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CONCERNING BANACH SPACES WHOSE
DUALS ARE ABSTRACT L-SPACES

J. BEE BEDNAR AND H. ELTON LACEY

The purpose of this paper is to give general methods for
constructing Banach spaces whose duals are linearly isometric
to abstract L spaces. These methods are based on annihilat-
ing certain subspaces of the duals of certain Banach spaces
and in the existence of ‘‘affine’’ maps from a compact Haus-
dorff space X to the space of regular Borel measures on X.

1. Introduction. There have been several papers concerned with
the structure and classification of Banach spaces whose duals are
linearly isometric to a space of the type L.(x) (see [25] and its ref-
erences). General methods for the generation of such spaces have
been developed in [6], [8], and [16]. The purpose of this paper is to
present these theorems in their most general framework.

In §2 a general result is presented which indicates several ways
in which Banach spaces whose duals are L-spaces can be constructed.
Using this as a base, §3 begins with an application of the main result
of section two, Theorem 2.2, to show the way in which certain affine
symmetric maps generate these spaces. Finally it is shown how some
of these maps from compact Hausdorff spaces to the corresponding
space of regular Borel measures generate the Banach spaces whose
duals are L-spaces.

All Banach spaces considered in this paper are over the real field.
If X is a compact Hausdorff space then C(X) denotes the Banach space
of all real-valued continuous functions on X and M(X) the Banach space
dual of C(X). If g is a measure, L) is the Banach space of all
integrable real-valued functions (sometimes called an (abstract) L-space).
The dual of a Banach space A is denoted by A4*. If A is a Banach
space and Sc A and {a,:xe S} is a set of numbers, then >, .s(a,)x
denotes the limit (provided it exists) of the net of all sums >}..-(a,)x
for finite sets ' S. The notation and terminology regarding Choquet
simplexes, maximal measures, affine functions, ete. is that of [26].

2. Methods of generating Banach spaces whose duals are L-
spaces. The purpose of this section is to prove a general result con-
cerning the generation of Banach spaces whose duals are L-spaces.
How to construct such spaces as subspaces of given Banach spaces
having the same property is revealed in Theorem 2.2.

If A is a Banach space and B is a subset of A then B‘=
{x*e A*: x™(x)=0 for all xe B}. For Mc A*, ‘M = {xc A:z™(x) = 0
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for all #*e M}. A contractive operator on A is a linear operator
T: A — A satisfying ||T|] £ 1. Of course the term “projection” has
its usual meaning.

A Banach space A whose isometric image in any other Banach
space B is the range of a contractive projection on B is called a P,
space. The relevant facts concerning P, spaces can be found in [9].

The following proposition serves a dual purpose. It provides
motivation to the main theorem of this section as well as the key to
the main result of §3.

PrOPOSITION 2.1. Let A and B be Banach spaces with BC A and
B* an L-space. Then there is a contractive projection P: A* — A*
whose kernel is B* and whose range is linearly isometric to B* under
the restriction map x* — x*|B for x* e A*.

Proof. Let J: B* — B*** K: A— A**, L: B— B** and i: B— A
be the natural embeddings. Since B* is an L-space, B** is a P,
space [see 9, 10, or 17]. Hence there is a contractive projection
Q: A** — A** whose range is i**(B**). Set T = [(**)™'QK]*J. Then
|T]| £1 and Tx*(iz) = a*(x) for all 2*e B* and 2 B. For,

[@E*)TQK ] Jx*, ix)
= {Ja¥, (1*%)7'QKix)> = {(i**)T'QKiw, v*)
= L(**)7Qi** La, o> = {La, 5*> = &*(x) .

Hence T is a linear isometry of B* into A* and P = Ti* is the re-
quired projection.

For motivational purposes, let K be a compact Choquet simplex
and X any closed subset of K which contains the extreme points,
EK, of K. Setting A = {f|X: f e A(K)}, where A(K) is the space of
continuous affine functions on K, it follows from the Bauer maximum
principle [4] that f— f|X is an order preserving linear isometric
isomorphism of A(K) onto Ac C(X). Since each maximal measure
on K vanishes on K\X, the maximal measures have support contained
in X. For each z¢ X let 1, be the maximal measure representing

x (i.e., fz) = Sfd;zx for all f e A). The linear span, N, of the maximal
probability measures on X is a band in M(X)i.e. M(X) = N N*
where N? ={ocem(X): || A |o| =0 for all e N} and (N?)” = N,
and so is the closed linear span, M, of the point masses &, with

xeY = X\EK. For (..y@.5.) €M, T cv@.Es) = Dacy@ult, defines a
contractive linear operator from M to N. It is well-known that

A= Ty —v:ve M} = {fe C(X): fw) = Sfdp, for all e X} and A*
is the weak*-closure of {Ty — v:ve M}. Note that A'N N = {0}
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For, suppose 0 = ve A* N N. Then since 1€ A4, ||v*|| = ||v~|] and we
can assume that ||v*]| = ||v~|| = 1. Since v*(h) = y=(h) for all he A4,
v* and v~ represent the same point of K and since v*, v~ are both
maximal measures and K is a simplex, v* =y~ (see [26]). From
this it follows immediately that NN A* = {0}.

The main results of this section, Theorem 2.2 below, demonstrates
that by placing the preceding remarks in a more general setting,
one is able to generate conjugate L-spaces in a nice way. The nota-
tion is as follows: A is a Banach space whose dual is an L-space,
P: A* — A* is a contractive projection, N is the range of P, M is the
kernelof P, @ = I — P, T: M — N is a bounded linear operator, M, is
the weak*-closure of {Tx* — x*: 2*€ M} and B = {xc A: Tx*(2) = x*(x)
for z*e M}.

THEOREM 2.2. Preserve the notation above. Then each of the
conditions below ensure that B* is an L-space linearly isometric to N.

(1) M,\NnN={0} and ||P + TQ|| = 1.

(2) M s weak*-closed, T, is weak*-continuous, ||T|| <1, and
P+ TQI = 1.

(3) N is a band, P is the band projection, M, N N = {0} and T
18 contractive.

(4) N is a band, P is the band projection, M is weak*-closed, T
is weak*-continuous, and || T|| < 1.

Proof. The range of any contractive projection on an L-space is
also linearly isometric to an L-space (see [17] or [30]).

Hence it is only required to show that B* in each case is linearly
isometric to N. The proofs of this fact in statements (1)-—(4) are
given in the correspondingly numbered paragraphs below.

(1) Let S: N— B* be the restriction map. The |[Sz*|| < [|o*||
for all 2*e N and Sxz* = 0 implies that x*e B*. Since M, N N = {0},
S is one-to-one. For z*e B* let y*e A* with y*|B = ™ and ||y*|| =
lle*|l. Then 2* = (P + TQ)y* belongs to N and

z¥(x) = (P + TQ)y*(»)
= Py*(v) + TQy*(x)
= y*(x)

for e B. Hence Sz* = ¢*. For we 4, [z*@)| < ||P + TQ|| |y*@)| <
fly*|| ||x|| and S is a linear isometry.

(2) The conditions T is weak*-continuous and ||T| < 1 imply
that {Ta* — 2*: *e M} is weak*-closed when M is. For if
| To* —2*|| =1, then [[o*|| = || To* — «*|| + [|Tz*|| and so ||a*] =
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(|| Tx* — 2*|))/1 — || T|)). By the usual compactness argument the unit
sphere of {Tx* — x*:x*e M} is weak*-compact and thus {Ta* —
x*: x* ¢ M} is weak*-closed. Clearly, NN{Tx* — «*: 4*e M} = {0} and
(2) now follows from (1).

(8) The only difference in the proof of (3) and (1) is to notice
that because P is the band projection, ||z*| = ||Pz*|| + ||Q=*| for
every x*e A*. Hence for y* = (P + TQ)x*,

ly* [l = | Pell + [| TQx™ ||
=< [[Pe*|| + (| Tl Q"]
= [[Pe*|| + Q||
= || Px* + Qu*||
= [[&*]| .

It now follows that the restriction map in (1) is an isometry.

(4) Combine the remarks of (2) and (3) above.

Contractive projections (in fact band projections) are plentiful in
L-spaces and by Theorem 2.2, many of these projections in dual L-
spaces generate Banach spaces whose duals are L-spaces.

To get a less abstract idea of situations analogous to the require-
ments of Theorem 2.2, some important special cases of the above
theorem are summarized below.

1. If T=0 and M weak*-closed (or (weak-*closure of
M)N N = {0}), then B = ‘M.

2. If N has finite codimension, then M and M, are automatically
weak*-closed. So, T can be any linear operator satisfying || P + TQ||<1,
or in case P is the band projection onto a band N, just || 7] < 1.

3. If P: A— A is a contractive projection, then P*: A* — A* is
a contractive projection and kernel P* = (Range P)* is already weak*-
closed.

4. Let X be a compact Hausdorff space and FFC X a nonempty
closed subset. Then A = {f e C(X): f(F) = 0} is a closed sub-lattice
of C(X) and A* = {pe C(X)*: w(X\F') = 0} is a weak*-closed band in
C(X)*. Taking N as the complementary band to A* and P the band
projection provides a nice example of (4).

3. Generation of general Banach spaces whose duals are L-
spaces. At this point it is natural to consider a rather simple ap-
plication of Theorem 2.2. which allows the generation of Banach spaces
whose duals are L-spaces. This application is presented in Theorem
3.2 below. First; however, additional terminology is need.
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DEFINITION 3.1. Let R be an L-space with unit sphere S. A
convex set F'C S is called a biface if its linear span is a band in R
(see [14] for a discussion of bifaces).

Examples of such sets are plentiful in L-spaces. Specifically the
norm closed absolutely convex hull of any face of a compact Choquet
simplex is such a set.

Within the notation of the definition above if E is any subset of
the extreme points of S (assuming that S has extreme points), then
E = {3, z(a)e: Seerla,| =< 1} is a biface in L.

An additional example of a biface is given by the set of all
regular Borel measures on a compact Hausdorff space X whose total
variation is 0 on some Borel subset B. If X\B is closed this biface
is weak*-closed and hence compact.

THEOREM 3.2. Let A be a Banach space whose dual is an L-space
and F a weak*-closed biface in S(A*), the unit sphere of A*. Let M
be the span of F and N be the complementary band to M. If
a: F— NN S is an affine symmetric weak*-continuous function, then
for B={xe A: a@®)(x) = z*() for all x*e F}, B* is linearly isometric
to N.

Proof. Since F'= M N S(A*) and F is weak*-closed, M is weak*-
closed (see [11]). Because « is affine and symmetric, it has a quique
weak*-continuous linear extension T: M — N with || T]] < 1. Theorem
2.2 now completes the proof.

An interesting special case of the above is the following situa-
tion. Let xf, .-, ¥ be positive extreme points of A* and F=
ey Sila;] £ 1) Letting yf, <+, y* be any elements of A*
such that |yf| Ao} =0 for 4,7=1, ---, n, define aSi.axf) =

» a;y¥ to obtain a weak*-continuous affine symmetric map from F
to the complementary band determined by F. Then B = {x e A: y}(»)=
x¥(x) for i =1, 2, ---, n} is a Banach space whose dual is an L-space.

In particular, if X is a compact Hausdorff space z,, +--, #, are in
X, ttyy, »++, M, are regular Borel measures with |[g]|<1 and
[ﬂz(({xla e, 2,}) =0 for 7= 1,2, ++-,n then A= {(feCX): fx) =

fdps;1=1,2, ..., n} is a Banach space whose dual is an L-space.

This result was obtained by the first author in [6], later refined in
[8] and later by Gleit in a different setting in [15].

In view of the preceding theorem, one is naturally lead to ask
under what conditions maps from compact Hausdorfl spaces to sets
of measures induce Banach spaces whose duals are L-spaces. A.
Gleit [15] has obtained some partial results. It is possible to use
Theorems 2.2 and 3.2 to provide a complete answer.
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To motivate subsequent results, return to the setting immediately
following Proposition 2.1. That is, let K be a compact Choquet sim-
plex, X any compact set containing FK and p, be the unique maximal
measure with resultant xe K. For xe X let o(x) = ¢,. From [26,
p. 71], p: X— M(X) is Borel measurable (i.e. x—»Sfdp(m) is Borel
measurable for each fe C(X)). It is also true[27] that f — f, where
So(®) = g fdo(x) for all Borel measurable functions is a positive projec-

tion when restricted to the space H = {f + ¢,: f, 9€ C(X)}. Equival-
ently, (f,), = f, for each continuous f on X. Denoting this projection
by P, one has ||P|| =1 when H is given the uniform norm.

Effros has shown that the continuous functions on EK which

satisfy f(x) = S fdu, for xc EK are precisely those having a unique

continuous affine extension to all K[13]. Obviously the statement
remains valid if EK is replaced by X. So A,={f:f.=f, feCX)}
is linearly order isometric to A(K).

Observe that if g Jfdp = ‘ Sfdy for all fe A, where y, v are proba-

bility measures on X, then ¢ and v have the same resultant in K.
Appealing to [26, p. 63] it follows that the function defined by

folx) = Sfdpx where f e C(X) is affine and Sf,,d;x = fo(x) for any prob-

ability measure ¢ on K having « as a resultant. Thus S fodp = gf,,dv

for all feC(X).

Thus A(K) is generated by a natural Borel measurable map p
defined on a compact set X with FKc Xc K. This map satisfies the
following three conditions.

(i) f, is Borel measurable for each fe C(X),

(ii) Jlp()]] £1 for all ze X,

(i) if 1, ve M(X) and Sfdy - S fdp for all f ¢ A, then Sf,,du:

S £,dv for all feC(X).

As will be demonstrated any map o: X — M(X) having these three
properties generates a Banach space whose dual is an L-space. The
essential ingredient of condition (i) is that f, is universally integrable
(i.e. integrable for each (e M(X)).

DEFINITION 3.2. A function po: X — M(X) is said to be affine if
(i) f, is universally integrable for all f e C(X),
(ii) [lo@)|| =1 for all ze X

(iii) if 4, ve M(X) and S fp = g fdp for all fe C(X) such that
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f = f., then S Fodpt = S fody for all feC(X).
If p is an affine map on a compact Hausdorff space X, then for
re M(X), Pu denotes the unique element of M(X) such that S fdPu =

S fude for all feC(X), which exists since the map f——»S fodpis a

continuous linear functional on C(X).

LEMMA 3.4. Preserve the notation above. Then
(1) P is a contractive projection,

(2) the range of P is the set R = {p: pre M(X), S(f — f)dp =0

for all fe C(X)}.
(3) the kernel of P is weak*-closed.

Proof. (1) that P is linear is trivial. Because |[o@)|| =1, || o]l <
II£]] and hence ||P|| < 1. Since for f = f,e C(X) one has SfdP,, =

S fodp = S Fdp, it follows from (iii) that S 7dP[Py] = S £,dPp = S fdpu

for all fe C(X) and, thus, P[Py] = Pp.
(2) This follows immediately from the definition of P and (1).
(3) Let {¢;} be a net element in the kernel of P which is weak*-

convergent to ¢t. Then S fdp;, — S fdp for fe C(X) and hence S fdr=0

when f = f,. Using (i) it follows that S fodp =0 for all feC(X)

and thus Py = 0.
The following theorem is an immediate consequence of the above
lemma and Theorem 2.2.

THEOREM 3.5. Let o be an affine map from X to M(X). Then
the Banach space

Ao ={f: f =f,e C(X)}
is a Bamnach space whose dual 1s the L-space {/J: S( f—Ffodye =0 for
fe C(X)} .

Proof. It suffices to show that A; is the kernel of the contrac-
tive projection P defined through p. But trivially, by (iii) of the

definition of affine map S fdpr =0 when feA implies Sfpd/z =0 for

feC(X). Hence Py = 0. As the converse is just as trivial, A} is
the kernel of P. Theorem 22 now completes the proof.
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The significance of Theorem 3.5 is enhanced by the fact that
every Banach space whose dual is an L-space arises in this fashion.
The proof of this is based upon recent works of Lazar [23] and Effros
[14].

Let A be a Banach space whose dual is an L-space and let S(4%)
denote the unit ball in A*. Then S(A*) is an absolutely convex weak*-
compact set and so the general Choquet theory may be used to obtain
the maximal measures on S(A*). Such measures are supported by
the weak*-closure, X of the set of extreme points of S(4%).

Define the homeomorphism o: S(A*) — S(4*) by o(x) = —x. Then
o induces natural order preserving isometries f—of and ¢ — ot on
C(S(A*)) and M(S(A*)) respectively. These are defined by the formulas

of(x) = f(ow)
and
op(C) = p(aC) .

For pe M(S(A*)) let odd (1) = 1/2(¢t — o). From [23] it follows
that odd (#¢) = odd (v) for any pair of maximal measures on S(A*)
having the same resultant in S(A4*). Since each maximal measure on
S(A*) vanishes off X, they can be considered as maximal measures
on X. For vxe X let ¢ be any maximal measure which represents «
and let p(x) = odd ¢t. Then p: X — M(X) and ||p(x)|| = 1 for all x € X.

It is shown in the sequel that p is an affine map. A positive

measure ¢ on S(A*) is maximal if and only if Sfd,u = Sfd/x for all
feC(S(A*)) (see [26]). For such a measure it follows that Sfda/x =

Sf’da/x and Safdﬂ = gafd;t for all feC(S(A*)). The main theorem
of [23] then demonstrates that

SF@) — of(@) = |17 - oflap

for any maximal measure with resultant x and continuous convex
function f on S(A*). Since

1 -
i = o1 = [rdodd (o,
it is true that

) @) — of@)] = | rdfoda (1) .
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The preceding remarks provide a portion of the proof of the
lemma below.

LEMMA 3.6. Preserve the motation above. Then p0: X — M(X) 1is
affine.

Proof. Condition (ii) of the definition is already verified. That
condition (i) is true is an easy consequence of (*) above. Only the
verification of (iii) is lacking.

Define P: M(X)— M(X) as follows: For v =0 in M(X) let g be
any maximal measure which dominates in the ordering of Choquet
(see [26]) and set Py = odd 8. For arbitrary v = v+ — v=e M(X) let
Py = Pyt — Py~. Then P is linear, || P|| < 1 and because odd (odd 8) =
odd (B) for any ge M(X), P is a projection.

The kernel of the projection P is the set of measures ¢t in M(X)

which satisfy Sfpd/l =0 for all feC(X). If P=0 and f is contin-

uous and convex, then

fodu = L7 = adpe = |17 = oF s — 17 = Flag.

Now, let g, ¢, be maximal measures majorizing p*, ;= respectively
in Choquet’s ordering. Since f — f is affine and satisfies the bary

centric formula [26, p. 100] one has
e = ZJ17 = of1an — L7 - o1z

= ir = of1am - {17 - or1an

po |

_ S fdput — g Fapu — S fdPu=0.

It is now clear that Py = 0 implies gf,,d;z =0 for all feC(X). On
the other hand the condition S f.dPr =0 for all feC(X) together
with the fact that of = — f if fe A — A(S(A*)) implies that 5 Fdpe =0

when fe A. Let zt, and g, be maximal measures whose resultants
@, and @, are the same as those of ¢ and p~. If x, # x, there is
some g€ A such that g(z,) # g(x.). For g,

ot = 1) = 9(w) — 9@ = (g — ) = 0

is a contradiction and so #, = »,. Thus odd (2,) = odd (z) and Py = 0.
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A consequences of the above is the fact that S Sod(I— P)pr =0 for

all e M(X). This is so because the range of I — P is precisely the
kernel of P. Suppose 8= 0and |[B|| = 1. If ¢is a maximal measure
which dominates 8 in Choquet’s ordering and f e C(S(A4*)), then since

ﬂ=%€—ﬁ%

|r.aps = X[ [ 7ap - (Fodn — (ofap + [ordon]
1
7

i

[[rar - |raor] = [raps.

From this it follows that ggdP,é’ = SgPdPﬁ for all ge C(X) and all
ge M(X). Hence S fdPg = S 7,dg for all fe C(X).

Arguing as in the case which showed that {¢: Py = 0} = {yzgfpdp: O}
it is possible to show that Sfdﬁ = 0 for f = f, implies that Pg = 0.
Hence if ¢, ve M(X) and gfd/x = gfdu when f = f,, P(¢t — v) = 0 so

that ggdP/l — ggdPu for all geC(X). Hence Sg,,du - Sg,,dv for all

g€ C(X). This completes the proof of the lemma.
Lemma 3.6 is fundamental in the proof of 3.7 below.

THEOREM 3.7. Suppose A s a Banach space whose dual s an
L-space. Then there is a compact Hausdorff space X and affine map
0: X — M(X) such that

a={recx) f@ = |rdow} -

Proof. Let p and X be as in Lemma 3.6 and the remarks pre-
ceding it. By Lemma 3.6 and Theorem 3.5, A, = {f: f = f, e C(X)}
is a Banach space whose dual is an L-space. Since A+ = {y: Py = 0},
Ao = A and the proof is complete.

These affine mappings can be used to obtain some known results
in an efficient manner. For example, if {K;};., is a family of compact
Choquet simplexes and K = [[;.;K; is the product of the K,'s, let
0:K— M(K) be defined by o({X;}) = Il:.,/: where p; is the maximal
measure representing x; for each 7eI. Then p is an affine mapping
and A,=A(L) where L is the product simplex as defined in [21].

Another example is the following. Suppose A is a Banach space
whose dual is an L-space and that the extreme points X of S(4%)
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form a closed set. Let 3: X — X be defined by X(z*) = —a*. Then
Y is an involutary homeomorphism. The o of Theorem 3.7 is given
by o(x*) = 1/2[é,« — &spx)] and A = {f e C(X): f(z*) = — f(Za")}, ie.,
A = Cy(X). (This was proved in [25].)

We close with an application which seems to be new. Let 4 be
a Banach space whose dual is an L-space and suppose that the weak*-
closure X of the set E of extreme points of the unit sphere of A*
is EU{0}. The mapping defined by oz* = —2* is an involutary
homeomorphism on X, i.e., ¢® = identity.

THEOREM 3.8. A = C,(X) = {feC(X): f(&*) = — f(ox*) for all
x*e X}

Proof. The mapping p is given by po(x*) = 1/2[&,« — &,.+] for a* ¢ E
and p(0) = 0. By Theorem 3.7,

4 =4, ={fec): @) = | fdol) = C.X) .

This result is similar to the one for C;(X) above when the extreme
points are closed.

We wish to thank the referee for his many valuable comments.
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