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RESTRICTIONS OF BANACH FUNCTION SPACES

DoNALD R. CHALICE

Let X be a compact Hausdorfs space. Let C(X) be the
space of continuous complex-valued functions on X and A be
a function algebra on X, that is a uniformly closed separat-
ing subalgebra of C(X) containing the constants. If F is a
closed subset of X we say that A interpolates on F if
A|F=C(F). By a positive measure ¢ we shall always mean
a positive regular bounded Borel measure on X. Let F be
a measurable subset of X. We say a subspace S of L*(y)
interpolates on F' if S|F = L*(F') = L*(¢#r), where pr is the
restriction of ¢ to F. Let HZ(y) be the closure of A in L*(x)
where 1 < p < o, and let H>(p) = H2(#)n L={¢t). One ques-
tion we are concerned with here is whether interpolation of
the algebra is sufficient to imply interpolation of its as-
sociated H?-spaces. We therefore begin by obtaining neces-
sary and sufficient conditions for a closed subspace of L*(u)
to have closed restriction in L?(F). These condition are
analogous to some obtained by Glicksberg for function
algebras. Using these results we obtain theorems about
interpolation of certain invariant subspaces, and then apply
them to Hr-spaces. In particular we show that when A ap-
proximates in modulus and ¢ is any measure which is not a
point-mass, H?(x) interpolates only on sets of measure zero.
(One sees that A interpolates only on sets of measure zero,
so our original question has a trivial answer for these alge-
bras.) For uniformly closed weak-star Dirichlet algebras
again the answer to our original question is affirmative.
Finally we provide an example of an algebra which inter-
polates such that H=<(y#) interpolates and the H?(#) do not
interpolate for 1 <p < . I am indebted to a paper of
Glicksberg for those techniques which inspired the present
effort. Below we show that these techniques apply to the L
situation and to other ‘‘similar’’ situations.

Glicksberg [3] has given necessary and sufficient conditions for
interpolation of a closed subspace of C(X). We show here that
analogous theorems hold for subspaces of L?(X). Let AcC B be
Banach spaces. A* will denote all bounded linear functions function-
als on B which annihilate A.

THEOREM 1.1. Let A, A,, B all be Banach spaces with AC A,
and R: A,— B a nonzero bounded linear transformation. Then R(A)
is closed in B if and only if 3cd:||h — RA) || Zc| h* — AL
Vhe B*, where h* = R*h. It follows that ¢ = 1/|| R
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Proof. The map R, = R|A: A— R(A) induces a map
T=do0oRfo¢: B¥/R(A)* —> AF/A*

where +: A* — A¥/A*+ and ¢: B*/R(A)* — R(A)* are the natural iso-
metric isomorphisms. Further for g e B*, g — R(A4)* is taken to
g¥ — At by T, so T is 1 — 1. Now the range of R, is closed if and
only if the range of R} is closed if and only if the range of T is
closed [1]. The latter fact is equivalent to: d¢3:||h — R(A)' || =
c||h* — At || for all ge B* by the open mapping theorem. Further,
[|h*— A~ || < || R]|| ||h— R(A)* || so applying the above inequality gives
cz 1/|| R|.

The statement of the above theorem is slightly more general than
those of other similar theorems appearing the literature. The proof
is virtually the same as that in [3] albeit in a more general setting.
See also [2]. The next corollary follows as in [3].

COROLLARY 1.2. Let X be locally compact and A a uniformly
closed subspace of Cy(X). Let F be a locally compact subset of X and
suppose A|FC Cy(F). Then

(i) A|F is uniformly closed in Cy(F) if and only if 3c>d:
e — (AIF) || Zcellp— A ¥ regular bounded Borel measure tt on
F.

(ii) A|F = Cy(F) if and only if Acd:||ps||=cllpr |l V€A

We now apply 1.1 to get the analogous conclusion for subspaces
of Lr-spaces.

DEFINITION. Let ¢ be a fixed positive measure on X and F a
measurable subset of X. Set L°(F) = L*(¢#;7), 1 < p < o where p,
is the restriction of x# to F. For fe LY(F) let f be the function
which is f on F and 0 on F’. Note that if R is the restriction map
L?(X) — L*(F), then f = f*. For a subspace S of L*(X), (S|F)* =
{ge LY(F)|g* S| F}. Clearly {f|fe(S|F)}cS*.

THEOREM 1.3. Let S be a closed subspace of L*(X), 1 < p < oo,
and F a measurable subset of X. Then:
(i) S|F is closed in L*(F) if and only if

(1) I3 {lg—(S|F)[[=cllg—8S*|| Yge LYF) ;
(ii) S|F = L*(F) if and only if
(2) Ico:|lglFll,=cllg|F"ll, vgeS*.

If F has positive measure it follows that ¢ = 1. If p = oo then the
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“only if” parts of (i) and (ii) hold for ge L'(E) and IM(X)NS*
respectively.

Proof. (i) follows by applying 1.1 to the restriction map R.
As |[|R|| <1, we have ¢ = 1. If S|F = L*(F), then (1) becomes
lgll<ellg — S|l Vge L(F). In particular if ge S*,

lg|Fll<cllg|F—gll=cllg|F'].

This shows the “only if” part of (ii). For the “if” part of (ii)
we shall use a concavity property of the g-norm; namely, if @, =0,
a+p<1, then [fl,zalflIFl,+glfFl,. Now taking
ge(S|F)*, and applying (2) to g shows that (S|F)* =0, so S|F
is dense in L?(F). Thus we need only show that S|F is closed.
Here (1) reduces to ||g|l, < ¢'[|§ — S*||, V g€ L(F). But if ge LY(F)
and heS*, then [|g—h|l,Zzall(9g—n|F|,+ BlI&|F'|l, if &,3=0
and @« + 8 < 1. Now choose 7 so that ¢/n + ¢*/n <1 and let a = ¢/n,
B = ¢/n. Then

g = hll,zc/nllg|Fll, —e/n|][h]|Fll, + ¢n|h|F'|l, = c¢/nllg| F |

after applying (2). Thus setting ¢’ = n/c gives S|F is closed and
thus S|F = L?(F). The latter part of the conclusion is clear from
the above arguments.

COROLLARY 1.4. If S s a closed subspace of L*(X), 1= p < oo
and S*|F C (S|F)* then S|F is closed in L*(F).

Proof. (kal\j’?’)lCSl so in fact S*|F = (S| F)*. Taking g € L(F),
and e S* we have :

lg—8S*ll.zllg— S |Fll,=119 - SIF)*l,

and (1) applies.

2. Restrictions of invariant subspaces. Let X be a topological
space and y a positive measure on X. Throughout this section A
will be a subalgebra of L=(¢), and S will be a closed subspace of
L?(X) for some 1< p < . We assume that S is invariant under
multiplication by elements of A. A separates in modulus (SM) if
Vv ¢ >0, E, F disjoint closed sets in X, 3 fe A such that |f|<e¢
a.e,on F and |1 — |f]|| < ¢ a.e., on F. Call f a separating function.
A boundedly separates in modulus (BSM) if 3 M>:ve>0, E, I
disjoint closed sets, 3 a separating function fe A with. || fll. < M.
We say that A boundedly separates im modulus by inwvertible func-
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tions (BSMI) if A is BSM and the bounded separating functions can
be chosen to be invertible. If A is a function algebra on X and the
a.e., condition can be left out of the above then we say that A is
BSM or BSMI on X. For example, if A approximates in modulus
then 4 is BSM on X and if A is logmodular then A is BSMI on X.
If A is weak-star-Dirichlet [7] then A may not even be BSM, but
H= must be BSMI because logV = L3 where V is the set of in-
vertible elements in H=. This includes the case where x is a unique
representing measure on X, or more generally, is “minimal” in the
sense of [7, pg.238]. Thus BSM, etc., “localize” the separation
properties to the support of the measure in question.

THEOREM 2.1. Let F be a mesurable set in X. If A is BSM
then S|F = L*(F) if and only if geS+t=g|F = 0. In particular,
this holds if A approximates in modulus.

Proof. 1.4 implies the “if” part. Conversely, suppose S|F = L*(F').
Then 3 ¢ such that geSt=|lg|F|l,=cllg|F’]|,- Choose ¢ > 0.
Find K, compactc Fc V, open such that p(V, ~ K,) <1/n. We
can assume that the K, are monotone. Suppose M is the bounding
constant for the separating functions in A. Find ke A such that
| klle< Mand ||k|—1|<eéeon K, and |k| <& on V, a.e. Then for

fixed ge S+,
A-9llgl K, = kg Kol = kg Fll, s cllkg|F'],

Scllkg| F' 0NVl +cllkg| Vall,
SceMl|lglF' NV, +cellgll,-

Letting ¢ — 0, we have ||g| K, ||, = c¢M|lg| F'NV,|l,- Letting n— o,
we have g|F = 0.

COROLLARY 2.2. Let A be BSM. Suppose that F; are mesurable
subsets of X and F,= U, F;. If S|F;=L*F,) for i=1, 2, ««.
then S|F, = L*(F,).

Proof. Let geS*. Then g|F; = 0 a.e. for ¢ = 1,2, --. and thus
g|Fy=0 a.e.

THEOREM 2.3. Let F be a closed subset of X. If A is BSMI
then S|F is closed im L*(F') if and only iof geS*t=g|Fe(S|F)".

Proof. “If.” Apply Corollary 1.4. Here it is not necessary that
F be closed.
“Only if.” Find V, openD F such that ¢ (V, ~ F) < 1/n. Then
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1 M >0 and k, invertible in A such that ||k, ||« = M, |1 — |k, || <€
a.e. on F and |k,| <¢ a.e. on V,. Now 3 ¢ such that 1.3 (1) holds
so geSt=|g|F— S|F)|,=cllg|F'|l,, The same holds for %,g.
Thus

kg | FF = (SIF) ll, = cllkug | VaNF' [l + cllkag | Vall,

=cMllg|V,~Fll, + cellgll, .
Now since k, are invertible, £,(S|F)* = (S| F)*. Thus

A—-9lglF - (SIF) |, = kg | F — (S|F) |l
scMllg| Ve~ Fll, + cellgll -

Letting ¢ — 0 and n — o gives g| Fe(S|F)*.

COROLLARY 2.4. Let A be BSMI. Suppose F; are closed subsets
of Xand F= U, Fi. If S|F; is closed in L*(F,) for each 1, then
S| F is closed in L*(F).

Proof. Take ge S*. Then g|F;e(S|F;)*, and by the dominated
convergence theorem, it follows that g| Fe (S| F)*.

Using the above theorem we also encounter the following phe-
nomenon which is different from that which usually occurs in the
function algebra setting.

COROLLARY 2.5. Let F be a closed subset of X, and let A be
BSMI. Then S|F is closed in L?(F') = S|F' is closed in L*(F'). In
particular this happens if A is logmodular.

Proof. Let geS*. Then g|Fe(S|F)*. Hence
JIF' =g—(g|F)e8*

and thus g|F'e(S|F")*, so S|F’ is closed.
The above is explained by the following “splitting lemma ” which
was pointed out to me by K.B. Laursen.

LEMMA 2.6. Let S be a closed subspace of LP(1), 1 < p < oo,
and let F be a measurable subset of X. Then S = .S:\I/ Fd S/rﬁ” iof
and only if ge S+ =>ng7’€ St.

REMARKS. The following illustrates 2.5. Let X be the union of
two disjoint disks, ¢ = m, + m, where m, and m, are the Lebesgue
measures on the two circles comprising the boundary of X, and let
A be the algebra of functions continuous on X and analytic on the
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interior of X. Then H'(m, + L'(m,) splits and neither F nor F”
have measure 0.

Also it is easy to find examples of closed subspaces of L'(—1,1)
which are proper and interpolate on (—1, 0] and (0,1). For example,
let S be the set of functions f in L'(—1,1) such that f(x) = f(—=)
a.e.

3. Interpolation of H?-spaces and function algebras. Through-
out this section unless it is otherwise stated, we assume that A is a
function algebra on a compact space X, p is a representing measure
for A which is not a point-mass and I is the corresponding maximal
ideal.

ProposITION 8.1. If I is SM in L=(tt) then the only open sets om
which H®(t) interpolates for some 1 < p < oo are those of measure 0.

Proof. If H” interpolates on V open and #(V) > 0 then find K
compact in V of positive measure. Find a sequence in / whose moduli
converge to 1 on K and 0 on V’. This contradicts 1.3 (ii).

ProPOSITION 3.2. If I is BSM in L=() then the only measurable
sets on which HP(() interpolates for some 1= p < oo are those of
measure 0.

Proof. Suppose H? interpolates on a set F of positive measure.
We may assume that F' is closed. Since g is assumed to not be a
point-mass F"’ has positive measure. @ We can therefore choose K,
compact and monotone in F’ so that p(K,) — #(F’). Find f, in T
which are uniformly bounded such that ||f,| — 1] <1/n on F and
| ful<1l/m on K,. This contradicts 1.8 (ii).

We wish to study the relation between interpolation of the
algebra A and its associated H”-spaces. As was pointed out in the
introduction, if A approximates in modulus then the situation is
trivial. For if F is a closed set on which A interpolates then be-
cause F' is an intersect of peak sets, we must have that p¢(F) =0
by the dominated convergence theorem. So interpolation of the H?-
space follows vacuously. More generally we have the following.

PROPOSITION 3.3. Let A be BSM on X, and F a closed subset of
X. If A interpolates on F then H"(y) imterpolate on F for any
measure M, and any 1 < p < oo,

Proof. g1 H=gdpy 1l A=9g dt,=0=9g|F =0 a.e., t= H?
interpolates on F.
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PROPOSITION 3.4. If p is a representing measure for A, and A
is BSM in L=(t), then H?(1) interpolates only on sets of measure 0
if L p = oo,

Proof. Suppose for some p, H? | F = L*(F). Let A, be the ideal
determined by g. Then A4, (H?)* so by 2.1., gc 4,=¢g|F =0 a.e.

But if fe H?, then f — S fdp is a pointwise a.e. limit of a sequence of

elements of A, and thus f = S fdp a.e. on F, so that all H? functions

are constant a.e. on F. Thus L*(F') = constants and thus g, is a point-
mass at some point 2. But p¢ must be continuous, for 3 ge I such
that g(x) = 0 and applying 2.1 gives p{x} = 0.

ProrosITION 3.5. Let A be BSMI on X, and F a closed subset of
X. If A|F s closed then H?() restricted to F s closed for any
measure t, and any 1 < p < oo,

Proof. gL HP=gdy 1l A=gdpy,c(A|F)*=9g dy,e (H?)*=H"
restricted to F is closed by 2.3.

REMARKS. Both 3.3 and 8.5 hold because F' is an intersect of
peak sets. By the above it is easy to construct examples in which
the H?* spaces interpolate on sets of positive measure (where p is not
a representing measure). For another example, let A be the disk
algebra on the unit disk, and let ¢ = 1/2 d9 + 1/2 6, where §, is the
poin-mass at 0. As yet we have boon unable to construct examples
which are not of this discrete type when z is a represeting measure.

We now construct examples in which the algebra and H= inter-
polate but in which none of the Hr-spaces, 1 < p < o, interpolate.
Let {r,} be a nonnegative interpolating sequence in the open unit
disk converging to 1. Then F = {r,} U {1} is an interpolating sequence
for the disk algebra on the unit disk [6]. Let g, be the Poisson
measures for 7, on the unit circle. Choose a sequence «, = 0 such
that 7., a,p, <1/2d9 (*). Consider the positive measure p =

< &, (0, — tt,) + df where §, is the point-mass at »,. Then g re-
presents 0 for the disk algebra and we claim that H=(x) interpolates
on F while H*(#) 1 <p < - do not interpolate on F. To see this
we need the following.

LEmMMA 3.6. H?(¢#) = H?|F U T where H? ts the usual H?"-space
Sfor the disk algebra (1 £ p < o) on the closed unit disk.

Proof. If fe H?(d6) then 3 f,e A 5: f,— f in L*df). If f de-
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notes the harmonic extension of f to H?, then
[17.=Frdp s+ S2a + )@ - r)|ifs - Flas—0.

So H?|F U T c H*(dp). Conversely, if f,e A and f,—f in L*(p),
then f, —f in L*(d§), so f|Te H*(df) and therefore extends to g =

FIT in H*. So g|FUTeH"() and g|T=f|T. But since the
functions in H?(¢) are determined by their values on 7, we have
f=g9geH?|FUT, and we are done for 1 < p < . Now

H>(dp) = HXdp) N Ldy) = [H*|F U T] N L2(%)
= [H*d®) N L=dO)]|F UT=H=|FU T,

and this completes the proof.
Now observe that if fe H?(dy), then

)P S 1A+ )/ — )] |11 s

so that 3 ¢ : the growth condition |f(r)|P=c¢(l + r,)/1 —r,) is
satisfied. Thus if we choose a (nonnegative) sequence {x,} such that
2 (1 — »,)/A + r,) — c and such that Fz2(1 + r,)a, /AL — r,) < o, we
obtain an element of L?(u;) which is not the restriction of a function
from H?(dy). Such a sequence can be found for example by finding
B. = 0 to satisfy (*) and setting «, = 82 and x, = (B,)""/".

Since H= interpolates on F, we see that H<=(dy) interpolates on
F by 3.6.

Thus one may ask for conditions that will force interpolation of
Hr-spaces to follow from interpolation of the algebra. The following
is one such condition.

THEOREM 3.7 Let A be a function algebra on X, p a represen-
ting measure for A, and A, the corresponding maximal ideal. Sup-
pose that H? (1) = H*(p) N LP(Y), a < p. If A, is weak-star dense in
H*()*, then interpolation of A on a closed set F implies imterpola-
tion of H*(t) on F for all @ < p < o with integer conjugates q.

Proof. The conclusion deals only with 1 < a < p < 2. Suppose
l1<a and A|F=C(F). Then 3¢ 3: |[tr]| = cl|ltz|| for every

pre A+, Now choose ge A,. Then g'dpe A* so g lglidp < cS lglidp
F F’

or (" |lg|F|,=c"||g|F"|,. Since A, is dense in H?(¢)* also, we
have (*) holds for every ge H?(¢)* and thus H”(y) interpolates on F.
Suppose @ =1. For g L H'(#) we have ||g|F|,< ¢ | g|F’||, for
qg=2,3,--+, and thus letting ¢ — ~ we have ||g|F|l« Z||9|F' |l
so that H'(y) also interpolates on F'.
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COROLLARY 3.8. If A is a fumction algebra which is weak-star-
Dirichlet in L>=(t) then A interpolates only on sets of p measure 0.

Proof. A satisfies the hypotheses of 3.7 [7] and thus H' inter-
polates on F. But H' is invariant under H= which is BSMI so that
F has ¢ measure 0 by 3.4.

It is also clear from 3.4 that when A is weak-star-Dirichlet, H?
interpolate only on sets of measure 0 for 1 < p £ «. Using the in-
variant subspace theorem we have the following.

THEOREM 3.9. Let A be weak-star-Dirichlet. If F is closed and
H? (1) restricted to F s closed for some 1< p < o, then p(F) =0,
or w(F") = 0.

Proof. Since H? is invariant under H* which is BSMI, applying
2.3 and 2.6 we have H” = H;TF@H?{/F'. Now if F has positive
measure, then H?I'/F is a simply invariant subspace of L* and by the
invariant subspace theorem [7, 4.16], H?T/F = qH?” where |¢| =1 a.e.
But g€ H;T/F so we have u(F'’) = 0.

The example preceding 8.7 is clearly not weak-star-Dirichlet be-
cause the measure g is not minimal. In addition we have the fol-
lowing.

COROLLARY 3.10. In the example preceding 8.7, A, is not weak-
star demse in H'(u)*.

Proof. We only need to verify that H*(¢) D H'(¢#) N L*(¢). But
if fe H(¢) N L*(¢) then f|T = g| T where
g€ H'(do) N L*(d6) = H*(dY) .
Soas §|F UTeH?(), and § and f agree on T, we have
f=0|FUTeH ().

Finally we remark that 1.3 should hold for function spaces whose
duals restrict in some sense and whose norm satisfies the concavity
condition. We hope to consider such examples at a later date.
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