RESTRICTIONS OF BANACH FUNCTION SPACES

DONALD R. CHALICE

Let X be a compact Hausdorfs space. Let C(X) be the space of continuous complex-valued functions on X and A be a function algebra on X, that is a uniformly closed separating subalgebra of C(X) containing the constants. If F is a closed subset of X we say that A interpolates on F if $A \mid F = C(F)$. By a positive measure μ we shall always mean a positive regular bounded Borel measure on X. Let F be a measurable subset of X. We say a subspace S of $L^p(\mu)$ interpolates on F if $S \mid F = L^p(F) = L^p(\mu_F)$, where μ_F is the restriction of μ to F. Let $H^p(\mu)$ be the closure of A in $L^p(\mu)$ where $1 \le p < \infty$, and let $H^{\infty}(\mu) = H^2(\mu) \cap L^{\infty}(\mu)$. One question we are concerned with here is whether interpolation of the algebra is sufficient to imply interpolation of its associated H^p -spaces. We therefore begin by obtaining necessary and sufficient conditions for a closed subspace of $L^p(\mu)$ to have closed restriction in $L^p(F)$. These condition are analogous to some obtained by Glicksberg for function algebras. Using these results we obtain theorems about interpolation of certain invariant subspaces, and then apply them to H^p -spaces. In particular we show that when A approximates in modulus and μ is any measure which is not a point-mass, $H^{p}(\mu)$ interpolates only on sets of measure zero. (One sees that A interpolates only on sets of measure zero, so our original question has a trivial answer for these alge-For uniformly closed weak-star Dirichlet algebras bras.) again the answer to our original question is affirmative. Finally we provide an example of an algebra which interpolates such that $H^{\infty}(\mu)$ interpolates and the $H^{p}(\mu)$ do not interpolate for $1 \leq p < \infty$. I am indebted to a paper of Glicksberg for those techniques which inspired the present effort. Below we show that these techniques apply to the L^p situation and to other "similar" situations.

Glicksberg [3] has given necessary and sufficient conditions for interpolation of a closed subspace of C(X). We show here that analogous theorems hold for subspaces of $L^p(X)$. Let $A \subset B$ be Banach spaces. A^{\perp} will denote all bounded linear functions functionals on B which annihilate A.

THEOREM 1.1. Let A, A_1 , B all be Banach spaces with $A \subset A_1$ and $R: A_1 \to B$ a nonzero bounded linear transformation. Then R(A) is closed in B if and only if $\exists c \ni : ||h - R(A)^{\perp}|| \le c ||h^* - A^{\perp}|| \forall h \in B^*$, where $h^* = R^*h$. It follows that $c \ge 1/||R||$.

Proof. The map $R_1 = R \mid A: A \rightarrow R(A)$ induces a map

$$T = \psi \circ R_1^* \circ \phi \colon B^*/R(A)^{\perp} \longrightarrow A_1^*/A^{\perp}$$

where $\psi\colon A^*\to A_1^*/A^\perp$ and $\phi\colon B^*/R(A)^\perp\to R(A)^*$ are the natural isometric isomorphisms. Further for $g\in B^*$, $g-R(A)^\perp$ is taken to g^*-A^\perp by T, so T is 1-1. Now the range of R_1 is closed if and only if the range of R_1^* is closed if and only if the range of T is closed [1]. The latter fact is equivalent to: $\exists c\ni\colon ||h-R(A)^\perp||\le c\,||h^*-A^\perp||$ for all $g\in B^*$ by the open mapping theorem. Further, $||h^*-A^\perp||\le ||R||\,||h-R(A)^\perp||$ so applying the above inequality gives $e\ge 1/||R||$.

The statement of the above theorem is slightly more general than those of other similar theorems appearing the literature. The proof is virtually the same as that in [3] albeit in a more general setting. See also [2]. The next corollary follows as in [3].

COROLLARY 1.2. Let X be locally compact and A a uniformly closed subspace of $C_0(X)$. Let F be a locally compact subset of X and suppose $A \mid F \subset C_0(F)$. Then

- (i) $A \mid F$ is uniformly closed in $C_0(F)$ if and only if $\exists c \ni : ||\mu (A \mid F)^{\perp}|| \le c ||\mu A^{\perp}|| \ \forall \ regular \ bounded \ Borel \ measure \ \mu \ on \ F.$
- (ii) $A \mid F = C_0(F)$ if and only if $\exists c \ni : ||\mu_F|| \le c ||\mu_{F'}|| \forall \mu \in A^{\perp}$. We now apply 1.1 to get the analogous conclusion for subspaces of L^p -spaces.

DEFINITION. Let μ be a fixed positive measure on X and F a measurable subset of X. Set $L^p(F) = L^p(\mu_F)$, $1 \leq p \leq \infty$ where μ_F is the restriction of μ to F. For $f \in L^q(F)$ let \widetilde{f} be the function which is f on F and 0 on F'. Note that if R is the restriction map $L^p(X) \to L^p(F)$, then $\widetilde{f} = f^*$. For a subspace S of $L^p(X)$, $(S \mid F)^\perp = \{g \in L^q(F) \mid g^\perp S \mid F\}$. Clearly $\{\widetilde{f} \mid f \in (S \mid F)^\perp\} \subset S^\perp$.

THEOREM 1.3. Let S be a closed subspace of $L^p(X)$, $1 \le p < \infty$, and F a measurable subset of X. Then:

- (i) $S \mid F$ is closed in $L^{p}(F)$ if and only if
- (1) $\exists c \ni \colon ||g (S \mid F)^{\perp}|| \leqq c \mid |\widetilde{g} S^{\perp}|| \; \forall \; g \in L^q(F) \; ;$
 - (ii) $S \mid F = L^p(F)$ if and only if

(2)
$$\exists c \ni : ||g|F||_q \leq c ||g|F'||_q \ \forall \ g \in S^{\perp}.$$

If F has positive measure it follows that $c \ge 1$. If $p = \infty$ then the

"only if" parts of (i) and (ii) hold for $g \in L^1(E)$ and $L^1(X) \cap S^{\perp}$ respectively.

Proof. (i) follows by applying 1.1 to the restriction map R. As $||R|| \le 1$, we have $c \ge 1$. If $S | F = L^p(F)$, then (1) becomes $||g|| \le c ||g - S^{\perp}|| \quad \forall g \in L^q(F)$. In particular if $g \in S^{\perp}$,

$$||g|F|| \le c ||\widetilde{g|F} - g|| = c ||g|F'||$$
.

This shows the "only if" part of (ii). For the "if" part of (ii) we shall use a concavity property of the q-norm; namely, if α , $\beta \geq 0$, $\alpha + \beta \leq 1$, then $||f||_q \geq \alpha ||f|F||_q + \beta ||f|F'||_q$. Now taking $g \in (S \mid F)^\perp$, and applying (2) to g shows that $(S \mid F)^\perp = 0$, so $S \mid F$ is dense in $L^p(F)$. Thus we need only show that $S \mid F$ is closed. Here (1) reduces to $||g||_q \leq c' ||\widetilde{g} - S^\perp||_q \ \forall \ g \in L^q(F)$. But if $g \in L^q(F)$ and $h \in S^\perp$, then $||\widetilde{g} - h||_q \geq \alpha ||(g - h)|F||_q + \beta ||h|F'||_p$ if α , $\beta \geq 0$ and $\alpha + \beta \leq 1$. Now choose n so that $c/n + c^2/n \leq 1$ and let $\alpha = c/n$, $\beta = c^2/n$. Then

$$||\widetilde{g} - h||_{g} \ge c/n ||g| F||_{g} - c/n ||h| F||_{g} + c^{2}/n ||h| F'||_{g} \ge c/n ||g| F||_{g}$$

after applying (2). Thus setting c' = n/c gives $S \mid F$ is closed and thus $S \mid F = L^p(F)$. The latter part of the conclusion is clear from the above arguments.

Corollary 1.4. If S is a closed subspace of $L^p(X)$, $1 \leq p < \infty$ and $S^{\perp} | F \subset (S | F)^{\perp}$ then S | F is closed in $L^p(F)$.

Proof. $(\widetilde{S \mid F})^{\perp} \subset S^{\perp}$ so in fact $S^{\perp} \mid F = (S \mid F)^{\perp}$. Taking $g \in L^q(F)$, and $h \in S^{\perp}$ we have

$$\|g - S^{\perp}\|_{q} \ge \|g - S^{\perp}|F\|_{q} = \|\widetilde{g} - (S|F)^{\perp}\|_{q}$$

and (1) applies.

2. Restrictions of invariant subspaces. Let X be a topological space and μ a positive measure on X. Throughout this section A will be a subalgebra of $L^{\infty}(\mu)$, and S will be a closed subspace of $L^{p}(X)$ for some $1 \leq p < \infty$. We assume that S is invariant under multiplication by elements of A. A separates in modulus (SM) if $\forall \ \varepsilon > 0$, E, F disjoint closed sets in X, $\exists \ f \in A$ such that $|f| < \varepsilon$ a.e., on E and $|1 - |f|| < \varepsilon$ a.e., on F. Call f a separating function. A boundedly separates in modulus (BSM) if $\exists \ M\ni : \forall \ \varepsilon > 0$, E, F disjoint closed sets, \exists a separating function $f \in A$ with $||f||_{\infty} < M$. We say that A boundedly separates in modulus by invertible func-

tions (BSMI) if A is BSM and the bounded separating functions can be chosen to be invertible. If A is a function algebra on X and the a.e., condition can be left out of the above then we say that A is BSM or BSMI on X. For example, if A approximates in modulus then A is BSM on X and if A is logmodular then A is BSMI on X. If A is weak-star-Dirichlet [7] then A may not even be BSM, but H^{∞} must be BSMI because $\log V = L_R^{\infty}$ where V is the set of invertible elements in H^{∞} . This includes the case where μ is a unique representing measure on X, or more generally, is "minimal" in the sense of [7, pg. 238]. Thus BSM, etc., "localize" the separation properties to the support of the measure in question.

THEOREM 2.1. Let F be a mesurable set in X. If A is BSM then $S \mid F = L^p(F)$ if and only if $g \in S^\perp \Rightarrow g \mid F = 0$. In particular, this holds if A approximates in modulus.

Proof. 1.4 implies the "if" part. Conversely, suppose $S|F=L^p(F)$. Then $\exists c$ such that $g \in S^\perp \Rightarrow ||g|F||_q \le c ||g|F'||_q$. Choose $\varepsilon > 0$. Find K_n compact $\subset F \subset V_n$ open such that $\mu(V_n \sim K_n) < 1/n$. We can assume that the K_n are monotone. Suppose M is the bounding constant for the separating functions in A. Find $k \in A$ such that $||k||_\infty \le M$ and $||k|-1| < \varepsilon$ on K_n and $|k| < \varepsilon$ on V'_n a.e. Then for fixed $g \in S^\perp$,

$$\begin{split} (1-\varepsilon)\,||\,g\,|\,K_n\,||_q & \leq ||\,kg\,|\,K_n\,||_q \leq ||\,kg\,|\,F\,||_q \leq c\,||\,kg\,|\,F'\,|_q \\ & \leq c\,||\,kg\,|\,F'\,\cap\,V_n\,||_q + c\,||\,kg\,|\,V'_n\,||_q \\ & \leq cM\,||\,g\,|F'\,\cap\,V_n\,||_q + c\,\varepsilon\,||\,g\,||_q \;. \end{split}$$

Letting $\varepsilon \to 0$, we have $||g| K_n ||_q \le cM ||g| F' \cap V_n ||_q$. Letting $n \to \infty$, we have g | F = 0.

COROLLARY 2.2. Let A be BSM. Suppose that F_i are mesurable subsets of X and $F_0 = \bigcup_{i=1}^{\infty} F_i$. If $S \mid F_i = L^p(F_i)$ for $i = 1, 2, \cdots$ then $S \mid F_0 = L^p(F_0)$.

Proof. Let $g \in S^{\perp}$. Then $g \mid F_i = 0$ a.e. for $i = 1, 2, \cdots$ and thus $g \mid F_0 = 0$ a.e.

THEOREM 2.3. Let F be a closed subset of X. If A is BSMI then $S \mid F$ is closed in $L^p(F)$ if and only if $g \in S^{\perp} \Rightarrow g \mid F \in (S \mid F)^{\perp}$.

Proof. "If." Apply Corollary 1.4. Here it is not necessary that F be closed.

"Only if." Find V_n open $\supset F$ such that $\mu(V_n \sim F) < 1/n$. Then

 $\exists \ M>0$ and k_n invertible in A such that $||k_n||_\infty \le M$, $|1-|k_n||<\varepsilon$ a.e. on F and $|k_n|<\varepsilon$ a.e. on V_n' . Now $\exists \ c$ such that 1.3 (1) holds so $g\in S^\perp \Rightarrow ||g|F-(S|F)^\perp||_q \le c\,||g|F'||_q$. The same holds for k_ng . Thus

$$|| k_n g | F - (S | F)^{\perp} ||_q \leq c || k_n g || V_n \cap F' ||_q + c || k_n g || V'_n ||_q$$

$$\leq c M || g || V_n \sim F ||_q + c \varepsilon || g ||_q.$$

Now since $k_{\scriptscriptstyle n}$ are invertible, $k_{\scriptscriptstyle n}(S\,|\,F)^{\scriptscriptstyle \perp}=(S\,|\,F)^{\scriptscriptstyle \perp}$. Thus

$$\begin{aligned} (1-\varepsilon)\,||\,g\,|\,F-(S\,|\,F)^{\perp}\,||_q & \leq ||\,k_ng\,|\,F-(S\,|\,F)^{\perp}\,||_q \\ & \leq cM\,||\,g\,|\,V_n \sim F\,||_q + c\varepsilon\,||\,g\,||_q \;. \end{aligned}$$

Letting $\varepsilon \to 0$ and $n \to \infty$ gives $g \mid F \in (S \mid F)^{\perp}$.

COROLLARY 2.4. Let A be BSMI. Suppose F_i are closed subsets of X and $F = \bigcup_{i=1}^{\infty} F_i$. If $S \mid F_i$ is closed in $L^p(F_i)$ for each i, then $S \mid F$ is closed in $L^p(F)$.

Proof. Take $g \in S^{\perp}$. Then $g \mid F_i \in (S \mid F_i)^{\perp}$, and by the dominated convergence theorem, it follows that $g \mid F \in (S \mid F)^{\perp}$.

Using the above theorem we also encounter the following phenomenon which is different from that which usually occurs in the function algebra setting.

COROLLARY 2.5. Let F be a closed subset of X, and let A be BSMI. Then $S \mid F$ is closed in $L^p(F) \Rightarrow S \mid F'$ is closed in $L^p(F')$. In particular this happens if A is logmodular.

Proof. Let $g \in S^{\perp}$. Then $g \mid F \in (S \mid F)^{\perp}$. Hence

$$\widetilde{g \mid F'} = g - (\widetilde{g \mid F}) \in S^{\perp}$$

and thus $g \mid F' \in (S \mid F')^{\perp}$, so $S \mid F'$ is closed.

The above is explained by the following "splitting lemma" which was pointed out to me by K.B. Laursen.

LEMMA 2.6. Let S be a closed subspace of $L^p(\mu)$, $1 \leq p < \infty$, and let F be a measurable subset of X. Then $S = \widetilde{S \mid F} \oplus \widetilde{S \mid F'}$ if and only if $g \in S^\perp \Rightarrow \widetilde{g \mid F} \in S^\perp$.

REMARKS. The following illustrates 2.5. Let X be the union of two disjoint disks, $\mu = m_1 + m_2$ where m_1 and m_2 are the Lebesgue measures on the two circles comprising the boundary of X, and let A be the algebra of functions continuous on X and analytic on the

interior of X. Then $H^1(m_1) + L^1(m_2)$ splits and neither F nor F' have measure 0.

Also it is easy to find examples of closed subspaces of $L^1(-1,1)$ which are proper and interpolate on (-1,0] and (0,1). For example, let S be the set of functions f in $L^1(-1,1)$ such that f(x) = f(-x) a.e.

3. Interpolation of H^p -spaces and function algebras. Throughout this section unless it is otherwise stated, we assume that A is a function algebra on a compact space X, μ is a representing measure for A which is not a point-mass and I is the corresponding maximal ideal.

PROPOSITION 3.1. If I is SM in $L^{\infty}(\mu)$ then the only open sets on which $H^{p}(\mu)$ interpolates for some $1 \leq p \leq \infty$ are those of measure 0.

Proof. If H^p interpolates on V open and $\mu(V) > 0$ then find K compact in V of positive measure. Find a sequence in I whose moduli converge to 1 on K and 0 on V'. This contradicts 1.3 (ii).

PROPOSITION 3.2. If I is BSM in $L^{\infty}(\mu)$ then the only measurable sets on which $H^{p}(\mu)$ interpolates for some $1 \leq p \leq \infty$ are those of measure 0.

Proof. Suppose H^p interpolates on a set F of positive measure. We may assume that F is closed. Since μ is assumed to not be a point-mass F' has positive measure. We can therefore choose K_n compact and monotone in F' so that $\mu(K_n) \to \mu(F')$. Find f_n in I which are uniformly bounded such that $||f_n| - 1| < 1/n$ on F and $|f_n| < 1/n$ on K_n . This contradicts 1.3 (ii).

We wish to study the relation between interpolation of the algebra A and its associated H^p -spaces. As was pointed out in the introduction, if A approximates in modulus then the situation is trivial. For if F is a closed set on which A interpolates then because F is an intersect of peak sets, we must have that $\mu(F) = 0$ by the dominated convergence theorem. So interpolation of the H^p -space follows vacuously. More generally we have the following.

PROPOSITION 3.3. Let A be BSM on X, and F a closed subset of X. If A interpolates on F then $H^p(\mu)$ interpolate on F for any measure μ , and any $1 \leq p < \infty$.

Proof. $g\perp H^p\Rightarrow g\ d\mu\perp A\Rightarrow g\ d\mu_F=0\Rightarrow g\,|\,F=0$ a.e., $\mu\Rightarrow H^p$ interpolates on F.

PROPOSITION 3.4. If μ is a representing measure for A, and A is BSM in $L^{\infty}(\mu)$, then $H^{p}(\mu)$ interpolates only on sets of measure 0 if $1 \leq p \leq \infty$.

Proof. Suppose for some p, $H^p | F = L^p(F)$. Let A_0 be the ideal determined by μ . Then $A_0 \subset (H^p)^\perp$ so by 2.1., $g \in A_0 \Rightarrow g | F = 0$ a.e. But if $f \in H^p$, then $f - \int f d\mu$ is a pointwise a.e. limit of a sequence of elements of A_0 and thus $f = \int f d\mu$ a.e. on F, so that all H^p functions are constant a.e. on F. Thus $L^p(F) = \text{constants}$ and thus μ_F is a pointmass at some point x. But μ must be continuous, for $\exists g \in I$ such that $g(x) \neq 0$ and applying 2.1 gives $\mu\{x\} = 0$.

PROPOSITION 3.5. Let A be BSMI on X, and F a closed subset of X. If $A \mid F$ is closed then $H^p(\mu)$ restricted to F is closed for any measure μ , and any $1 \leq p < \infty$.

Proof. $g \perp H^p \Rightarrow g \ d\mu \perp A \Rightarrow g \ d\mu_F \in (A \mid F)^\perp \Rightarrow g \ d\mu_F \in (H^p)^\perp \Rightarrow H^p$ restricted to F is closed by 2.3.

REMARKS. Both 3.3 and 3.5 hold because F is an intersect of peak sets. By the above it is easy to construct examples in which the H^p spaces interpolate on sets of positive measure (where μ is not a representing measure). For another example, let A be the disk algebra on the unit disk, and let $\mu = 1/2 d\theta + 1/2 \delta_0$ where δ_0 is the poin-mass at 0. As yet we have boon unable to construct examples which are not of this discrete type when μ is a represeting measure.

We now construct examples in which the algebra and H^{∞} interpolate but in which none of the H^{p} -spaces, $1 \leq p < \infty$, interpolate. Let $\{r_{n}\}$ be a nonnegative interpolating sequence in the open unit disk converging to 1. Then $F = \{r_{n}\} \cup \{1\}$ is an interpolating sequence for the disk algebra on the unit disk [6]. Let μ_{n} be the Poisson measures for r_{n} on the unit circle. Choose a sequence $\alpha_{n} \geq 0$ such that $\sum_{n=1}^{\infty} \alpha_{n} \mu_{n} < 1/2 d\theta$ (*). Consider the positive measure $\mu = \sum_{n=1}^{\infty} \alpha_{n} (\delta_{n} - \mu_{n}) + d\theta$ where δ_{n} is the point-mass at r_{n} . Then μ represents 0 for the disk algebra and we claim that $H^{\infty}(\mu)$ interpolates on F while $H^{p}(\mu)$ $1 \leq p < \infty$ do not interpolate on F. To see this we need the following.

LEMMA 3.6. $H^p(\mu) = H^p \mid F \cup T$ where H^p is the usual H^p -space for the disk algebra $(1 \leq p \leq \infty)$ on the closed unit disk.

Proof. If $f \in H^p(d\theta)$ then $\exists f_n \in A \ni : f_n \to f$ in $L^p(d\theta)$. If \hat{f} de-

notes the harmonic extension of f to H^p , then

$$\int |\hat{f}_n - \hat{f}|^p d\mu \le (1 + \sum 2\alpha_j(1 + r_j)/(1 - r_j)) \int |f_n - f| d\theta \longrightarrow 0$$
.

So $H^p \mid F \cup T \subset H^p(d\mu)$. Conversely, if $f_n \in A$ and $f_n \to f$ in $L^p(\mu)$, then $f_n \to f$ in $L^p(d\theta)$, so $f \mid T \in H^p(d\theta)$ and therefore extends to $g = \widehat{f \mid T}$ in H^p . So $g \mid F \cup T \in H^p(\mu)$ and $g \mid T = f \mid T$. But since the functions in $H^p(\mu)$ are determined by their values on T, we have $f = g \in H^p \mid F \cup T$, and we are done for $1 \leq p < \infty$. Now

$$egin{aligned} H^\infty(d\mu) &= H^2(d\mu) \cap L^\infty(d\mu) = [H^2\,|\,F\,\cup\,T] \cap L^\infty(\mu) \ &= [H^2(d heta) \cap L^\infty(d heta)\hat{\mathbb{I}}\,|\,F\,\cup\,T = H^\infty\,|\,F\,\cup\,T\,, \end{aligned}$$

and this completes the proof.

Now observe that if $f \in H^p(d\mu)$, then

$$|f(r_n)|^p \le [(1+r_n)/(1-r_n)] \int |f|^p d\theta$$

so that $\exists c \ni$: the growth condition $|f(r_n)|^p \le c(1+r_n)/(1-r_n)$ is satisfied. Thus if we choose a (nonnegative) sequence $\{x_n\}$ such that $x_n^p(1-r_n)/(1+r_n)\to\infty$ and such that $\sum x_n^p(1+r_n)\alpha_n/(1-r_n)<\infty$, we obtain an element of $L^p(\mu_F)$ which is not the restriction of a function from $H^p(d\mu)$. Such a sequence can be found for example by finding $\beta_n \ge 0$ to satisfy (*) and setting $\alpha_n = \beta_n^2$ and $\alpha_n = (\beta_n)^{-1/p}$.

Since H^{∞} interpolates on F, we see that $H^{\infty}(d\mu)$ interpolates on F by 3.6.

Thus one may ask for conditions that will force interpolation of H^p -spaces to follow from interpolation of the algebra. The following is one such condition.

THEOREM 3.7 Let A be a function algebra on X, μ a representing measure for A, and A_0 the corresponding maximal ideal. Suppose that $H^p(\mu) = H^\alpha(\mu) \cap L^p(\mu)$, $\alpha \leq p$. If A_0 is weak-star dense in $H^\alpha(\mu)^\perp$, then interpolation of A on a closed set F implies interpolation of $H^p(\mu)$ on F for all $\alpha \leq p < \infty$ with integer conjugates q.

Proof. The conclusion deals only with $1 \le \alpha \le p \le 2$. Suppose $1 < \alpha$ and $A \mid F = C(F)$. Then $\exists c \ni : ||\mu_F|| \le c \, ||\mu_{F'}||$ for every $\mu \in A^{\perp}$. Now choose $g \in A_0$. Then $g^q d\mu \in A^{\perp}$ so $\int_F |g|^q d\mu \le c \int_{F'} |g|^q d\mu$ or $(*) ||g| F||_q \le c^{1/q} ||g| F'||_q$. Since A_0 is dense in $H^p(\mu)^{\perp}$ also, we have (*) holds for every $g \in H^p(\mu)^{\perp}$ and thus $H^p(\mu)$ interpolates on F. Suppose $\alpha = 1$. For $g \perp H^1(\mu)$ we have $||g| F||_q \le c^{1/q} ||g| F'||_q$ for $q = 2, 3, \cdots$, and thus letting $q \to \infty$ we have $||g| F||_{\infty} \le ||g| F'||_{\infty}$ so that $H^1(\mu)$ also interpolates on F.

COROLLARY 3.8. If A is a function algebra which is weak-star-Dirichlet in $L^{\infty}(\mu)$ then A interpolates only on sets of μ measure 0.

Proof. A satisfies the hypotheses of 3.7 [7] and thus H^1 interpolates on F. But H^1 is invariant under H^{∞} which is BSMI so that F has μ measure 0 by 3.4.

It is also clear from 3.4 that when A is weak-star-Dirichlet, H^p interpolate only on sets of measure 0 for $1 \le p \le \infty$. Using the invariant subspace theorem we have the following.

Theorem 3.9. Let A be weak-star-Dirichlet. If F is closed and $H^p(\mu)$ restricted to F is closed for some $1 \leq p < \infty$, then $\mu(F) = 0$, or $\mu(F') = 0$.

Proof. Since H^p is invariant under H^{∞} which is BSMI, applying 2.3 and 2.6 we have $H^p = H^{p} | F \oplus H^{p} | F'$. Now if F has positive measure, then $H^p | F$ is a simply invariant subspace of L^p and by the invariant subspace theorem [7, 4.16], $H^p | F = qH^p$ where |q| = 1 a.e. But $q \in H^p | F$ so we have $\mu(F') = 0$.

The example preceding 3.7 is clearly not weak-star-Dirichlet because the measure μ is not minimal. In addition we have the following.

COROLLARY 3.10. In the example preceding 3.7, A_0 is not weak-star dense in $H^1(\mu)^{\perp}$.

Proof. We only need to verify that $H^p(\mu) \supset H^1(\mu) \cap L^p(\mu)$. But if $f \in H^1(\mu) \cap L^p(\mu)$ then $f \mid T = g \mid T$ where

$$g \in H^1(d\theta) \cap L^p(d\theta) = H^p(d\theta)$$
.

So as $\hat{g} \mid F \cup T \in H^p(\mu)$, and \hat{g} and f agree on T, we have

$$f = \hat{g} \mid F \cup T \in H^p(\mu)$$
.

Finally we remark that 1.3 should hold for function spaces whose duals restrict in some sense and whose norm satisfies the concavity condition. We hope to consider such examples at a later date.

REFERENCES

- 1. N. Dunford and J. Schwartz, Linear operators, I, Interscience, New York, 1958.
- 2. T. Gamelin, Restriction of subspaces of C(X), Trans. Amer. Math. Soc., 122 (1964), 278-286.

- 3. I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc., 105 (1962).
- 4. ——, The abstract F. and M. Riesz theorem, J. Functional Analysis, 1 (1967).
- 5. M. Hasumi, Interpolation sets for logmodular Banach algebras, Osaka J. Math., 3 (1966).
- 6. K. Hoffman, Banach spaces of analytic function, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 7. T. P. Srinivasan and J. K. Wang, Weak*-Dirichlet Algebras, Function algebras, F. T. Birtel (Editor), Scott, Foresman, Chicago, 1966.

Received April 29, 1970. Supported by Western Washington State College Bureau for Faculty Research.

WESTERN WASHINGTON STATE COLLEGE