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PEAK INTERPOLATION SETS FOR SOME ALGEBRAS
OF ANALYTIC FUNCTIONS

A. M. D A VIE AND B. K. OKSENDAL

For certain algebras of analytic functions on holomor-
phically convex sets in Cn metric sufficient conditions are given
for a set (not necessarily compact) to be an interpolation set.
The results extend the Rudin-Carleson theorem for the disc
algebra.

Let K be a compact subset of Cn which is holomorphically convex,
i.e. K is the intersection of a decreasing sequence of pseudoconvex
domains (see [4], Ch. 2). We denote by H(K) the uniform closure
on K of the algebra of all functions analytic in a neighborhood of K,
and by A{K) the algebra of all continuous functions on K analytic
on K° (the interior of K). HE is any subset of the boundary dK
of K then we denote by HE the algebra of all bounded continuous
functions on K° (J E which are analytic on K°. We show that if the
boundary of K is well behaved at each point of E, and E satisfies a
metric condition which says roughly that E has zero 2-dimensional
measure in the directions of the complex tangent and zero one dimen-
sional measure in the orthogonal direction, then E is a peak interpolation
set (in an appropriate sense) for H£u{dK\E) If E is compact then it is
a peak interpolation set in the usual sense ([2], p. 59) for the uniform
algebra H(K). We show also that if E has zero one-dimensional
measure then the conditions on dK can be relaxed.

We say that dK is strictly pseudoconvex in a neighborhood of a
point ζ e dK if there is an open neighborhood V of ζ such that V Π
dK is a C2-submanifold of V and the Levi form is positive definite at
ζ. Then we can find an open neighborhood V of ζ and a C2 strictly
plurisubharmonic function p in V such that K Π V = {z e V: p(z) ^ 0}
and grad p Φ 0 on VΓ)dK. (See [3] Prop. IX. A4).

LEMMA 1. Let K be a holomorphically convex compact set in Cn

and let ζ be a point of dK in a neighborhood of which dK is strictly
pseudoconvex. We can find positive numbers mζ and Mζ and Gζ e H(K),
such that

(a) ReGζ(z)^mζ\ζ- z\2,zeK
(b) ΈteGζ(z)^Mζ\ζ- z\\zedK
(c) grad (ReGy(ζ) = - grad

Proof. Put
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F(z) =

Then the Taylor expansion of p about ζ is

p(z) = 2ReF(z) + ± 5 = ^ ~ «(*/ - W + o(|s - ζ|2) .

Since p is strictly plurisubharmonic at ζ it follows that, shrinking
V if necessary, we can find m > 0 with ReF(^) ^ — m | ζ — z\2 for
2 ! G U L Π F . Since p = 0 on 31ΓD F we also deduce that for some
constant Λf

Re F(z) ^ - ikf|ζ - z\2; zedKΠV.

Choose a pseudoconvex open neighborhood U of K so that Re F < 0
on an open neighborhood W of dVf) U in EΛ Let TFi = "FΓU (7Π Ϊ7)
and W2= W\J(U\V), so that W1 U T72 - C7 and ^ 0 ^ = TΓ. By
solving a Cousin problem in Ϊ7 (see [4], Theorem 5.5.1) we can
find analytic functions gι and g2 on Wt and W2 respectively such that
02- 9ι = F-2 log F on TΓ.

U W (exp(F(^) 2 ^)) , zeW2.

The definitions agree on W so A is an analytic function on U, h(z) = 0
only when « = ζ, and in a neighborhood of ζ, /&(s) = F(^) + 0(\z — ζ | 3 ) .
Thus Re h ^ 0 near ζ, so there exists ε > 0 such that if z e K and
I k(z) - ε I ̂  ε then z = ζ. Put

G(z)=
ε — h{z)

Then GeH(K), ReG(z) > 0 for zeK\{ζ}. Finally, near ζ, Re G(z) =
- ε-1 Re F(z) + ε~2(Im F)2 + 0( | z - ζ |3) from which it follows that Gζ =
2εG has the required properties.

If S is a real subspace of Cn and Y is any subset we denote by
ds(Y) the diameter (in the Euclidean metric) of the (real) orthogonal
projection of Y on S.

Let K be a compact holomorphically convex subset of Cn and suppose
dK is strictly pseudoconvex in a neighborhood of a point ζ e dZλ Then
in a neighborhood of ζ we can write dK = {z: p(z) = 0} where p(z) is
strictly plurisubharmonic in a neighborhood of ζ and grad ^ Φ 0. The
vector i grad p is orthogonal to grad p and so lies in the (real) tangent
space to dK at ζ; let Γ(ζ) be the orthogonal complement to i grad ^
in this space. Then Γ(ζ) is the unique complex subspace of the real
tangent space with complex dimension n — 1. Let L(ζ) be the real
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line spanned by the vector i grad p.
If E is any subset of dK we denote by H™ the set of all bounded

continuous functions on K°{jE which are analytic on K\ We define
A(K) = H?κ.

THEOREM 1. Let F be a subset of dK such that dK is strictly
pseudoconvex in a neighborhood of F. Suppose that for every e > 0
the set F can be covered by a sequence {FJ of open sets with diameter < ε
such that ifζieFΠVi for each i then Σ * dL{ζ.)(Vi)<e and Σi{4(^)(^ί)} 2 <
ε. Let V be a neighborhood of F, let rj > 0, and let g be a bounded
continuous function on F with \\g\\ ̂  1.

Then we can find fe 2ϊ~ u ( 1^) with f\F = g, \\f\\ ^ 1, and \f\ <η
on K\V.

The proof will be split up into lemmas.

LEMMA 2. Let F, V and rj be as in the theorem. Then we can
find f£H^{κχΎ) with f = 1 on F, \\f\\ ^ 2 and \f\ < η on K\V.

Proof. For each ζ e F we choose mζ, Mζ > 0, and a function Gζ e
H{K) as in Lemma 1.

If Wζ is a sufficiently small open neighborhood of ζ, then whenever
ζ e U^Wζ and ze Uf)dK we have

\Gζ{z)\ ^ ΈeGζ(z) + \Im Gξ(z)\

^ Aζ\z - ζ | 2 + | < grad (Im Gζ)(ζ), z-ζ>\

^ 2Aζ(dl + df) + I grad p(ζ) \ d,

+ dξ)

where dγ — dL(ζ)(U), d2 = dT{ζ)(U), Aζ, Bζ do not depend on z, and <̂ ,)>
denotes the real scalar product.

For each positive integer n let

Fn = {ζ e F: Bζ < n, j(ζ, 1/n) S Wζ, mζd(ζ, K\V)2 > 1/n, mζ > 1/n] .

Then F = \Jn Fn. For each n we choose a sequence {Vin)} of open sets
with diameter less than 1/n such that each point of Fn is contained
in infinitely many FΓ, and Σ ί R ( φ ( F f ) + (dΓ(φ(V?))2} < ^- 2 2" n - 2 for
some choice of ζf] e y£

(n) Π JPn. Renumber the collection of all F/%) as
VΊ, V29 = For each j choose nά so that V3 = Vt3) for some i, and
let ζ, = α-^. Let Gy = Gζj. Writing c, = dL(f.,(^0 + {d^^Vj)}2 we
define

^(«) = Π G(z)
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Then Br e H(K) and | Br | ^ 1 on K. We claim that {Br} converges
pointwise on F U (K\F) to a limit B which is continuous on F U (K\
F), analytic on K\ zero at each point of F, with \\B\\ ^ 1 and |1 -
B\ <η on K\V.

If ze K\V then Re Gd(z) ^ m ^ z - ζ y | 2 > 1/%, so

1 - = Σ

^ Σ

which proves that Br(z) converges to a limit B(z) with 11 — B(z) \ < η.
If zeK\F then

1 2 n j C 3 + G y ( 2 ) I j = h \ z - Γ Σ

The series on the right converges, so Br converges uniformly to a
limit B on sets at positive distance from F, so B is continuous on
K\F and analytic on K°.

Finally let ze F. Then ze V3 for infinitely many j . For each
such j we have V3 ϋ Wζ. and for all w e Wζj,

GAw)
2n, c, 2"3^3

It follows that J3r(s) —> 0 and lim | Br \ is continuous at z. Thus J5 has
the asserted properties, and f — 1 — B satisfies the requirements of
the theorem.

LEMMA 3. Let X be a compact subset of K, W a neighborhood of
X, and h a continuous function on K with support in X such that
\\h\\ ̂  1. Let η> 0.

Then there exists f e HFU(K\F) such that \f — h\ < η on F, \\f\\ ^
3, and \f\<ηon K\W.

Proof. Choose 0 < 5 < d(X, K\W) so small that \h(x) - h(y)\ <
η/S whenever x, ye K, \ x — y \ < δ. We can easily find an integer
N > 0, compact sets Xί Xr contained in X, and open sets Wι

Wr, with diameters < δ, with Wi 2 Xi9 Wt S W, such that
(a) if xe X and Nx is the number of integers i in {1, , r) for

which xeXί9 \NX - N\ < η N/8
(b) if xeCn the number of integers i for which x e W\Xi is less

than 7jN.
Let Fi = F Π Xi. For i = 1, 2 r we can find by Lemma 2 func-

tions /, e H?iΌ (Kw with /, = 1 on Fif 11 /, 11 ^ 2 and | f, | < ^/3r on
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Choose xt e X{ for each i and put f(z) = l/NΣiϊ=ifi(z)h(Xi), zeFu (K\F).
Clearly / e H?Ό iK,F) and 11 /11 ^ 3 by (a). If z e K\ W then | /<(*) \ < v/r
for each i so | f(z) | < η.

Finally let zeF. Then

( Σ Σ)/<

+ /*(«) + /.(«), say.

We have

1 -
AT SN

1 -
iV

by (a), since |z - xt\ < δ. Moreover, |/ 2(«)| < Σ?=i^7/3, by (b) and
I Λ(z) I < Σ<=i 5?/3r = yβ, so that we have | f(z) - h(z) | < η as required.

LEMMA 4. 'PFti/i F as m the theorem, if W is any open neighborhood
of F and h a bounded continuous function on W with \\h\\ ̂  1, we
can find GeHFΌiK\j) with \G — h\ < rj on F, \\G\\ S 7, and \G\ < η
outside W.

Proof. Choose a sequence {Wn} of relatively compact open subsets
of W with W = UΓ=i^« such that WmΓ\ Wn = 0 if |ra - n\ > 1. We
can write h = Σ» = 1 feΛ on TF where Λn e C(UL ) has support in Wn and
11 A, 11 ίϊ 1. By Lemma 3 for each n we can find /„ e flj^ (KVfj with
| / H - Λn| < 2- jy on F, | / J < 2-3? on iΓ\TF, and \\fn\\ ^ 3. Then G =
Σ " = 1 / n has the required properties.

Proof of Theorem 1. By Lemma 4 and using the fact that g can
be approximated uniformly by functions continuous in a neighborhood
of F, we can construct by induction on n a sequence {GB}"=0 in
such that, writing /„ = Go + + Gn we have:

( 1

( 1

on

(2

( 3

)

).

F, n > 1,

) . 1

) .

1G. + /_,

where λ =

| G n | | ί» 71|/,

11/

Go-

- ( i

9/10

VII

g\

+

(1

. 4

<λ/7

λ +

+ λ +

λ +

on F,

. + v ) , | < 2

••• +λ»)flr||F

• + 9Xn .

7

<

1

8λ
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(To get (3)w observe that by ( 1 ) ^ we have | fn_x | < 1 + λ, + — +
Xn~ι + Xn/7 on F, and hence on a neighborhood of F; if we make | Gn | <
λ%~V10 outside this neighborhood then (3)Λ follows from (2)n and (S)^).

( 4 ) . | G n l < 2 - on # \ F .

Then (2)w shows that fn-+G say uniformly on If, so GeH~u(K\F)\
by (1), G - lOflr on .F and by (3). || G|| £ 10. Finally by (4)Λ| G| < ? on
K\V. Then / = (l/10)G is the required function.

REMARK. The metric condition on F in Theorem 1 is clearly
satisfied if F has zero one-dimensional Hausdorff measure; however it
is also satisfied by sets which are thicker in the direction of the complex
tangent space, e.g. any smooth arc in dK whose tangent at each point
lies in the complex tangent space.

If F is compact then of course it is a peak interpolation set, so
Theorem 1 extends the Rudin-Carleson theorem. The extension to non-
closed sets in the case of the disc has been obtained independently
by Detraz [1], and subsequently generalized to other domains in the
plane by A. Stray (private communication).

If we assume that F has zero one-dimensional Hausdorff measure
then we can make do with a weaker pseudoconvexity hypothesis at
the points of F. We say that dK is point pseudoconvex at ζ if there
exists a neighborhood N of ζ and a real C2 strictly plurisubharmonic
function p in N such that p(ζ) = 0 and p(z) ^ 0 in N' Π K.

THEOREM 2. Let K be holomorphically convex, and let F be a
subset of dK with zero one-dimensional Hausdorff outer measure such
that dK is point pseudoconvex at each point of F. Let V be a neigh-
borhood of F in K, let η > 0, and let g be a bounded continuous
function on F with \\g\\ ^ 1.

Then we can find /e j f f ; u ( ^, with f\F=g, \\f\\ <£ 1 and \f\<η
on K\V.

Proof. We show that the conclusion of Lemma 2 holds; the rest
of the proof is just as before. As in the proof of Lemma 2 for each
ζeF we can find positive constants mζ and Mζ, a neighborhood Wζ

of ζ, and Gζ e H{K) such that
(a) m ζ \ ζ - z\2 g R e G ζ ( z ) , z e K
( b ) \Gζ(z)\^Mζ\ζ-z\, zeK.
Then whenever ζ e UaWζ and ze Uwe have |Gζ(z) \ <: Mζ diam(U).

We define Fn as before and cover Fn by balls Aϊn) such that Σ< diam (£) <
εn~22~n~2. The rest of the proof goes just as before, with c3- replaced
by diam (jj).
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COROLLARY. Let F be a compact subset of dK with zero 1-dimen-
sional Hausdorff measure and assume dK is point pseudoconvex at each
point of F. Then F is a peak interpolation set for A(K).

Finally we remark that the functions obtained in Theorem 1 and
2 are actually pointwise limits on K° of bounded sequences in H(K);
this follows from the construction. If F is compact the peak-inter-
polating functions constructed are in H(K); in this case the proof
simplifies somewhat since it is only necessary to take finite products
in Lemma 2 and the theorem follows from Lemma 2 by general theorems
on peak interpolation sets.
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