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CANONICAL DOMAINS AND THEIR GEOMETRY IN C*

KE1zo KikucHi

In this paper we introduce some differential geometric
properties of canonical domains of bounded domains in C»,
using our synthetic expression by matrix, In the proofs of
the theorems, our formulas of matrix derivatives play the
leading part.

In order to construct relatively invariant matrices, the author
devised formulas of matrix derivatives and obtained some results ([2]).
Here we use these formulas for the calculations on the argument of
the theorems of geometry. The constructed matrix 4,75z, 2) (see [2])
becomes the curvature temsor, and T3'(Z, 2)(0Ty(Z, 2)/02) becomes Chri-
stoffel symbols in the Kaehler manifold with the metric ds, =
dz*T,(z, z)dz where ;T5(Z, 2) = (E, X Tz, 2))(0/02*)(T5' 7, 2) 0Tz, 2)/02))
and T, 7, z) = 0°logK,(Z, 2)/02*0z. We study some differential geometric
properties of canonical domains, that is, Bergman representative
domains, m-representative domains, homogeneous domains, and our
minimal domains of moment of inertia which are defined and investi-
gated in §2 ([1], [5], [7], [12]).

We calculate Christoffel symbols at the center of canonical domains
and give the condition which a geodesic curve through the center of
a representative domain satisfies in Theorems 8.4. In Theorems 3.7-
12 and Corollaries 8.1-4, we discuss scalar curvature and holomorphic
sectional curvature.

The author wishes to thank Professor S. Ozaki for helpful discus-
sions in the preparation of the present paper.

1. Preliminaries. Let D be a domain in C* which posses a
Bergman kernel function K,(Z, 2) = @*(¢)@(2), t, z€ D, where ®(z) =
(?.(2), P(2),-++) and the marks ' and * denote the transposed and
transposed conjugate matrices respectively. We consider a vector
function w(z) = (w,(), +++, w,())" in D. If the function w(z) is both
holomorphic and locally one-to-one, i.e., det(dw/dz)+0, then the funec-
tion defines a pseudo-conformal mapping of D onto another domain
4c C*. Turther, the inner product of two functions f, g belonging
to a class &5? of all holomorphic functions {(2) of D which satisfy

SD 1£() P dvy, = Sp(SDC(z)C*(z)dvD) < oo, as follows:

¢, 90 = | f@5"@dos ,

where dv, denotes the Euclidean volume element on D. Moreover we
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682 KEIZO KIKUCHI
define a norm || f||, of f(z) as

iRy IF 1t = Sp(f, )0 = | 17 @ o, -

We shall define some notations for derivatives of matrix functions
with respect to the vector variable z = (2, ++-, 2,)":

h+k ¥ kh k
where (0/0t)*" and (0/0z)* denote h-times and k-times Kronecker product
of (0/ot)* = (9/ot,, ---,3/0t,)" and 0/oz = (3/oz,, +- -, 0/0z,) respectively.
If w(z) is a function of z only, the kth derivative is denoted by
d*w(z)/dz*. In particular, if z and ¢ are both fixed, then we shall
write the derivatives merely .=t or 0***w/ot**dz*. Hereafter, some-
times we shall write T,(t,, t,) = T», K,(to, &) = Ky, 0°K (Lo, t,)/0t*02 =
0°K,/0t*0z = K,*,, and so on. Further we denote the following for-
mulas with respect to the matrix derivatives:

oF oF
1.3 = — 2 —1
1.3) = F = (B, x F7),

(F is a regular & x k matrix function and E, is an » X % unit matrix)

(1.4) a(g; G _ __(E ¢ + FaG

(F and G are k x [, | X m matrices respectively)

1.5) gf SCF(GC X E’l) + <8C X Ek)<E' X %) ,

(F" is a' k x | matrix, z, { are n x 1 vectors)

(1.6) oF R G _0F g4 ( z)(ﬁ,,, < B),

(F,G are k x l, t xv matrices respectively, and
~ €y, ***, €
B, = ...
€iny ***y Cln
where e;; are | X # matrices in which only (¢, j) element equal to 1,

and others 0). If { = {(2) is a pseudo-conformal mapping of a domain
D onto a domain 4, then we have

(L.7) K,(E, 2) = <det df(t))*K .0 det %) dgz)
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(1.8) T, (%, 2) = (df@)) T, C)dC(Z)

and for a matrix P = (ﬁ ]{’,) with the block subdivisions, it holds
that
(1.9) P = (K" +XZTY, - XZT

—Z7Y, Z

where K, N are square matrices, and X = K 'L, Y= MK, Z =
N—-MKL.

2. Moment of inertia and relative invariant matrix. For the
holomorphiec mappings ((z) = A(z—t,) + (higher powers) with respect
to ¢, we define the classes which satisfy respectively the following
initial conditions at a fixed point ¢, € D:

%;to:A:E, ‘-g\_;il’.to:dEtA:l.,
*
%A*A;;to: detA*A = 1 y %PA*A;%: Sp;? A - 1

(%:to c %mo C Flarant, © F SpAraty) o

Bergman representaive and minimal domains were considered for the
classes #;,, and F., respectively. If we define the moment of
inertia of 4 which is the image of D by {(z) as

2.1 mom(d) = ||{]]; = SA[CF dv, = S < det Izdvp ,

then a minimal domain of moment of inertia with {(¢{,) as center
which minimizes mom(4) may be considered for the classes of the
above four types. But now we treat for the class .#;.,. First, we
deal with the minimum problems following S. Bergman ([1], [5]).
The following relations hold for any functions {(z) = A(z—1,) + (higher
powers), using (1.9),

@2 @l = Sp| v, = Sp0, (5, %) (G0

*

=——S AT A*)
X, p(AT5'A¥)

and minimizing function exists uniquely and is expressed as follows:

e 0 i, ) G o) = g AT oo,

where A is an n x » matrix. If {(z) € ¥;,,, then {(2)det(d((2)/dz) also
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belongs to .#;.,, hence the mapping {(z) which maps D onto a minimal
domain of moment of inertia satisfies

d?) _ Koo &) s o (7
24 (0 de ) = R 75, Tolf, 2z

and the moment of inertia of this minimal domain is 1/K,-(SpT5Y).
(See [9]).

THEOREM 2.1. A mnecessary and sufficient condition for a domain
D to be a minimal domain of moment of inertia with t, as center is

(2.5) L(K,(F, 2| To(F 2)d2) = K, T
In fact, for the identity mapping {(z) = z of D, {(2)det(dl(z)/dz) =
2, therefore the necessary and sufficient condition is

¢ = WT}S%TD@, 2)dz .

D

THEOREM 2.2. A domain D s a minimal domain of moment of
anertia with t, as center, if the following condition is fulfiled:

(2.6) FKo(Fo, 2)/0t*02 = Ko T, .
Proof. From the hypothesis, we have 0K, (%,, 2)/0t* = K, Tp-(z — t,),

therefore 0K ,/o0t* = 0. Hence, using the relation

K, (%, z)gt T,(F, 2)dz = 0K,(T,2)/0t* — W.afg/&t* ,

D

we have
§Mﬂwﬂnmmw:&n,
V4

to
consequently the hypothesis of Theorem 2.1 is fulfiled.

COROLLARY 2.1. Let D be a minimal domain with center at t,,
then a mnecessary and sufficient condition for the domain D to be a
minimal domain of moment of inertia with the same center t, s

@.7) FK o (,, 2))0t*02 = KTy .

COROLLARY 2.2. Let D be a representative domain with center at
t,, then D is a minimal domain of moment of imertia if and only if

2.8) LK p(F, 2)+(2 — 1)) = K -
dz
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Proof. By the hypothesis we have T,(t, 2) = T,, consequently
S T,(%,, 2)dz = Tp-(z — #,). Substituting this into (2.5), we obtain
0
(2.8).

COROLLARY 2.3. Let D be a representative domain with center at
t,, and simultaneously a minimal domain with the same center, then
D is also a minimal domain of moment of inertia.

Proof. We can prove easily from 0*K,(t,, z)/ot*0z = K, T, which
is a necessary and sufficient condition for a domain D to be a minimal
domain with center at ¢, and simultaneously a representative domain
with the same center, and (2.6).

Next, we introduce relative invariant matrices which play an im-
portant part in Riemannian geometry of a complex n-dimensional
manifold.

LEMMA 2.1. The following relation holds:

(By x T, )5 T7'F, 271222

(2.9)

_0°Ty(,2) _ 0T»(Z,2) 0T, (Z, 2)
02*0z oz* T@ =3~ 0z

=,T5%, 2)) ,

and for any pseudo-conformal mapping = {(z) which maps D onto
4, we have

(2.10) T2, 2) = (d(2)/d2)*%,T.(C, O)(dl(2)/dz)

where the power means 2-times Kronecker product. (See [2]).
LEMMA 2.2. Let 4,2, 2) be

@11)  E 2) = (38(:*{;’;") a(éfz ) (grr)- 3K cm>

where K? = (K,(Z, 2))* and T = T,(Z, ), then under any pseudo-con-
Sformal mapping we have

(2.12) o, 2) = (dL(2)/d2) "y ,(C, O)(dL(z)/d2)* .

REMARK. For p > 2 we showed that (%, 2) are positive definite
(see [2]), but in the following (Corollary 3.4), we shall show that, for
» > 1, these quantities are also positive definite in a bounded domain
by the properties of holomorphic sectional curvature.

In fact, Using the formulas (1.4)~(1.6), we can calculate as
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follows:
HET) _ (2K 7Y 4 022
0z 0z
82(KPT) . I: p__zaK —a_—Ig T)
02%0z p|(p — DK 0z <az* ~
e oK 6T>]
Kp 1 T e —_-
- (82*8zx + oz* ~ 0z
oK _ oT 0*T
K= x —— + KP——— |
T 0z * 0z* + 02%0%

therefore, we have
(2'13) PWD(EJ Z) = ZTD(Ey Z) + ./pTD(Ey Z) X TD(Er Z) *
From this and (2.10), we obtain (2.12).
3. Curvature in canonical domains. We introduce a positive

definite Kaehler metric on D which is invariant under any pseudo-
conformal mapping of D

dst = dz*Tp(Z, 2)dz ,
and consider a real 2n-dimensional manifold V,, of the variables

<§_> = (2 0 Ry By 000, z,) and let the metricibe

dsy, = dz*T,(Z, 2)dz

_ [d2\*(3TG ), 0 \lde
(3.1) (dz)( 0 , 1T, z))(f%)

(dz) (g”><d") ’

then we have ¢z; = 2T = Jup) Gus = %Tg =
s = (0°10gK (7, 2)/0Z,025), and 4,7 = 1, +++, m,
If we define a curve in V,, by the functlons

g £ gaﬂ - gaﬂ = O where
1, _

, s a,B=1,+++, n.

(Z(t)) = (zl(t)a °t zn(t), El(t), ) E”(t)),
Z(t)

with respect to a parameter ¢, then the infinitesimal distance on this

curve is given by ds = V'dz*T,(2(t),2(t))dz, and the length of this curve

joining two points 4, = (Sgﬁ) and 4, = (g?g) is

o= S / o z)—dt
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For the function F = (dz*/ds)T, (7, #2)(dz/ds) = 2*Tp(Z, 2)2, we have
(0FJoz) = £*(0T (7, 2)/02)(E, x £), therefore substituting this into
Euler’s equation we obtain

—(z*TD(z 2) — #29Ts (z 1@, 2 3

= T + 4 (aT(gz <B)+ (% x B)2L) - 2L x 5

_ g '*x'*———: ,

2T + (2 2 )dz -

hence we have a differential equations of geodesic (see [6], [13])
2+ T3 9208 DG x ) = 0,

(3'2) .. oT (Z . .

1 TG, z)%—zl(é %% =0.

Consequently, the Christoffel symbol is expressed as

1 ['iy rinyry°”y[’}rm
75, /21D ( 1 L >
2 » n» 7 eee n
(3.3 ri“ Flm I, ’ Fzm
T (7 FIL‘U n Flu' oI5
T, 921229 - ( e Tt ) :
o IS, oo, T T, o, T

(See [4], [10], [13]).
Now, for any pseudo-conformal mapping { = {(2), we can calculate
as follows by virtue of the above mentioned formulas (1.4)~(1.6):

T, z)aTD(: ?)

-8 eSS v 55

dz C
e (. s

dz dz

LEMMA 3.1. For any pseudo-conformal mapping, we obtain the
following relations with respect to the Christoffel symbol:

64 L - L1562 0E ) _ (15, L) (%),

dz¢ d dz
64) L= L1 000450 — (156, 2 >5T1;f BN G -

THEOREM 3.1. The vector €,(Z,2) =% + T3'(Z, 2)(0T (%, 2)/02)(2 X 2)
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18 a contravariant vector, and a geodesic curve in D 1is also a geodesic
curve in 4 under any pseudo-conformal mapping 4 = {(D).

Proof. We have
dz _ dz;:

2 :Eé:'d_CC1
_ dz _ d/de; &z z
T ds? ds(dCC> dCZ( e +

hence, substituting (8.4') into this formula, we have

dz 0T (Z, ©)
= e 0 gz2)E < 0

(T“l(z )M>(z' X %) + d—c'c' .

Therefore

0@ 2) = H(1rC 0PAe )¢ x O + = Za, 0.

Hence, ¢,(%z,2) is a contravariant vector, and ¢,(z,2) = 0 implies
SA(Z, £) = 0. ,

Next, we consider a contravariant vector (%D> which satisfies
the following transformation law: X\, = (dC/dz)kDL: (N, = (dZ/dZ)\p).
Then we have

ANy, Dy

7\,———— N
s (e xN) + 52, dz 02

d:C dg
=25 % (dny)
a2 (dz X Np) + dz(d p)
Substituting (3.4) for (d’¢/dz*), we obtain
dn, = L5z, 9 2T0E B g, o 2,
dz 0%
o > I
- @ OBt o) + S,

therefore we have the transformation expression of the covariant
differential:

m5m+m@¢MEWMM)

(3.5)
jc(dxp + T3G, z)aTD(z 2 (dz x xD)) dc(axp) ,
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@57 on, = dn, + TG, o"”T—gg’Q(dz X %) = -jl%(axp),

’
and the covariant derivative of a vector (23”) is given by

o
(3.6) Php = (‘”“D + T3, z)?_i’M(E o)y a@)
5% 7
’ = _ (O Oy ap D(z ?)
(3.6) PR, = <6z’ 2 4 T3, 92T 2 g o X ))

Now, we have the conditions of the parallel displacement

Do By 0T Y
ds  ds 8z(dx ? ’
Ny _ dip T—lﬂ(@ )V)zo
ds_ds+ 0z d>< P !

for a contravariant vector <§D> on a curve, then substituting the
D

tangent z of a curve for 7)—:”> we obtain a differential equation
D
of geodesic (8.2). Therefore, a curve on which the tangent is dis-

placed parallelly is a geodesiec.

THEOREM 3.2. At the center t, of any representative domain D,
the Christoffel symbols with respect to the metric dsb = dz*T,(Z, 2)dz
are all zero.

Proof. A necessary and sufficient condition for a domain D to
be a representative domain with ¢, as center is T3'T,(t, ?) = E,,
therefore T3'(0T,/02) = 0.

THEOREM 3.3. The Christoffel symbols at any pownt t, in a
bounded domain with Kaehler matric dsb = dz*Tp(Z, 2)dz become all
zero by the Bergman representative fumnction with respect to t,

3.7) £(z) = T;S: To(Fo, 2)d2 + £, -

Proof. Substituting (dl(t,)/dz) = E, (d*¢(t,)/dz*) = T3 (0T,/0%) into
(8.4), we have T;'(0T,/02) = T3'(0T/02) — T57*(0T,/dL), therefore
T74(0T,/08) = 0.

THEOREM 3.4. Let t, be an arbitrary point in D which s bounded
domain with the Kaehler metric dsb = dz*Tp,(Z, 2)dz, and let the
Bergman representative function with respect to t, be

(e t) = T3 To(E,, 2)d (See [1, [2)-
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Then the point t, lies on geodesic (3.2) if and only if
Tt t))ds* = 0 .
Proof. From Theorem 3.1 and Theorem 3.2, we have
P (b t)/ds* = €,(Z, 2) -

THEOREM 3.5. The Christoffel symbols at the center ¢, of any
m-representative domain A(m = 2, see [5], [2]) with respect to teD
are equal to that at the point t,.

Proof. For any m-representative function {(z) with respect to ¢,
we have d{(t,)/dz = E, d®¢(t,)/dz* = 0. Hence, by (3.4), we obtain

0T n(%s, t,) 0T ,(¢,, ¢,) .
0z

TD(EOy tO) ac

= T 4T, ¢)

THEOREM 3.6 At the center t, of a minimal domain of moment of
wnertia, if 0Ky(%,, t,)/0z = 0, then the Christoffel symbols are all zero.

Proof. From Theorem 2.1, we have

%(KD(Z'O, z)y T(E, z)dz)

z2=1)

—KDaaT‘+K X Tp+ Ty x K, =0,
therefore, 0T ,/0z = 0.

REMARK. By theorem 3.4, we may locate the geodesic through
a point ¢, that is, doing coordinate transformation

(@) = T3] Tolo Az + ¢,

at t,, the curve through the point ¢, on which d*{(¢,)ds* = 0 is geodesic.
Next, according to our method we express Riemann-Christoffel
tensor as

215 9 L8EE) (B x T3, 9).T4, 2

(3-8) Rize-Ri R -+ -Ri
B (Rﬁ;' . ‘RZn;:,) B <R’izl .. 'le;m) .
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For any pseudo-conformal mapping { = {(z), we have

et

((?19 % dc>ac*( T3, >8Tda(§’ Q)(dz)

therefore it is a tensor of contravariant [degree 1 and covariant

degree 3.
Further, we can express the curvature tensor as

(3.9)

LB x To6, 95756 92282 = 11,6, )
(3.10) R—uﬁy R R_Mm—l R—ll_lly ] R—lnfn
B <R7Lu7n ° %y RZ%HE) - (Riﬁuy tt Yy R;Znin) .

And, we can express the contracted Christoffel symbols as

(3.11) (S T“‘aT , SpT- gT) = (I e, T2 .

1 n

By theTrule 0 log (detT)/oz; = SpT(0T/0%;), we obtain Ricci tensor
Rl_fy b " -Rn—l
(3.12) —0%*log (det T)/0z*0z = ( ces .
' Rz, +-+, R,z
Therefore, the scalar curvature becomes

0® log (det T, (Z, z))>
0z*0z

which is invariant under any pseudo-conformal mapping.

(3.13) R, = —4Sp( »' (7, 2)

THEOREM 3.7. At any dounded domain D, R, < 4n(n + 1).

Proof. It is known that both M = (n + 1)T + (0* log (det T)/0z*02)
and T are positive definite Hermitian matrices (see [1], [3]), therefore

_)1:1 (00, or pn(Z%;)gSp(T-lM) g%ﬂ(zm, or pl(Z—i—j),

where A, = +++ =)\, >0 and p, = -+ = p, > 0 are eigenvalues of T
and M, respectively. Thus we have

n(n + 1) — 0.SpT™",
or

R

nn + 1) — %-Sng —4"— =n#n + 1) — 0,SpT™,
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or

n(n+1)—§§£.

1

THEOREM 3.8. Let D be a homogeneous domain, then we have
always

(3.14) R, = —4n .

Proof. At the homogeneous domain, it becomes

0°log (det T) _ T
0z*0z ’

therefore we have R, = —4Sp(T'T) = —4n.

THEOREM 3.9. In a manifold D with the metric dsl, = dz*T (7, z)dz,
1if there exists a fized point t, in D such that I,Z, 2) < Iy(t,, t,) every-
()

where in D, and if —4n=<R,, then we must have I,Z, z) = I,(Z, ot;)

everywhere in D, and cons%z]uently we have R, = —4n, where I,(z,2) is a
real valued (invariant) function defined by I,(Z, 2) = K, (7, 2)/det T)(Z,z).

Proof. From T = 6 log I/0z*0z + 0* log (det T)/0z*0z, we obtain

" — Sp(T“‘aZ logI) R,

02*0z 4

Therefore, by Theorem of E. Hopf (see [13]), our proof is completed.

THEOREM 3.10. In a bounded domain D, if there exvists a fixed
point t, in D such that J,(Z, 2) < J,(t, &) everywhere in D, then we
must have J,(Z,2) = J,(t, &) everywhere in D, and consequently
R, = 4n(n + 1), where J,(z, 2) = (K2, 2)" det Tp(Z, 2).

Proof. From (n + 1)T + 0°log (det T)/0z*0z = 0% log J/dz*0z, we
obtain

R,

n+ DHn — i SpT"lM

0z%0z

Since, by Theorem 3.7, we have SpT(0* log J/0z*0z) > 0 everywhere
in D, then J is constant by theorem of E. Hopf. Consequently we
obtain the following Ricei tensor: (R.;) = (n + 1)T,(Z,2). Thus we
have R, = 4n(n + 1).

Next, a holomorphic sectional curvature £(z;u) with respect to a
contravariant veetor » which is invariant under any pseudo-conformal



CANONICAL DOMAINS AND THEIR GEOMETRY IN C=» 693

mapping is expressed by our method as follows:

(u x w)*TyZ, 2)(u X u)

@18 HEW = B TG, #) X To@, ) X )

THEOREM 3.11. If D is a homogenous domain with the metric
ds}, = dz*Tdz, then the holomorphic sectional curvature k(z; ) is con-
stant everywhere in D.

Proof. Since k(z; ) is invariant, then for arbitrary points z, ¢ in
D we have k(z; u) = £(¢t; u) by a suitable holomorphic automorphism.

THEOREM 3.12. In a manifold of constant holomorphic curvature
k, for the scalar curvature R,, we have

(3.16) R,=n(n + k.
Proof. By the hypothesis, the culvature tensor becomes
(3.17) R = 5 (0305 + 0a073) (see [13])

consequently we have R,; = (n + 1)/2:kg,;. Thus we have
R, = 29%R,; = n(n + 1k .
COROLLARY 3.1. The unit hypersphere |z|* <1 is a manifold of

constant holomorphic curvature £ and we have £k = —4/(n + 1). (See
Theorem 4 in [10]).

Proof. Using the formulas (1.3)~(1.6), we obtain

T50,0)=(n+1HE, 0T50,0)/0z=0,
®*T»(0, 0)/32*0z = (n + 1)(E* + E,,) .

Then we have
ZTD(O) O) = (n + 1)(E2 + Eﬂn) ’

and consequently £(0; ) = —4(n + 1)(w*u)*/(n + 1)*(u*w)* = —4/(n + 1).
Therefore, the holomorphic sectional curvature are all the same at
origin. Consequently, by Theorem 3.11, we obtain the required

results.

REMARK. Since a unit hypersphere is a homogeneous domain,
then R, = —4n. Therefore, by Theorem 3.12, we can compute £ =
—4n/n(n + 1) = —4(/n + 1).
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COROLLARY 3.2. In a polydisc {|z;| <r;j=1, -+, n}, for the
holomorphic sectional curvature k, we have —2 < £k < —2/n. (See [10]).

Proof. We may calculate at origin as follows:
1 4
. @ 0
;) 0 '

) T0/ 1)
T,(0, 0) =2 . , o T50,0) = 4 (‘)o

Thus, we have

£ = =23 w i) S sl
and consequently —2 <k < —2/n, (n = 2).
COROLLARY 3.3. In a complex spheres
M = {z]122] <1,1 — 2|z + |2z] > 0},

for the holomorphic sectional curvature K, we have
—_2_(2—-1—><:c<—3.
N n n

Proof. Since we have

To(z, 2) = %[KO(E — 232 + 2(E — 72)22*(E — 72)]

where K, =1 — 2|z [+ |2’z *, in the complex spheres (see [8]), then
we have
7,0, 0) = 2nE

T, 0) = 4n| E* — o + £,
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Consequently,
£(0; u) = _24’"«[2(u () *4(727;@*:)2“' + |n. 9]
_—2 | [* 4 oee + ua
= =92 —
n [ ||t ]

where w = (u,, ---, %,)’, hence we have the required result.
It is known that the holomorphic sectional curvature for a bounded
domain in C* is less than 2 ([1], [3]), therefore we have

COROLLARY 8.4. Let D be a bounded domain with Kaehler metric
dst = dz*Tdz, then

W, ?) = A[*EKT) _ o(KT) (KT)™ a(é{T)]

KL 0z*0z oz* 2

(3.18)
= ZTD(E’ Z) + TD(g, Z) X TD(E’ Z)

18 relative tnvariant under any pseudo-conformal mapping and posi-
tive definite.

Proof. From £ < 2, we have (u x w)*(T + T x T) (w x u) > 0.
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