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GAUSSIAN MARKOV EXPECTATIONS AND RELATED
INTEGRAL EQUATIONS*

JouN A. BEEKMAN AND RALPH A. KALLMAN

Let {X(w),s <w =t} be a Gaussian Markov stochastic
process with continuous sample functions, Examples of such
processes are the Wiener, Ornstein-Uhlenbeck, and Doob-Kac
processes, An operator valued function space integral is
defined for each process, This was done for the Wierer
process by R. H, Cameron and D_.t A. Storvick. For funec-
tionals of the form Fl(x) = exp ot — w, x(w))dw} where
0(t,w) is bounded and almost evesrywhere continuous, the
special integrals satisfy integral equations related to the
generalized Schroedinger equations studied by the first author.
For the Wiener process, a ‘‘backwards time’’ equation is
coupled with the Cameron-Storvick equation to give a pair
of integral equations.

In [12] R. H. Cameron and D. A. Storvick defined an operator
valued function space integral based on the Wiener stochastic process.
For an appropriate functional, such an integral solves an integral
equation related to the Schroedinger equation. The purpose of this
paper is to define such integrals for Gaussian Markov stochastic
processes, and prove that for appropriate functionals they satisfy an
integral equation related to the generalized Schroedinger equation
discussed by the first author in [5], [6], [7], and [8]. Examples of
Gaussian Markov processes are the Wiener, Ornstein-Uhlenbeck, and
Doob-Kac processes. For the Wiener process we will give a “back-
wards time” equation which when coupled with the Cameron-Storvick
“forwards time” equation will give a pair of integral equations.
That a function space integral solves a pair of integral equations
was first done in [14] by D. A. Darling and A. J. F. Siegert.

This area of research is motivated, in many respects, by R. P.
Feynman’s function space integral which he first discussed in 1948
[16]. Since then extensive work has been done to enlarge the class
of functionals for which “Feynman integrals” exist. See, for example,
the work of R. H. Cameron [9, 10, 11], Donald Babbitt [1, 2, 3, 4],
Jacob Feldman [15], K. It6 [18, 19], Edward Nelson [22], and G. W.
Johnson and D. L. Skoug [20, 21, 23]. In the papers by Cameron
and Storvick [12, 13] the integral equation involved is related to
the Schroedinger equation. A heuristic discussion of that relation is
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contained in the first author’s paper [8].

2. Notation and definitions. Let {2(p), s £ p < t} be a Gaussian
Markov process with mean function m(p) = &v(p)/v(s), s < p <t and

covariance function
Ulayw®), a=<b

B@ O =1 vew@ , b=a

where Ul(p) = u(p) — u(s)v(p)/v(s), s=p = ¢,

2.1) wp) =0, vp >0, ssp=t
(2.2) u'(p) and v'(p) continuous on [s, ]
(2.3) [v(p)w'(p) — u(pv'(p)] >0, s<p=t.

These processes have almost all sample functions continuous, and
since U(s) = 0, x(s) = & for almost all sample functions.
Let C.[s, t] be the set of continuous functions defined on [s, t]

with «(s) = & The Gaussian Markov expectation of a functional
I

F'[x] over C.[s,t] will be denoted by \ Flx]d, zx. The “m” will
JCels,t]

be omitted if it is identically zero. We have the relation (see [5])

ey | Flldee = )+ a()h6)d -
Cels,tl Cls,t]
Examples of the u and » functions are:
ExAMPLE 1. Wiener process: u(p) = p, v(p) =1, s<p <t

ExamMpPLE 2. Doob-Kac process: u(p) =, v(p) =1—p, 0s <
p=t<l.

ExAMPLE 8. Ornstein-Uhlenbeck family of processes: u(p)= %",
v(ip) =€ " >0, a>0,s=p=t.

We will now introduce some ideas and notation from [12] extended
to Gaussian Markov processes.

For » > 0, let

(L(F)¥)E)

(2.5)
= | FOa() + go() @) () + 000 dae

where F is a real or complex valued functional defined for all

continuous functions on [s, {] and + is a real or complex valued func-

tion defined almost everywhere on (— o, ) and & is a real number;
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and the \, F, +, & are so chosen that the Gaussian Markov integral
exists. Now assume that for a certain choice of the A, F, + the
integral (2.5) exists for all (or almost all) values of & in a set S of
real numbers. Then

(2.6) L(F)y

denotes the function which maps & into (L, (F)v)(&) for almost all
values of £ in S. Now assume that for a certain choice of X\, F,
the function (2.6) exists for +» in a class of functions D and belongs
to a class of functions £. Then the operator

(2.7) L(F)

maps D into F. In this paper D and E will usually be L,(— co, =),
so L(F) will usually be an operator that maps the Hilbert space I,
into L,. It can therefore be regarded as an operator valued function
space integral.

If F(z) = exp{gtﬁ(p, x(p))dp} and certain smoothness and order

of growth conditions are placed on 0 and +r the expression (2.5)
(which now depends on s and &) is a solution of a partial differential
equation (see [5]). In this case -y is not necessarily in L,.

We define

(2.8) Ii"(F)

to be the operator valued analytic function of X\, if it exists, which
agrees with I,(F') for real A and is analytic throughout Rex > 0.

We shall see that for Re >0, L(F)y: I(K)y where the
expression on the right is given in terms of a Wiener integral, and
the F' and K, and ++ and + are suitably related.

To show the existence of If"(F'), Rex > 0, we shall follow the
method of [12] and obtain I*(F') as a weak limit of operators I7(K)
which are defined in terms of finite dimensional integrals; thus
(2.9) I(F) = wlim I/(K)

fo|—0
where o is a partition of [s,¢]. See (0.8) of [12] for the definition
of I7.

Actually definition (2.9) can be made in terms of finite dimensional
Gaussian Markov integrals. This would involve using the multivariate
normal density

N E[R2r)"Ala, ) « o0 Aoy T)]7
% exp {3 Me; — (b olt; )F@AE - 6)}



306 JOHN A. BEEKMAN AND RALPH A. KALLMAN

in the definition (0.8) of [12] where
At ) = u(@)v(t:) — w(te)v*(t:)/v{ti)

and the v and v functions are subject to (2.1) through (2.3). How-
ever, our proofs will use I{*(F') as defined in (2.9).

Recently, Johnson and Skoug [21] have shown that the weak
limit of (2.9) may be replaced by the strong limit.

Finally we shall use

(2.10) To(F) = wlim Iz, (F)
)

to obtain the solution of the integral equation in the pure imaginary
case—the Feynman case.

3. The integral equation for A > 0,

THEOREM 1. Let 6{(t, u) be continuous almost everywhere in the
strip B: 0t t, —o0o <u< oo, and let |0, u)| < M for (I, w)
in the strip. Let € Ly(— o0, ), let x>0, t>s=0, and & real.
Let G{s, t, &, \) be defined by

G(s, t, & N) = S » exp {S:ﬁ[t — T, N2x(7) + &v(T)/v(s)]dT

X A [NTH(t) + Ev(t)/v(s)]dg . .

%

(3.1)

Then G{s, t, &, \) satisfies the following integral equation.

Gls. t, &0 = MerAG, 1)]” v@)
X exp (—Mz — Eo(t)/o(&)/[24(s, ])do

(3.2) t N
+ x‘/2(2n)“”2g [A(s, T)]“”zd‘cg 0t — 7, B)G(T, t, B, \)

x exp {—\x — &u(0)/v(s)]"/[2A(s, 7)]}d .

Proof. Let 6*(t,u) = 6(t — 7, uw). Let 8(z, u) = 6*(t, \""*u) and
P(u) = +(M""*u). Then

G(s, t, &, \) = SC o, CXP {8:9[‘:, x(t) + )»"Z.Ev(z')/v(s)]dr}

L8y

X Pla(t) + NEv(t)/v(s)lds . x = H(s, t, N'%E)

where H(s, t, y) = G(s, t, yn"'2, ).

We now apply (3.3) and (3.6) of [5]. The hypotheses on &
required by Theorem 3 of [5] are not necessary as can be seen by
consulting the Darling-Siegert paper [14]. The hypotheses of our
present theorem are sufficient. Hence
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Hs, t,9) = (27 A, )7 F(w) exp (~[u — yo(0)/o()}/124(s, O])du

+ Stgo_oj(r, @) H(z, t, @)[2mA(s, T)] "

x exp {—[a — yv(2)/v(s)])/[2A(s, T)]}dadT .
We transform the first integral with the substitution 2 = M1 to
obtain

WEEA(s, )] (@) exp (—Mw — Eo(O)/o(E)(RAG, ))da

We transform the second integral with the substitutions H(z, ¢, o) =
G(z, t, N2, \) and x = A "?a to obtain

g T" 0(t — 7, )G(z, t, & WNE[2TA(s, )]~
x exp {— Az — &v(z)/v(s)P/(2A(s, 7))}dxdT .
This completes the derivation for » > 0.
COROLLARY TO THEOREM 1. Assume that 6,4, \, t, s, and & are

as in the theorem. For the Wiener process, G{(s,t, &, \) satisfies a
pair of integral equations:
G(s, t, &, \) = N22x(t — s»—WS“ J(w) exp {—\E — w2t — $)}du

(3.3) +em) | (6 w)—wczwg": Bw — s, w)G(s, w, 1, \)
x exp {—M¢E — w)’/(2(t — w))}du ,

o

G(s, t, &, \) = MN*Q2x(t — S))"WS Jr(u) exp {—M& — u)*/(2(t — s))}du

(3.4) + )| w — 9 dw|” 6 — w, WG, 1w, )

J—

X exp {—ME — w)P/2(w — s))}du .

To prove this, we will need the following lemma.
LEMMA. Let

pw, a; 2, b) = (%P[X(b) < 2| X(a) = w] = [27A(a, B)]*

_lz— wv(b)/v(a)]z}

* exp{ 24(a, b)

be the transition density function for the process. Assume that it 1is
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stationary; i.e. assume that A(a,b) = A(@ + h, b + k) and v(d)/v(a) =
v(b + h)/v(a + k) for h > 0. Then
SCC”_M exp {S:_pﬁ[t — 7, N7V(T) + no(T)[v(t — p)]dr}
X A [NTE(E) + pu(t) ot — p)]dey
= SC_[M] exp {S:ﬁ[p — T, N 2(T) + m(z‘)/v(())]df}
X [N Ea(p) + nu(p)/v(0)]ds . 2

where = means if one side exists so does the other and they are
equal.

REMARK. It is easy to verify that the transition density func-
tions for the Wiener and Ornstein-Uhlenbeck processes are stationary.
This is not true for the Doob-Kac process.

Proof of lemma. Assume that the left hand side exists. Call
it G(t — p, ¢, ), \). Then by Lemma 2 of [5],

t

Gt —p,t, M) = Scn[t~p,t] exXp {S

X YN dy

o[t — t, X“‘“a)(?)]df}
—p

t

Using a definition from [8] and a mild extension of Theorem 1 of [7],

Gt —p t, )N\ = limg ﬁ P* (&) Tiss &iy To)

lzl=0) B, i=1

t —
% exp S ot — 7, )n‘”zf,,g]df}m;r[x“”zéﬂ]ds
t—p

where 7, =t —p< 0, <, <+ <7, =t &= [.(t)=¢&, 1=
0,1,.--,n, and ., is linear on each [r,_, z;]; also p*(w, a;z,b)
equals p(w, a; 2z, b) with A(a, b) replaced by A(a, b)/\.

From the hypotheses on A(a, b) and v(b)/v(a) we have

P*(Gics Ticas €00 To)
= [27A(T,_,, TN exp {—NE — Ew(T)/v(T )P/ (2A(T, -y, T2))}
= p*(éi—-u Tio1 — (t - p); £y Ty — (t - p))
Also, as in [7],

Izl = max (z; — 7;.)

F=1,000,m

= jgﬁ)f”([fj —t=—o] -l —(t—pDh=llc—-C-0Il.

Thus



GAUSSIAN MARKOV EXPECTATIONS AND RELATED INTEGRAL EQUATIONS 309

G(t - py t7 vy 7\4)
- lim S ﬁ p*(§¢_1, Ti_l - (t - 10): Eir Ti - (t - p))

He—(t=p) >0 ) B,y §=1

X exp {St o[t — =, k“lle’r,g]dt}qp[x*lfzsn]dg .
t—p

Let 6, =7, — (t—p), ©=0,1, .-+, n. Then
Gt — p, t, N, \)
- ulaiff_‘.ogR ﬂl P* (e 0503 &3y 0) exp {g:ﬂp — 0, N‘“‘JFB,g]d(?}qy[Ml/Zgn]dg
- (since s p = I;)
N Sw,m eXp{S:"[p — 8, A (O D ()

(by Theorem 1 of [7])
= G(0, p, 7, \) by Lemma 2 of [5].

By assuming that the right side exists, the proof follows in reverse
order. Proof of Corollary: Since the Wiener transition density func-
tion is stationary, by the Lemma
G tan = exp{{ 7ot — 5 — o nale) + glac]

C [0,t—s 0

X [Nt — ) + Eld,x = GO0, t — s, & N) .
Hence by (9.1) of [12]

G0, t — s, & \)
= Nt — ) ) exp [-ME - wpfR(t — 9)du

+ )n”z(Zrc)”/zS:ws(t —s— p)“llzdpglﬁ(p, w)G(0, p, u, \)
X exp{—M§ — w)’/2(f — s — p))}du .
Now let w — s = p and note that G0, w — s, u, \) = G(s, w, 4, \) by
the Lemma. Hence the second term becomes
M/Z(Zn)“”ZS:(t _ w)—UZde:a(w — 5, wWG(s, w, 1, \)
X exp {—M& — w)?*/(2(t — w))}du .

Thus (3.8) is verified.

Integral equation (3.4) is obtained from Theorem 1 since v(t) =1
and A(s,t) = t — s in the Wiener case.

REMARK. The concept of a pair of integral equations representing
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forward and backward time equations was suggested by the Darling-
Siegert paper [14].

4, The analyticity of G and the integral equation for Rex > 0,

THEOREM 2. Under the assumptions of Theorem 1, G(s, t, & \)
has an analytic extension to Rex > 0 and this extension satisfies the
integral equation (3.2). Furthermore this analytic extension satisfies

(4.1) 1G(s, 8, -, M= [y ] (v(s)/v(2))'* exp [MUE,)/v(t)] -
Proof. First we show G has the analytic extension. By a formula
in [5, p. 792] we can write
G(s, t, &, \)

SC N exp{SZﬁ(t — 2, v o(0)a(UE) (D) + Ev(r)/v(s))dr}
X PN P()e(UQR) [v(t) + Ev(t)/v(s)]d.@

where the right hand integral is a Wiener integral.

Let a(r) = U(r)/v(r). Our hypotheses on u,v (see §2) insure
that o’ is positive and continuous on [s, t]. Thus there exists C such
that 0 < 1/a’(t) < C on [s, t]. Next we transform the inner integral
in G(s, t, & N\) by 7/ = a(r). Then

G(s, t, &,\)
- gc[o,a<t>] exp {S:mﬁ(t — a7, N (a7 (T)a() + Ev(ai(T))/v(s))

% L@ by eiat) + so/olde
- Scm,m exp {S:"?(T" ATH(T) 4 E/v(s)df’}«/?[k—lﬂx(r') + &Jv(s)]dua

where ¢ = a(t), 0(z', u) = 0(t — a ("), wv(@ (T))(d/d’) (@ (7)), $(u) =
J(v(t)w). Since 1/a’(7) < C on [s, t] and v, o are continuous, there exists
M such that |d(z, u)| < M, and @ is continuous on [0, #'] ® (— oo, ).
Let

(4.2) K(x) = exp {S:ﬁ(r', x(z"))dz"} .

Let I, I;” be as in (2.7), (2.8) for the Wiener process with »(r) = 1.
Then LK (¢/v(s)) = G(s, t, &, N). Then because of the hypotheses on
§ and since v € L,, by Theorem 4 of [12], I{"K = I;**K is an analytic
extension of I,K; thus G has an analytic extension

(4.3) G(s, ¢, &, N) = L"EG(E/v(8) = Ky (Sv(t)/v(s)) -
Furthermore by Theorem 4 of [12] (see also line 19, p. 542 of [12])
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G, -, M| = [[v((-)v@®)/v(s)) || exp (Ma(t;)). But

(O o®p@) I = | v Eu®/e) 2
= /)] ¥ It = /)l v I -
Thus (4.1) holds.

Finally, Morera’s Theorem can be used to show the right hand
side of the integral equation (3.2) is analytic. Thus (3.2) is valid
for 0 <s<t<t, Ren >0, & real.

Next, we note that as in the preceding proof, we can extend
the Corollary to Theorem 1. We embody this remark in a

COROLLARY TO THEOREM 2. Under the assumptions of Corollary
to Theorem 1, G has an analytic extension to Rel > 0 which then
satisfies equations (3.3) and (3.4).

5. The integral equation for Re A = 0—The Feynman case.

THEOREM 3. Let 0(t, u) be continuous almoest everywhere in the
strip R: 0<t<t, —co <u<oo, [0t u)|M for (t, yye¢ R. Let
€ Ly(— oo, o0); then I'(s,t, +, q) = wlim, ,+ G(s, ¢, -, 7 — 1iq) exists for
t &eR, t>s=0, and almost all real q. Then for each s€|0,t)
and almost every real q,

F(S’ t’ 57 q)
= Lim. g2 A(s, t))ﬂ/zS:f./f(x) exp {ig(z — Zv(t)/v(s)/(2A(s, )}

B—oo

5.1 !
6D im, q"z(Zm)*”zSt(A(s, ) "rdr
Booco 3

< [ ot — = 91, 4,0, 9) exp figle — £o(@)/0(e) (A, 2)ds -

Proof. Let 6 and  satisfy the hypotheses. Then
wlim,_+ G(s, £, +, 7 — Q)

exists for (¢, &)e R, 0 <s<t and almost all real q. To see this
observe that from (4.8) G(s, ¢, & \) = I[*Ky(Sv(t)/v(s)) where K is
given by (4.2). Now from our hypotheses on ¢ and by Theorem 5 of
[12, p. 534], wlim,,_,, I[;"K+ exists, for almost all ¢, with limit
denoted J,K+-. Since v(t)/v(s) is bounded away from zero our con-
clusion follows. This weak limit, denoted I'(s,t, -, q) can be chosen
to be measurable.
Next let h(z, x) = 0(t — 7, ©)G(z, ¢, 2, \) and
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0(5, &) = V@A, )| hie, 0
X exp (— Mo — £0(0)/0(s))/(2A(s, D)}de

Since |0(t — 7, 2)| < M and using the bound on || G(z,t, -, \)|| given
by (4.1) means there exists B such that

(5.2) | A(z, )| £ B< = for all zels,t].

By Lemma 1 of [12, p. 522], |lg(z, (-)v(s)/v(c) ]| = || Mz, +) || < B.

Thus || 9(z, *) || =< | v(s)/v(z) ['*B < B’ for some B’ since v(7) is positive and
t

continuous on [s,¢t]. Then NS 9(t, -)d‘c” < B'(t — s). Thus if @€ L,

Sl ‘@(E)S:g(‘c, £)ydr|dz < || @ |IB'(t — s) so by Fubini’s Theorem

8192’(5)8:9(?, §)drds = S:Slcp(é)g(r, fdade .

Now Sll@(&)g(f, & ld: < |lell-llgz, )| = lle |l B" so by Fubini’s
Theorem

| P00 = | penremae, 9y we, o
X exp (—Mr — §0(2)/0(s)(2A(s, 7))deds

(5.3)  exl
= S_J_m@(g))vllz(Z?tA(s, 7))~ 2h(T, )
X exp {—Mw — E(w(0)/v(8)}/(2A(s, T)}dzdx .
Thus
S‘” @(E)dfgtg(z', Syde = Stkl/z(zﬂA(sv T))"Ilzr h(z, x)r P(&)
(5.4) - s R L L

% exp [— A — Ev(s)jv(t))/2)dsdade

where 4 = M A(s, 7).
Now let H, be the nth degree Hermite polynomial. Then

|”_#.0) exp (—&y20d¢| o(c, )d

_ gth(zm(s, z))‘”zdfr Wz, 2)®,(x, A)d

where @,(x, 4) = S:H"(E) exp(—£&%2) exp [— A(&v(7)/v(s) — x)?/2]dé. Now
B.(z, ) = B (xv(s)]v(7), A(v(z)/v(s))?) where

0u(n, ) = | H,(@) exp (—£/2) exp (— A — w¥2)ds .
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In [12, p. 547] it was shown
D.(+, DIl = @r)E[ AT ]| Ho(+) exp [— ()11 5
thus || @,(, 4) || £ @ro(@)/(| 4]v(s)))"i| Hu(+) exp [—(-)*]]].

Now the proof in [12, p. 548] can be generalized, slightly, to show
that

Lim. @,(+, NMe) = @,(-, —19/c)
Tor>o

where ¢ is independent of N and ¢ > 0. Thus

Lim. @,(-, M(7)/(v(s)A(s, 7)) = Du(+, —1iqu(7)/(v(s)A(s, 7))) -

But then
H ﬁn('y A’/14(& Z-)) - @Vn('y ——’M]/A(S, T)) ”

= (v(2)/v(9))"]| @+, M0(2)/(v(5) A3, 7)))
= Ou(+, —igu(0)/(v(s)A(s, 7)) || — 0

as v — —1g*. Thus

(5.5) Lim. @,(-, NA(s, 7)) = D+, —iq/A(s, 7)) .

2o—igt

But |0] = M and || (7, -)|| = B on [s, ¢] by (5.2) so
(A= || e e o - = 06 b v B A, 9)
— B(v, —ig/Als, 2))lde|
= [ (4G, 9B 0,0, MAG, ) — B, w—ig] A, 7) || de .

By (5.5) the limit of the integrand is zero. Also, from above,
1 D.(+, MA(s, ) || < [27A(s, D)o(@)/(| ) |o(s)] (| Ha(-) exp [—(-)]
8o a bound for this integrand is
B[ H,(-) exp [—(-)'] 1| @mo(0)/v(s) [N [T + [g 7] = C

where C is chosen such that the bound holds uniformly for all
tels,t]. Such a C exists since v(r) is continuous and, we may
assume, |M|=]ql|/2. Thus by bounded convergence, .7 — 0 as
A — —ig.

Now wlim,,_;, 0(t — 7, -)G(z, ¢, +,\) = 0(t — 7, -)[(, ¢, -, q) and
D,(+, —1q/A(s, 7)) € L, so
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|7 0@, —ig/AGs, )0t — 7, 9{G(z, t, 3,%) — Iz, 8,3, q)ldv — 0
as A — —1igq*. Now as a function of 7, this is bounded by

2B@2rA(s, 7)/l ¢ )" || Hu(+) exp [— ()T 1] -

Thus by bounded convergence

S(A(s )" llzdrg 0(t — 7, 2)B,(x, —ig/A(s, T)[G(z, t, 2, \)
- F(T, ty @, q)]dx —0

as v — —1iqt.
Thus 4 + % — 0 as A— —ig* and using (5.4) we have

Ji

III

lim |” H,(¢) exp (—&/2)dz| Dv(er A, o) de

I-—iqt

X S 0t — 7, x)G(z, t, x, \) exp [— A(x — &v(s)/v())?/2]dx

Il

lim S M@TAG, r))]wdzg 6(t — 7, )Gz, t, 2, NB.(z, A, 7))ds

2-—igt

= |-igienae, 1eae|” o - < T, 1 7 OB, —ia/Als, 2))de

= [-igremae onrac|” o - 0re, ¢ 00| H©exn(-e72)
x exp [igEv(@)/o(s) — 2)*/(2A(s, 7))]dsda .

Then, using the notation mg flu, &)du = 1.1 1 m BQWS f(u, &)du, a slight

generalization of Lemma 10 of [12, p. 542] shows the expression
becomes

6:6) 7. = | @emids, o)eac|” H@ expl-e21as | ot - 7,0
x Iz, t, v, q) exp lig(@ — £0()/v(s))/2A(s, 7))lda -
Since w lim,__;, G(z, ¢, -,\) = I'(c, t, -, q), We have

]| = liminf [|G(z, ¢, -, M| = C
A—-—iq

where C is the bound on ||G|| given in (4.1). Then by Lemma 1 of
[12, p. 522], I'(z,t, -, q)€ L, |0] < M imply

”(.)Sjwﬁ(t — 7, 0) (7, t, %, q) exp [ig(x — (+)v(7)/v(s))*/(2A(s, z‘))]dx“
< | I'(zg, t, -, Q) || M(A(s, T)v(s)/(2rv(T))"* < B"(A(s, 7))'*

where B is chosen to be independent of 7 since v(r) is positive
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and continuous on [s,t]. Thus by Schwarz’s Lemma, since
H,(+) exp[—(-)*/2] e L,,

ISlHn(E) exp [—52/21015(5)513 ¢ ==l b s )

x exp [ig(x — &v(7)/v(s))*/(2A(s, 7))|dw
= [ H.(+) exp [—(-)*/2] [|B"(A(s, 7)) = B""(A(s, 7))

for the appropriate B’”. Thus the integrand for J, in (5.6) is bounded
by (ql/@r)"*B" for s<t <t —co <&< co. Thus by Fubini’s
Theorem
. oo t (&) (oo
T = (/2w |” H,@) exp [—e21de] (AGs, ) as |7 ot - 7 0)
x I'(z, t, x, q) exp [1g(x — &v(7)/v(s))*/2A(s, T)]d .

Next we consider

Jo= lim | H,@ exp [-e2102002740, 1) (@)
X exp {~ Mz — §ot) o]}/ 2A(s, 1)d .
As in (5.3) above we can interchange integration so
J.= lim (emaGs, )" y@del” H,) exp[-£2)
X exp ([ — &0t/ 2A(, D)ds -

Since H,(%) exp [—¢&%/2] € L,, by dominated convergence

lim S:Hn(é) exp [—£2/2] exp {—Mx — £o(t)/v(s))Y/(2A(s, t)}ds

= SlHn(E) exp [—&/2] exp {ig(x — Ev{t)[v(s))*/(2A(s, t))}dE .

By Lemma 1 of [12], the L, norm of the left integrand as a function
of & is bounded uniformly in » (assume |[\]| > [q|/2) so by 13.44 of
[17] we have the weak limit

Jy = (q/(2miA(s, t)))”“'glw'f(w)dwglﬂn(é) exp [—&*/2]
x exp {ig(x — &v(t)/v(s))*/(2A(s, 1)) }ds .
As with J, in (5.6) we have

(§)

Jo = (a/mid(s, 1) H,@) exp[-&/21ds | (@)
x exp {tg(x — &v(t)/v(s))*/(24(s, t))}dx .
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Finally, multiply both sides of (3.2), valid for Rex > 0 by Theorem
2, by H,()exp[—&/2] and integrate with respect to & Taking
limits of both sides as M — —ig* gives

lim S“wﬂn@) exp [~ &/2]G(s, t, & NdE = J, + J,

do—igt J—

or using the definition of I,
|” #.0) exp [-2/2T6, 1, ¢, q)de
= |7 H.@ exp [-210{ 0/2mias, o))"
x |7 @) expliae — 2o)/o(0)/(2AG, 1)]d
+ [‘wiemiae e[ o - 5, 006, e 0

x exp [ia(w — 20(2)/0(s))"/(2A(s, 7)]da}

for almost all q. Since the H, (&) exp[—£&¥2] span L, the desired

equation (5.1) results.
As in the preceding proof we can extend the Corollaries to

Theorems 1 and 2 to obtain a

COROLLARY TO THEOREM 3. Assume that 6,+,q,t, s and & are
as in Theorem 3. For the Wiener process, I'(s,t, &, q) satisfies a
patr of integral equations:

I'(s,%,¢,9)
= Lim. (g/(2mi(t — 9)*|" ¥ (@) exp ligle — 9¥Y(2(t — o)1z

A—oo

(6.7) ) , 4
+ Lim. (q/(27ri))”2§ t — w)“’zdwg_ O(w — s, x)I'(s, w, x, q)

X exp [ig(w — &/(2(t — w)lds ,
['(s’ t’ E’ q)
= Lim. (g/(@mi(t — 9))*| () exp [iglw — (2t — 9)lds

Ao

(5.8) @ , 4
+ Lim. (q/(Zni))"?S (w — s)“’zde_AH(t — w, §)T(w, ¢, %, g)

% exp [ig(@ — &)Y(@(w — s))]de .

REMARK. In [13] Cameron and Storvick extend their results
from almost all points of the imaginary axis, iq, to all points except
q = 0. The extension of these results to Gaussian Markov processes
is presently under investigation.
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