EZ,, = E, = 1.

Let L, be the transformation of C, into C, defined for (s, ¢) ¢
[ — D/n, i/n] < [(7 — 1)/n, j/n] by

st = e £ - 505
1

s ra(io b L) —s)(r - L)
e (i Cl)
pa( b o)L s)(L - o))
Clearly

(.13 Il = max |o(L, L)) < iz
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(4.14) lim ||| Lz — 2|l = 0.

Then for T and T, defined by (1.2) and (4.1) respectively, we have
(4.15) lim || L, T« — Txl||| = 0.

This follows from
L Tow — Tolll = ([ LTy — LTl + [[[ LuTe — Tall]
where
1 LT — LTl = | Ty — Tull] by (4.13), lim [[[T0 — Tel[| = 0

from the uniform continuity of K(s, t) on D, and lim, . |||L,Tx — T2|||=0
by (4.14).

LeEMMA 4. Let X(s, t, ), g(s,t) and f,(s, t,x) be as defined in
Lemma 3. Then the random variables Z,(x), n = 1,2, +++, on (Cy, §F, m)
defined by

(4.16) 7, = exp {(5 f;,dX)(L 1 — SD 2, t)d/}

are uniformly tntegrable on C,. Lf g(s, t) is bounded on D, then for
every B =0, the random variables Y, (x),n =1, 2, «+-, defined by

(4.17) Y,(0) = Lol Lo ) exp {(|£,4 )1, 1}

are uwniformly integrable on C,.

Proof. For M >0 let Ay, = {reCy Z,(x) > M}. To show the
uniform integrability of Z,,n =1,2, -.-, we show that for every
¢ > 0 there exists M > 0 independent of % such that

S Z@dm <& m=1,2 .

AM , n

According to Lemma 38 applied to 2f,, E(Z?) =1 and so choosing
M > 1/e, we have

1 1
Z.()d gg A Zowdam < 2 < ¢
S, (w)dm rZ@dm = <

AM,n

proving the uniform integrability of Z,,n =1,2, ---.
Suppose ¢(s, t) is bounded on D. Now

(i o)

n n

[ Ly |l] = max
(s,t)eD
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and so if xeC,, |||Lx|]| < B, and B >0, then |||£.|l| < Bl|g|l| and
[ 726, 00,2 Bllgllr. Letting 7 = exp (llgl|BY we have

Yo@) = Lol LD Zute) exp {| fits, 0} < 72,0 -
For K > ve!

Y (@)dm < vg Z@dm<er  m=12--
[ I

S[Y”>K] Z,>K|1]

proving the uniform integrability of Y,,n =1,2, ---.

LEMMA 5. If xeC, and for some M > 0 ||| L,x||| > Mexp {||| K|||},
then ||| L,T,x||| > M.

Proof. As in the Volterra integral theory one can show that T,
defined by (4.1) transforms C, onto C, in a one-to-one manner, 7, and
T,* are bounded linear operators, and || 7,*|| < exp {||| K |||}

Now for any x e C, which satisfies |||x||]| > Mexp {||| K|||} for some
M >0, we have |[||z|[| > M|| T[] If [||Twz|l| = M,

MITH < el = T Twelll = 1 T I Toxelll = | T ([ M

a contradiction. Thus for any x2¢C, if |||z]|]| > M||T;|| then
| Tpx|l|>M. Inparticular ||| L,x|||>Mexp{||| K|||} implies ||| T, L.|||> M.
But (4.1) and (4.12) imply that 7,L,x = L,T,x and hence ||| L, T,x|||> M.

5. Proof of Theorem 1. Since L,x, x€C, is determined by
the values of x on the lattice points (i/n,j/n) i, =1,2, <+, n, we
may define a function H on R* by

H(771U * ey 777571,) = F(an)

where 7;; = x(i/n, j/n). The continuity of F and L, implies the ¥-
measurability of FoL,. If R” is topologized according to the sup-
norm, it is easy to see that H is continuous. Since F is bounded, so
is H. Let
_ - 1 1N Loy
GW) = F(Lu) = H{y( =), -+ 9 2 2))

n m/’/

Then G(T,y) = F(L,T,y) and according to Lemma 1

ic F(La)dm = SC F(L.T,x)

v

e ee{ BB I )

n n n n
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Since lim, ... ||| L, — x||| = 0 and F is continuous, lim, .. F(L,x) = F(x).
Since F' is bounded,

.2) lim SC F(L.z)dm = SC F@)dm .

n—oo

We now show that the integral on the right side of 5.1 converges to
1 2 2
5 F(Tx) exp {—(SK(S, HX(s, t)dX)(l, 1) — gg K*(s, )a(s, t)d/}dm
Cy D

which will complete the proof. Since F' vanishes off a bounded set,
there exists M > 0 such that if |||z]||| > M then F(x) = 0. Let N =
Mexp {||| K||[}. Then

63 | Fe.Tan@dm = | gl Lel)FETT,@dn

where

Jn(w):exp{—. iK(i_l, j_1>x<i_1, j—l)di,}

n n n n
e (L (L 20 L),
2i=15=1 n n n n n’
Since K(s, t) and x(s, t) are continuous on D

limexp{—l—ﬁlilﬁ(t—l, J —1>x2<%—1, J “1>L2}
100 2 i=j=t n n n n n

S K*(s, H)a%(s, t)d/} )

D

2o |

= exp{—

Let

fuls, ) = Ke( L2, Lty Tns] [nf])

n n n

and f(s, t) = K(s, t)X(s, t). Then

z:K(’“‘l j—l)w(’i—l’ j—1>4ij=(5fndX)(1,l,x).

i=17 n n n n

By Theorem 8.2, since f,e M, and fe M,

var [G f,,dX)(l, 1,2) — (S de)(l, 1, x)] = var [(S(f” - f)dX)(l, 1, x)]
< | B — prde = 15 = P

Now
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I = 21 = 1 XG0 || Ko, ) — &( L2, o)

+ K| 6 0 — (2] [”“ |-

Using the continuity of X(s,t) and K(s,t) on D and the fact that
X(s, t) — X([ns]/n, [nt]/n) is normally distributed with mean 0 and
variance st — ([ns]/n) - ([nt]/n) it is easy to see that lim,_.||f, — f|| = 0.

It follows that <S fndX>(1, 1,z) converges in m-measure to (S de)(l, 1, )
and hence

P EEE U ELAWEES W ES P
/ ¥

i=1 j=1 n

converges in m-measure to exp {——(SK(S, t)x(s, t)dX)(l, 1)}.
The integrand on the right side of (5.3) converges in m-measure to
2D F(Te) exp { — (| K(s, 0.X(s, pax)a, 1
1 2 2 \
—;SDK (s, t)x*(s, t,d/} .
This follows from the above and the fact that ||| L,x}|| < |llx]|| and
lim,_. /|| L,x — 2|/l = 0, which implies
1im Zio.1(ll Lo 1) = Lol 1) -

Since for each n =1, 2, -+, the integrands on the right side of (5.3)
are bounded in absolute value by

Ze( L D1 F exp { ~([£ax) @ v} -

Lemma 4 implies that the integrands are uniformly integrable justi-
fying the taking of limits inside the integral. Thus

lim g F(L,T,@) ] (@)dm = lim SC. Yoot (1| Loz |\) F (L To0) o () dim

7-=-»00

= | gl 1D F (T Tiwrdm
where

J(x) = exp {_(SK@, £ X(s, t)ch>(1, 1 — é—S[)IP(s, Bat(s, t)d/} .

Now |[||x]]| > N implies ||| Tz|[| > M and hence F(Tx) =0. We get
finally
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lim 50 F(L, T,2)J,(@)dm = g F(Tw)J (@)dm
N =00 P Cy
which upon substitution into (5.1) proves Theorem 1.

The proof of Theorem 2 is proved using Theorem 1 in exactly the
same way as Theorem III is proved from Theorem II in [4] by J.
Yeh and is therefore omitted.

The author wishes to thank Professor J. Yeh for suggesting this
problem.
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