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ORTHODOX SEMIGROUPS
T. E. HALL

An orthodox semigroup is a regular semigroup in which
the idempotents form a subsemigroup. The purpose of this
paper is to give structure theorems for orthodox semigroups
in terms of inverse semigroups and bands.

A different structure theorem for orthodox semigroups in terms
of bands and inverse semigroups has already been given by Yamada
in [12]; two questions posed in [12] will be answered in the negative.
The present paper is the “further paper” mentioned by the author
in the final paragraph of §1 [5] and in the Acknowledgement of [5].

2. Preliminaries. We use wherever possible, and usually with-
out comment, the notations of Clifford and Preston [2]; further, for
each element a in any semigroup S we define V(a) = {¢S: axa = a
and xax = x}, the set of inverses of a in S.

RESULT 1 (from Theorem 4.6 [2]). On any band B Green’s rela-
tion _Z 1s the finest semilattice congruence and each _Z-class is a re-
ctangular band.

Let ¢: B—Y be any homomorphism of B onto a semilattice Y
snch that go¢™ = _#. By denoting (for all ee B) J, by E, where
ep = ac Y we obtain B as a semilattice Y of the rectangular bands
{Ei:ae Y}, ie, B=UserE.and foralla, se Y E,NE; =[]if a+p,
aud E,E; < E,;. It is clear that {(¢, @) e B X Y: ¢¢ = a} is a subband
of B x Y isomorphic to B.

ReESULT 2 [9, Lemma 2.2]. Let o be a congruence on a regular
semigroup S. Then each ©-class which is an idempotent of S/o con-
tains an idempotent of S.

ResuLT 3 (from Theorem 13 [7]). Let o be any congruence
contained in & on any semigroup S. Then any elements a and b
of S are F-related in S if and only if ao and bo are F-related in

S/p.

Henceforth we shall let S denote an arbitrary orthodox semigroup.
The following result is part of [3, Theorem 3]; as noted in [4]
it had previously been obtained by Schein [10].
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RESULT 4. The relation 27 = {(x,y) €S X S: V(x)=V (y)} is the
finest inverse semigroup congruence on the orthodoxr semigroup S.

From [3, Remark 1] we see that the partition of S induced by
7z is {V(x):«e S}. Denote the band of S by B. Then we also have
from [3, Remark 1] that for any ee B, ¢2 = J, (where J, is the
_# -class of B containing ¢) whence, from Result 2, the semilattice
of S/z7 is B/_# (_# being Green’s relation _# on B).

For the remainder of this section & and .&Z shall denote Green’s
relations & and <Z on B; as usual then L, and R, shall denote the
< -class and <Z-class respectively of B containg an element x from B.

ResuLT 5 [5, Lemma 1] or [12, Footnote 5]. For any element
acS and any element o’ € V(a),

aV(e) = R,, and V(e)a = L, .

REsuLT 6 [5, Lemma 2] or [12, Lemma 5]. Take any elements
a and b in S.

Then
aV(a)(ez) Vie)a = {a}
whence a = b if and only if the triple
(@V(e), az, Via)a) = (bV(b), bz, V(b)D) .

Henceforth, we shall identify any one element set {x} say, with
that element z, as is usual.

We shall now present two constructions appearing in [5]; one is
of a representation of S by transformations of sets and the other is
of a “maximal” fundamental orthodox semigroup containing B as the
band of all idempotents (a semigroup T is called fundamental if the
only congruence contained in 57 on T is the trivial congruence). This
work has been generalized to regular semigroups in [6], where in
fact the proofs and presentation are simpler than in [5]. For each
result that we present we shall therefore refer to results in both [5]
and [6].

For each element ¢ in S define a transformation p,e 77, the
semigroup of all transformations of the set B/.<~, by

V(x)xp, = V(za)xa for all xe B

and define also a transformation A, in .73, by 2 V(x)\, = axV(ax) for
all x e B.

That o, and A, are transformations is shown in [5, Section 3]
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and also follows from [6, Remark 4]. Let (o, \) be the mapping of
S into 7%, X 75> (where 7,, is the semigroup dual to .77 )
which takes each a in S to (0, \,).

We define now an equivalence relation 7 on B by % = {(¢, f) €
B x B:eBe = fBf} and for each pair (¢, f)e Z we let T, be the
set of all isomorphisms from eBe onto fBf; for each aw e T,,; we define
further transformations & e %, and @€ .%, [6, Section 5] by

L& =L, and R.@ = R,, for all xceBe.

Further, let us consider the transformations p,& and Lf&——: (products
being taken in .22 75 . and & 75 ., respectively) and let us put
(0@, ;a7 = ¢(a) say. Define now

W(B) = U per {03 N0 e T, ).

Resurt 7.

(i) The set W(B) is a subsemigroup of Tp;» X T afw-

(ii) Further, W(B) ts a fundamental orthodox semigroup whose
band of idempotents is isomorphic to B.

(iiiy The mapping (0, N) is a homomorphism of S into W(B) which
maps B isomorphically onto the band of idempotents of W(B).

(iv) The congruence (0, N)o(0, \)™" is the maximum congruence
contained in =% on S.

Result 7 can be obtained by the specialization to orthodox semi-
groups of the following results on regular semigroups from [6]:
Lemma 4, Theorem 7 and Theorem 18 (vii). Alternatively, except
for part (iii), Result 7 is contained in Theorems 1 and 5 of [5].

REsSULT 8 [5, Theorem 2]. Take any elements a,beS. Then
a = b if and only if the triple

()"ay a?’ loa) = O"b, b?y lob) .
3. The structure theorems.

LEMMA 1. The mapping from S into W(B) x (S/%’) which maps
each element a in S to ((0,, N.), aZ’) is an isomorphism.

Proof. From Results 4 and 7 (iii) we see that the mapping is a
homomorphism and from Result 8 we see that it is one-to-one.

Let now E be any band and define W(E) as above. Let (¢, \))
be the homomorphism of E into W(E) which corresponds to the
homomorphism (o, 1) of S into W(B) above. From Result 7 (iii) (o', \)
is an isomorphism from E onto the band of all idempotents of W(E).
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Let us denote the band of W(E) by E and for each ec E let us
denote e(0’, ') simply by &. Let 2/, denote the finest inverse semi-
group congruence on W(E), as given by Result 4.

Now let T be any inverse semigroup such that there is an idem-
potent-separating homomorphism «+ say, from T into W(E)/Z/, whose
range contains all the idempotents of W(E)/%z/; if we let Y denote
the semilattice of T then from Result 2 +|Y maps Y isomorphically
onto the semilattice of W(FE)/Z.

Let 2% denote the natural homomorphism [2, Section 1.5] of
W(E) onto W(E)/%,; then £2/* = 22/, for any x e W(F).

Considering Green’s relation _# on E we have from §2 that

(z#|E)o (25| E)™" = _# whence
(2P E) | V)T (22 EYw | V)77 = 7

and so we may index (Result 1) the _# -classes of E with the elements
of Y as follows: for all ee F if ¢ 2.°(y+|Y)™ = ae Y then denote J;
by E,.

Similarly, considering Green’s relation _# on E and denoting (¢’,
M2 2| E)(v|Y)™ by & we have &&= _# whence we may index the
_# -classes of E with the elements of Y as follows: for all ec E if
e = ae Y then denote J, by E,. Clearly ec E, implies ¢ ¢ E, for all
ec K.

Define now S, = S(E, T, +) by

S, ={(x,t)e W(E) x T: 22/, = ty} .

THEOREM 1.

(i) The set S, = S(E, T, ) is an orthodox subsemigroup of W(E) X
T, and conversely every orthodox semigroup 1is obtained in this way.

(ii) The band of S, is isomorphic to K.

(iii) The maximum inverse semigroup homomorphic image of S,

1s 1somorphic to T.
(iv) For each element xe W(E) let (xV(x), ©2, V(x)x) denote x.

Then
Sl = {((RE, t’]//‘, L?), t): te T, é-e E”——l, fe Et_lt} )

where R; and Lz are the F-class and F-class respectively of E
containing € and f respectively.

Proof.
(i) Take any elements (x, t), (y, ) in S;. Then

(@y)Z” = @2 )Wz = @) (wy) = (tu)y
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whence (z, £)(y, ) = (xy, tu) € S, and S, is a subsemigroup of W(E) x
T. Now the set of inverses of (x,¢) in W(E) x T is V(x) x {t7}}
(where of course V(x) denotes the set of inverses of & in W(E)); take
any (¢, t™) e V(x) x {t'}. Then 2’Z/, and t™'4 are both inverses of
2%, =ty in W(E)/2,, whence 2’2/, =t and V() X {t 7} &S,. In
particular S, is regular. Since W(E) x T is orthodox we now have
that S, is orthodox.

Conversely, consider again the orthodox semigroup S of §2. Let
%/, be the finest inverse semigroup congruence on W(B). Then S(o,
A) 2,7 is an inverse semigroup homomorphic image of S so

7 S [(0, N2 ]e[(0, N 2R .

Let 6 be the unique homomorphism from S/z onto S(o, M)Z%* such
that 2% = (o, \)2%" [2, Theorem 1.6].

The semilattices of S/Z” and S(o, \)Z,* are BZ® and B(p, \)Z2," res-
pectively (Result 2), and moreover (for _# on B)

(27 B)e(2°| B)™ = £ = [((0, VZ) | Bl[((0, VZ}) | B]™

80 6§ maps BZ* one-to-one onto B(p, N)Z,'. Thus S(B, S/Z/, 0) is
defined, and further, for all ae S, ((0., N\.), a%’) € S\(B, S/%, 0) since
@2)0 = alp, N2 = (00 \) Z

Take now any element (z, a2’) € S(B, S/Z/, 0), where a € S.
Then

02, = (@2)0 = a(0, 2" = (0u; M) 2

whence V(z) = V((0., \.)) in W(B). Take any a’€ V(a) in S.
Then (0., N\,,) € V(z) in W(B) and from Result 7 (iii)

(pa’y A’a’)x = (loey 7\’e) and x((oa's >"a') = ((Of, )"f)

for some idempotents e, feS. Then (0, \) B (00, Na') L (05, Ns) In
W(B) whence eZa’<~f in S (from Result 7 (iv), Result 3 and
the result dual to Result 3). From [2, Theorem 2.18] there is an
inverse b say, of o’ in S, such that eb<Zf in S. Thus (0., A.)-Z (04,
M) F (05, M) in W(B); but also (0., \,)Fx.F#(0s, ;) in W(B) and both
x and (0, \;) are inverses of (0., \,) in W(B), so from [2, Theorem
2.18] « = (0;, \y). Note also that 27 = a2’ (since both are inverses
of /27 in S/Z’). Thus (z,a2) = ((0,, M), b27). With an observation
above this gives that

S(B, /7, 0) = {((0s, M), 0Z) € W(B) X (§/Z):a €S} .

From Lemma 1 we have that S is isomorphic to S.(B, S/%’, 6).
(ii) Take any idempotent (z, @) say, in S, = S,(E, T, +). Then z *=
z, @ = @ and %, = @y whence 22/,%(+|Y)™' = a and so ¢ E,. Con-
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versely, for any ac Y and xe E, we have 2%y |Y)™ = @ whence
27, = ay and (z, @) € S,. Thus the band of idempotents of S, is {(x,
a)e Ex Y:aeY,xeE,}, which is clearly isomorphic to £ (Section 2).

(iii) Let m,: S,— T be the function satisfying (zx, )7, = ¢ for all
(z, t) e S,, and let 2/, denote the finest inverse semigroup congruence
on S,. Then 7, is a homomorphism onto T, an inverse semigroup,
whence %, & mom, ",

Since from the proof of (i) the set of inverses of any element (z,
t) in S, is V(x) x {t*'} we have that

2, ={(x, 1), (, 1)) € S, x S;: V(x) = V(y) in W(E)}. But for any (x, ¢),
(y, t) in S, we have 22/, = {4 = y2, whence V(z) = V(y) in W(E).
Thus memw,™ & %, giving T,em;' = 2, and S,/%, is isomorphic to
S, = T.

(iv) We note that it is Result 6 which enables us to let (xV(x),
x7/,, V(x)x) denote x, for each xe W(E).

Take any element (x,t)eS,. Considering Green’s relations <2
and & on E we have

(@, ) = (@V(x), 22, V(@)2), 1) = (Bears Ty, L), 1)
for any 2'¢ V(x), from Result 5. Now ¢ ' = (t4)™* and 2'Z, =
(xz7)™ = ()™ so
(@) 2 = @Z )@ ZF) = PP = Ep)ETy) = T )y
giving that (xx)Z/5(y|Y)' = t¢t and za’ € E,,~. Similary 2’z e E,—,
and so
S, S (R, tyr, Ly), t): te T, 6€ By, fe By}

Conversely take any te T and any @ ¢ E,,—. and f € E,-1,; then £2/,=
(Y and f2, = (t7't)y. Consider ((R;, ty, Lj), t). Take any element
ze W(E) such that 22/, = ty. Then (exf)2® = (€2, (2. (fZ,") =
[ ED[(E )] = ty. Take any o’e V(z) and put &xf =y and
fo'e = . Then ¥ e V(y)[10, Theorem 1.10], whence ¥'2 = (ty)™ =
t~. Thus (y¥)Z, = (¢t giving yy' € B, and similarly 'y € E,—,.
Now &, yy’ € E,,—1, a rectangular band, so

vy = (exf)(fo'e) = eyye = ¢
and similarly ¥’y = f. Thus
(B, ty, Ly), 1) = ((wV(W), y2,, V)y), t) = (, 1) € S, .
Therefore

S, = {((R;, ty, Ly), t): te T, &€ By, fe By 1}
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REMARK 1. Let Z denote the semilattice of S/2” and index the
_~ -classes of B with the elements of Z in the natural way. For
each element a e S let (aV(a), a2/, V(a)a) denote ¢ and consider the
# and -classes of B. Then the method used to prove (iv) also
gives that

S ={(R., v, Ly)e(B/#) X (8/2) Xx (B|¥):veS/Z,ec H,-
and fe E,-,} .

COROLLARY 1 (to the proof). Comnsider the arbitrary band E and
any inverse semigroup U. Then there exists an orthodox semigroup
whose band 1s E and whose maximum inverse semigroup image 1is
isomorphic to U if and only if there is a homomorphism from U into
W(E)|z/, which maps the idempotents of U one-to-one onto the idem-
potents of W(E)/Z..

Let us now define a subset S,= SE, T, ) of (B/F#) x T x
(B|<) by

Sz = {(Re, t, Lf): te T, ec Ett_l and f € Et_lt} .

Take any element (B, ¢, L;) in S,, Then ¢e E,~ and feFE,—,
whence ((R;, ¢y, L3), t) € S,, where R; and L; are the #-class and
#-class respectively of E containing & and f respectively. Clearly
now we may define a mapping ¥ of S, into S, by

(Rey (A Lf)qr = ((REy oy, L})? t)

for any element (R, ¢, L;) € S,. It is also clear that ¥ is one-to-one
and it is routine to show that ¥ is onto S,. Thus ¥ is a one-to-one
correspondence between S, and S,.

Let us denote by juxtaposition the unique multiplication on S,
which makes ¥ an isomorphism from S, onto S,; then for any elements
(Re’ t, Lf) and (Rg! U, Lh) in Sz

(Re’ ty Lf)(Rw U, Lh) = [(Re: t’ Lf)w'(ng U, Lh)w']w—l .

From Result 6 and Theorem 1 (iv) ((R;, ¢4, L7), t) denotes the ele-
ment (R;(ty) Ly, t) of S,; thus

(B, t, L)¥ = (Ri(ty) Ly, t)

for any element (R, ¢, L;) in S,.
For each idempotent x € W(E) let % denote x(0’, \')~'; then % =

for all ze ¥ and € = ¢ for all ee E. Then for any elements (R,, ¢, L,)
and (R,, u, L;) in S,
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(Rey t Lf)(Rm U, Lh) = (sz\z”y tu, Lp,)

where (in W(E))R;(uy)L; = %, Rj(uy)Lz = y, 2y =2 and 2'e V(z);
this is because (tu)y = (xy)Z, = 27/, and

Bz, tu, Lon¥ = (B, Gu)yy Lyoy), tu) = (2, tu) = (vy, tu) .

We restate these facts in the next theorem.

THEOREM 2. Let S, = Sy(&, T, +) be the subset of (E/#) x T X
(E|) given by

S, ={(R.,t, Ly): te T, ee E,;— and f € E.—,} and let a multiplica-
tion on S, be given by (for any elements (R, ¢, L;) and (R,, u, L,) in
S.)

(Re, t, Lf)(Rm U, Lh) = (RzzN’) tu, LF’z)

where (for the & and #-classes of E we have) R;(ty) Ly = x, B;(uy)L; =
y, vy = 2 and #' € V(z)(all in W(E)). Then S,(E, T, ) is a semigroup
isomorphic to S,(E, T, ).

4, Some counter-examples.

4.1. Let T denote the bicyclic semigroup [2, Section 1.12]. We
shall construct a band B which is an w-chain of rectangular bands
and such that there is no orthodox semigroup S with band B and
with T as a homomorphic image.

Let Y be the semilattice of T; then Y is an w-chain. For each
acY let E, be a rectangular band such that, foralla, e Y, if @ #=
Bthen E,N E; =[] and |E,|+# |E:|. Put B= U..-E. and, following
Clifford [1] extend the multiplications of the bands {E,:aec Y} to a
multiplication for B as follows: for any e, f e B, where ec E, and
f e E; say, define

eif a < B
ef =<efasin EF,ifa=p
Zfifa>,6’.

Note that if @ > g then ef = fe = f. It is routine to show that this
multiplication is associative (alternatively see [8]) and that then the
band B is an w-chain Y of the rectangular bands {E,: ae Y}. Also,
if eeE, and feE; (o, 3€Y) then eBe = {e} U (U< F,) whence eBe
is isomorphic to fBf if and only if &« = 8. From [5, Main Theorem]
any orthodox semigroup, S say, with band B is a union of groups.
But any homomorphic image of a semigroup which is a union of
groups is also a union of groups; thus T is not the maximum inverse
semigroup homomorphic image of S.
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REMARK 2. The band B just defined is one of a class of bands
called, by the author, almost commutative bands; a band E is called
almost commutative if, for any e, fe E, J, = J, implies ef = fe. It is
easily shown (See [8])) that a band E is almost commutative if and
only if, for e, fe E, J, > J, implies ¢ > f (where J, > J; means that
E'eE' D E'fE* [2, Section 2.1] and e > f means that ef = fe = f+
¢[2, Section 1.8]). A determination of the structure of almost com-
mutative bands in terms of semilattices is given in [8].

REMARK 3. The band B and inverse semigroup T above answer
in the negative the first question posed on page 269 [12]. We now
briefly give alternative examples of a different nature. Let E consist
of the matrices

0 0 0 100 0 0 0 00 0, /1 0 0
00 0), 00 O), 01 O), 01 14 (0 1 O)
0 00 0 0 0 0 0 0 0 0 0 0 01

and let T, consist of the matrices

(00(10)(01(00 0 0 10(01)
0 0/ \0 o/ \o o/ \t o) (0 1)’ 0 1)’ 10/
Under matrix multiplication F is a band, T, is an inverse semigroup
with semilattice isomorphic to E/_#, and there is no orthodox

semigroup S say, with band E and such that S/2Z” is isomorphic
to T,.

4.2. We now give two non-isomorphic orthodox semigroups S,
and S, whose bands are isomorphic and whose maximum inverse
semigroup homomorphic images are isomorphic. This answers the
second question on page 269 [12] in the negative. The referee has
pointed out that this question has also been essentially answered in
the last remark of Yamada [13].

Let S, consist of the matrices

o of & o fo 1 [z -

and let S, consist of the matrices

1 00 1 00 1 00 1 0 0
(O 0 0}, (1 0 0), (0 1 0), 01 0) .
0 0 0 0 0 0 0 01 0 0 -1
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Under matrix multiplication S, and S, are orthodox semigroups.

The bands of S, and S; are both two-element left zero semigroups
with an identity adjoined and the maximum inverse semigroup homo-
morphic images are both two-element groups with a zero adjoined.
But 57 is a congruence on S; and not on S, so S, and S, are not
isomorphic.
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