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TRANSVERSAL MATROIDS AND HALL'S THEOREM

RICHARD A. BRUALDI AND JOHN H. MASON

Transversal matroids, not necessarily having finite charac-
ter, are investigated. It is demonstrated that if %(I) =
(Ail i € / ) is an arbitrary family of subsets of an arbitrary
set E whose transversal matroid has at least one basis and
has no coloops, then %{I) has a transversal; in fact, each
basis is a transversal of %(I) but of no proper subfamily
of 21(7). P. Hall's theorem on the existence of a transversal
for a finite family, and indeed an extension of it, can be
obtained from this result.

Some necessary conditions for a matroid to be a transversal
matroid are derived. One of these is that a transversal

( v \, ) /b-flats having nok)
coloops (1 ^ k 5Ξ r).

l Matroids* Let £ be a set. A matroid [14, 15, 16] on E is
a nonempty collection M of subsets of E such that

( i ) A G M, Af £ A imply A' e M .

(ii) Al9 A2 G M, I Ax | < | A21 < °o imply there exists

x G A2\At such that At U xt e M.

The members of M are called independent sets those subsets of E
not in M are dependent sets. The matroid ikf on i? is said to have
finite character provided

(iii) A G My A' G M for all finite sets A ' g i imply A G M .

If E is a finite set, a matroid on £7 is always a finite character matroid,
and a matroid on E is the collection of independent sets of a com-
binatorίal pregeometry [4] on £7. Finite character matroids arise from
many mathematical situations including graphs, vector spaces, geome-
try, and so on. For details the reader is referred to Crapo and Rota
[4]. Matroids not necessarily having finite character also arise in
important ways, and we shall be concerned with a certain class of
such matroids.

Let M be a matroid on E. A basis of M is a maximal, with
respect to set-theoretic inclusion, member of M. Bases need not exist
as is easily seen by taking E to be an uncountable set and M to be
all finite or countably infinite subsets of E. However, if E is finite,

The set {x} is usually denoted by x.
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bases surely exist; if M has finite character, then Zorn's lemma in
conjunction with the finite character property (iii) guarantees the
existence of bases and indeed that every independent set is contained
in a basis. It is well-known [13, 2] that in a finite character matroid
M all bases have the same cardinal number called the rank of M.
A circuit is a set C £ E which is a minimal dependent set. If the
matroid has finite character, it follows from (iii) that circuits are
finite sets.

If M is a matroid on E and A g £ , then we define MA by

MA = {F:F^A,F e M} .

It is clear that MA is a matroid on A, called the restriction of M to
A. If (Eim. i e I) is a family of pair wise disjoint sets and Mi is a
matroid on E^i e /), then a matroid MonE— \Jiei E{ can be defined
by

M= JU Ai'.Ai e Mt(i e I)\ .
Kiel J

The matroid M is called the direct sum of Mi(i e I) and is denoted
by (BieiMi Ίί\I\ < °° and Mt has finite rank r{{i e I), then ®i£lMi
has finite rank Σ e/?V

If M is a matroid on E, then Λf is connected or nonseparable
provided it is impossible to partition E into nonempty sets Ely E2 in
such a way that M = M^ © Λf̂ . The element α; of i? is a Zoop of
Λf if {x} ί M; thus loops can be part of no independent sets. The
element x is called a coloop or isthmus provided A I) x e M whenever
A G M) thus coloops are part of every basis. If x is either a loop
or coloop, then M = M{x] 0 MEXx so that M cannot be connected. If
X is a set of coloops of M, then M = Mx © MM X where M x is the
free matroid or Boolean algebra on X. In what is to follow, matroids
having no coloops play an important role such matroids will be called
coloop-free. For these matroids it is impossible to 'split off7 a Boolean
algebra.

Finally, we introduce the notion of a flat. A set F £Ξ E is a flat
of the matroid M on E or is closed provided A £ ί7, A e M and α; e
E\F imply that A [j x e M. If MF has finite rank, then this means
that enlarging F in any way increases the rank or equivalently that
given x e E\F there is no circuit C with x e C £ F U a?. If the rank
of Mp is & < co, then F is called a fc-flat. Observe that each coloop
is a 1-flat (but not conversely) and that the set of all loops is the
only 0-flat. In case M has finite rank, the collection of flats form a
geometric lattice [4] with respect to set-theoretic inclusion.

2* Transversal matroids* An important class of matroids, dis-
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covered by Edmonds and Fulkerson [6], are those known as transversal
matroids. These are defined as follows. Let SI = 21(1) = (A*: ίe I)
be a family of subsets of E. A set T £ E is a transversal of 21
provided there is a bijection θ: T'—> I such that x e Aθ{x)(x e T). If
θ is only an injection, then T is a partial transversal in this case
T is a transversal of the subfamily %(K) = (A^ i e K) where K =
Θ(T). If Λf(2l) denotes the collection of all partial transversals of
21, then M(Έ) is a matroid on E [6, 11]. If each element of E is a
member of only finitely many sets of the family 21, then M(2I) is a
finite-character matroid. A matroid M on E is a transversal matroid
provided there is a family 21 of subsets of E such that M= M(Έ).

The bases of the transversal matroid Λf(2I), if there are any, are
the maximal partial transversals of 21. These need not however be
transversals of 21. However the following theorem is proved in Brualdi
and Scrimger [1], although not stated in this form.

THEOREM 2.1. Let 21(1) = (A^ i e I) be a family of subsets of E.
Let B be a basis of M{Έ) and let 21' = 2I(iQ = (Af. i e K) be any
subfamily of 21 of which B is a transversal. Then M(2t) = M(%') and
every basis of M(2I) is a transversal of 21'.

One of the results of this paper is that in Theorem 2.1 K can
only be I if A{ Φ φ(i e I) and the matroid M(2I) has no coloops.
Before getting to this, it is convenient to place our discussion in a
graph-theoretic setting, for some of our proofs are graph-theoretic in
nature.

A bipartite graph may be regarded as a triple (X, Δ, Y) where
X and Y are disjoint sets and J g l x Y. The members of A are the
edges of the graph, which we regard as undirected. Let A g l , δ £ 7 .
Then A and B are linked in the bipartite graph (or A is linked to
B or B is linked to A) provided there is a bijection θ: A —> B with
Δr — {(x, θ{%))\ x 6 A} S Δ. The bijection θ is called a linking of A
to B and the members of Δf are the edges of the linking. If 2t(/) =
(Ail i e I) is a family of subsets of a set E, then a bipartite graph
(E, A, I) can be associated where (e, i) e Δ if and only if e e A{{e e
E, i e I). The partial transversals of 21 are precisely those subsets
of E which are linked to some subset of J. It is then clear that a
matroid M on a set X is a transversal matroid provided there is a
bipartite graph (X, Δ, Y) such that M consists of those subsets of X
which are linked to at least one subset of Y. Such a bipartite graph
is said to induce M on X. The bipartite graph likewise induces a
matroid W on Y. For x e X, A g X, we set Δ(x) = {y e Y: (x, y) e Δ)
and Δ(A) = \J9&AΔ(x). If ye Y, B £ Y, then z%) and J(£) are
defined analogously.
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3* Induced matroids* If we phrase the first part of Theorem
2.1 in terms of bipartite graphs, it becomes: if (X, Δ, Y) is a bipartite
graph inducing the matroid M on X, if B is a basis of M and Z is
any subset of Y to which B is linked, then the bipartite graph (X, A', Z)
where A* = A Π {X x Z} already induces M on X.

The main result of the section deals with a closer analysis of the
above situation. Before stating it we record a lemma.

LEMMA 3.1. Let (X, A, Y) be a bipartite graph inducing the
matroid M on X. Assume that M is coloop-free. Then if B is a
basis of M and z e B, there exists x e X\B such that {B\z} U x is a
basis of M.

The result is true for any coloop-free finite-character matroid.
The matroid M in the lemma above is not necessarily a finite-character
one, but is assumed to be a transversal matroid.

Proof. Since M is coloop-free, B Φ X. Assume {B\z} (j x is not
a basis of M for all x e X\B. Let A e M with z ί A. We will show
that A U z e M, so that z is a coloop of M, a contradiction.

If A S B, then A (J z e M. Thus we may assume A\B Φ ψ. Let
Δι be the edges of a linking of B to a set Z1 a Y and A2 the edges
of a linking of A to a set Z2 c Y. (We could assume from the result
mentioned above that Z2 £ Zλ.) Each x e A\B determines a path Pz

beginning at x whose edges alternate in A2 and Aγ. Let Δ* denote
the set of edges of Δi on this path (i = 1, 2). If Px is either an
infinite path or terminates at an element of Z2\Z19 then {A\Al} U Ax

2

is the set of edges of a linking of B U x to a subset of Y. This
contradicts the basis property of JE>, The only other alternative is
that Px terminates at an element wx of B\A. If wx = z, then {Δ\ΔQ U
At is the set of edges of a linking of {B\z} U x to a subset of Y. It
follows as in [1], that {B\z} U x is a basis of M. Since we are assum-
ing this is not the case wx Φ z. Since this is true for all x e A\B,
the path Qz determined by z whose edges alternate in A1 and A2 must
either be infinite or terminate in Z\Z2. For, if Qz terminates at some
x e A\B, the only other alternative, we would have that Px terminates
at z and thus wx = z. Thus following the above convention, {A2\AQ U
Δ\ is the set of edges of a linking of A U {%} to a subset of Y, so
that A U {z} e M. Since this is true for all A e M, it follows that
z is a coloop. This completes the proof of the lemma.

We now state and prove the main result.
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THEOREM 3.2. Let (X, A, Y) be a bipartite graph inducing the
matroid M on X. Assume that M is coloop-free. Then if B is any
basis of M and Z is any subset of Y to which B is linked, then
Δ{X) = Z.

We point out once more that since we are not assuming M has
finite character, the matroid M may not have any bases, in which
case the theorem says nothing.

Proof. There is no loss in generality in assuming that A(X) = Y,
for those elements y e Y with A(y) = φ play no role whatsoever. The
conclusion of the theorem is then that Z = Y.

Let Bx be a basis of M with Bλ linked to Z, £ Y. If x e X\Bί9

then the maximality of Bλ implies that Δ(x) S ^ i i Δ(B^). Suppose
γ\Zγ Φ φ. Then there exists a w e Bι such that Δ(w) Π {Y\Z,} Φ φ.
By Lemma 2.1 there exists x e X\J5L such that B2 — {B\w} U x is a
basis of M. By Theorem 2.1 B2 is linked to Zx. Since w ί B2, this
means that B2 U w is linked to Z{ U z where z e Δ(w) Π {Y\Z^. Hence
B2 U w e My and this contradicts the fact that B2 is a basis of M.
The F = ZL and the theorem is proved.

In case the matroid M has finite rank, the above theorem takes
on an appealing form. It is proved by Mason in [9, 10]. It can also
be proved using a canonical decomposition of bipartite graphs which
was derived by Dulmage and Mendelsohn [5] as an extension of a
result of Ore [12].

COROLLARY 3.3. Let (X, A, Y) be a bipartite graph inducing the
matroid M of finite rank r on X. If M is coloop-free, then | Δ(X) \ = r.

In this case \B\ = \Z\ — r. Effectively what the corollary says
is that a coloop-free transversal matroid l o n a set X with rank r
can only be induced by bipartite graphs (X, Δ, Y) where | Y\ = r
Observe that the corollary applies in case M is connected with | X\ > 1.
As an example it applies to any matroid of the form M = &*r(X) —
{A £ X: I A\ ^ r}, 1 <; r ^ |X|. This matroid is easily seen to be a
connected, transversal matroid. If r = | X\ — 1, it is just a circuit.

THEOREM 3.4. Let (X, A, Y) be a bipartite graph inducing the
matroid M on X. Let A £ X and suppose MA is coloop-free. If B'
is any basis of MA, there is a unique subset of Y, namely A (A), to
which Bf is linked. In particular, if MA is coloop-free of rank t,
then \A(A)\ = t.
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Proof. It is clear that (A, A', Y) induces MA on A where Δ' —
J f l { A x Y}. Let Br be a basis of MA and let Zf be any subset of
Y to which Br is linked. Applying Theorem 3.2 to this new bipartite
graph, we conclude that Δ'(A) = Z'. Since A(A) — Δ'{A), this estab-
lished the theorem.

THEOREM 3.5. Let the bipartite graph {X, Δ, Y) induce the matroίd
M on X and the matroid W on Y. If M has a basis and is coloop-
free, then Mr is the free matroid on Y.

Proof. Let B be a basis of M. Since M has no coloops, it fol-
lows from Theorem 3.2 that Δ(X) e M'. Thus if y e Δ{X), y is a
coloop of Mr, while if y e Y\Δ(X), y is a loop of Mf. The conclusion
is now obvious.

A particular case of Theorem 3.5 asserts that if one of M and
Mr bas a basis (e.g. if one has finite character), not both of M and
M' can be coloop-free and, in particular, not both can be connected.

4* Applications to transversal theory• Let 21 = 21(1) = (A*: i e I)
be a family of subsets of a set E. For i Γ ϋ 7, let A(K) = \Jίeκ A{.
If \I\ < oo, so that 21 is a finite family, then the well-known theorem
of P. Hall [7] asserts that 21 has a transversal if and only if \A{K) \ i>
\K\ for all KS I* If | J| = °o but each A{ is a finite set (iel), the
extension due to M. Hall Jr. [8] of this result asserts that 21 has
a transversal if and only if \A(K)\ ^ \K\ for all finite sets K ϋ /.
We offer the following theorem.

THEOREM 4.1. Let 21(7) = (A^: i e I) be a family of nonempty
subsets of a set E. If the matroid M(2I) has a basis and is coloop-
free, then the family 2l(J) has a transversal.

Proof. Assume, without loss in generality, that I f] E — φ, and
consider the bipartite graph (E, Δ, I) where Δ — {(e, i): e e Aiy i e I}.
This bipartite graph induces the matroid ikf(2I) on E. If B is any
basis of ikf(2I) and J is any subset of / to which B is linked, then
from Theorem 3.2 we conclude that Δ(E) = J. On the other hand
since A{ Φ φ(i e /), Δ(E) = /. Hence J — I and B is linked to I in
the bipartite graph. But this means that B is a transversal of the
family 21(1).

If in the theorem each element of E is a member of only finitely
many A'$, then M(Ά) is a finite character matroid and hence has
bases.

COROLLARY 4.2. If the matroid of a family 2ί(/) of nonempty
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subsets of a set E with \E\ > 1 has a basis and is connected, then
the family has a transversal.

A connected matroid on a set with more than one element cannot
have any coloops.

A more detailed analysis produces the following theorem which
contains P. Hall's theorem as a special case, but not necessarily M.
Hall's theorem. (On the other hand, M. Hall's theorem follows easily
from P. Hall's theorem through a simple application of Rado's selec-
tion principle or other theorems dependent on the axiom of choice.)

To say that a matroid M has only a finite number of coloops is
equivalent to saying that an infinite Boolean algebra can not be "split
off" from M.

THEOREM 4.3. Let St(I) = (Ai: i e I) be a family of subsets of a
set E. Assume the matroid M(Wi) has a basis and only a finite number
of coloops. Then §!(/) has a transversal if and only if

(1) \A{K)\^\K\ (infinite, K^I).

Proof. Let (E, A, I) be the bipartite graph associated as before
with the family 51(1). Let F be the set of coloops of M = M(VL) and
Er = E\F. By assumption F is a finite set. The matroid Mw has a
basis, since M has a basis: if B is a basis of M, then B\F is a basis
of ME,. Moreover the matroid ME, has no coloops. For, if x were a
coloop of ME, and A e M, then {A Π E'} U x e M and thus A (J £ ϋ
{A Π E'} U x U F G M. Thus x is a coloop of M with x $ F, and this
contradicts the choice of F. Let B' be a basis of ME,. By Theorem 3.4
Bf is linked in the bipartite graph to J = A(Ef) and J is the only
subset of I having this property. Since J — A(Er), it follows that
A(I\J) S F. Thus 51(1) has a transversal if and only if the subfamily
21(I\J), which is a family of subsets of the finite set F, has a trans-
versal.

Suppose now condition (1) is satisfied for all finite K S I and thus
for all finite K £ I\J. Since F is a finite set and \A{K)\ ^ |i^| for
all K £ I\J, the set I\J must be finite. Since Br U F e M and Bf

is linked only to J, it follows that F is linked to a subset of I\J, so
that | / \/ | ^ |JF|. But then

so that |/\J | = F. Hence ,P is linked to I\J. This means that §1(7)
has a transversal, namely Bf (J F- Since condition (1) is obviously
necessary for §!(/) to have a transversal, the proof of the theorem is
complete.
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The proof of the theorem indicates how to find a single set K <ϋ I
such that a(J) has a transversal if and only if \A{K)\ ^\K\. For
taking K = I\J, it was demonstrated in the proof that if | A{K) | ^
\K\, then §l(J) has a transversal, while if \A(K) <\K\ this would
mean that \F\ < \K\ so that 31(1) could not have a transversal.

As a corollary to Theorem 4.3 we obtain P. HalΓs theorem [7].

COROLLARY 4.4. (P. Hall). Let 21 = (At: 1 ^ i ^ n) be a family
of subsets of E. Then 31 has a transversal if and only if

\A{K)\^\K\ (ΛΓS{lf ••-,*}).

In this case the matroid M(2X) has finite rank, so that it has a
basis and can only have a finite number of coloops.

We also remark here that Theorem 4.3 applies to any family 2l(J)
of subsets of E such that each element of E is a member of only
finitely many ^L's and the matroid -M(2t) has only a finite number of
coloops.

If in Theorem 4.3 the matroid M(2t) has an infinite number of
coloops, then condition (1) is no longer sufficient for SX to have a
transversal. This is already seen from M. Hall's much quoted example
[8] where I = E = {1, 2, ...} and A, = E, A, = {i + 1} (1 ^ 2). In
this case E e M(2l) so that each element of E is a coloop. Condition
(1) is satisfied but there is no transversal.

5* Transversal matroids* In general it is difficult to decide
whether a given matroid is a transversal matroid. A characterization
of finite-character transversal matroids in terms of a rank inequality
on unions of circuits is given by Mason [9, 10], but it is difficult to
check. The following result is contained implicity in [1].

THEOREM 5.1. Let M be a transversal matroid on a set E. Let
Bγ and B2 be bases of M. Then there exists a bijection σ: Bx —> B2 such
that both {B\x} U σ(x) and {B2\σ(x}} U x are bases for all x e Bλ.

For finite-character matroids a σ satisfying the exchange property
in this theorem can always be defined, as is proved in [2], but σ
need not be a bijection or injection. Indeed the example given in [2]
for which it is impossible to define a bijective σ amounts to the cycle
matroid of the complete graph on 4 nodes, if4. (The cycle matroid
of a graph is the matroid on its edge set such that a set of edges
is independent if and only if it does not contain the edges of a poly-
gon thus the circuits are the edge sets of polygons.) Thus Theorem
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5.1 furnishes a necessary, but not sufficient, condition for a matroid
to be a transversal matroid. We shall use the results of § 3 to obtain
other necessary conditions.

THEOREM 5.2. Let M be a transversal matroid on a set E with
finite rank r. Let k be any integer with 1 g ί; ^ r. Then M has at

ί r λmost ( 7 ) coloop-free k-flats.

Proof. Let (E, Δ, Y) be a bipartite graph which induces M on
E. By Corollary 2.2 we may assume | Y\ = r. Let 1 ̂  k ^ r and
let (Fji j e J) be the family of distinct coloop-free A -flats of M, indexed

ί r\
by J. We need to show t h a t | J | <̂  7 . By Theorem 3.4, since MF.

^ / r \
is coloop-free with rank k, \Δ(F3)\ = k (j e J). Suppose \J\>[ 7 ).

\ tc /
It would then follow, since | Y\ = r, that Δ(F^ = Δ(Fύ2) for some i1? i2 e J
with ii ^ j 2 . This would mean that | Δ(Fh U i^ z) I = k and thus that
MFjl^Fj2 has rank fc. But since Fjly Fj2 are distinct fe-flats, MFj.lUFj2

has rank greater than k. This is a contradiction and the theorem is
proved.

As an example consider once again the rank 3 cycle matroid M
on the set of edges E = {1, 2, , 6} of the complete 4-graph iΓ4.
(Figure 1) The set {1, 2, 5}, {2, 3, 6}, {3, 4, 5}, {1, 4, 6} are all coloop-free

2-flats of M. Since 4 > (% \ it follows by Theorem 5.2 that M is

not a transversal matroid.

Theorem 5.2 can also be used to demonstrate that matroids of
infinite rank are not transversal. This is so because if M is a trans-
versal matroid on E and A £ E9 then MA is also a transversal matroid.
Thus if A is chosen so that MA has finite rank, we can use Theorem
5.2 on MA.

The conditions on the number of &-flats as given in Theorem 5.2
are not sufficient to guarantee that a matroid is a transversal matroid.
To obtain an example, consider the rank 4 cycle matroid M on the
set of edges E = {1, 2, , 7} of the graph of Figure 2. Then M has
two coloop-free 2-flats, namely {3, 4, 7} and {4, 5, 6} and three coloop-
free 3-flats, namely {1, 2, 3, 6}, {1, 2, 5, 7}, {3, 4, 5, 6, 7}. Hence the
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FIGURE 2

conditions on the numbers of coloop-free fc-flats are satisfied (k = 1
and k = r are always trivially satisfied). But M is not a transversal
matroid as can be seen from Theorem 5.1. For B1 = {1, 2, 4, 6} and
B2 = {1, 3, 5, 7} are both bases with {B\4} U y and {B2\y} U 4 both
bases only for y = 7 of £2, and {5^2} U z and {B2\z} U 2 are both
bases only for z = 7 of i?2. Thus the bijection of Theorem 5.1 cannot
exist, so that M is not a transversal matroid.

Theorem 5.2 is interesting because it gives a bound on the number
of coloop-free A -flats of a transversal matroid on E which does not
depend on the size of E but on the rank of the matroid. The total
number of ά-flats cannot be bounded in terms of r. For if E is a
set with \E\ ^ r and M= ^r{E) = {A g E: | A\ ^ r}, then I is a
transversal matroid of rank r and every subset of E of k elements,

Ί |Hence M has ί' > j fc-flats (1 ^ ft ^ r - 1),JL — rC — / JL, I S a /C~ΊiaL.

all of which have coloops.
Before getting to another necessary condition for a matroid to

be transversal, we require a definition. Let M be a matroid on a set
E. We say that M has the direct sum property provided:

Whenever (Ek\ k e K) is a family of pairwise disjoint subsets of
E such that ME]c is a coloop-free matroid with basis on Ek (k e K),
then

MEkUEι = MEk © M^ {k,le

imply

M<J(E;. jej) = ®(ME:.j e J) .

A matroid need not have the direct sum property as the cycle
matroid M on the set of edges E = {1, 2, , 9} of the graph of Figure
3 shows. If we take Ex = {1, 2, 3}, E2 = {4, 5, 6}, E, = {7, 8, 9}, then
ME. is coloop-free (1 ^ i g 3) and M ^ ^ . = ME. © M .̂ (1 ^ i ^ i ^ 3).
But MElΌE2[JE3 Φ MEl@ME2@MEp for {2, 6, 9}'is a circuit whose inter-
sections with Ei are independent (1 ^ i ^ 3).

We do, however, have the following theorem.
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THEOREM 5.3. Let M be a transversal matroid on E. Then M
has the direct sum property.

Proof. Let (E, A, Y) be a bipartite graph which induces M on
E. Let (Ek: k e K) be a family of pairwise disjoint subsets of E
such that MEk is a coloop-free matroid with basis on Ek (k e K) and
MskUEt = MEU® MEZ (k,leK,kΦl). Since M^ has a basis 2?*, it follows
from Theorem 4.2 that Bk is linked to A(Ek) and to no other subset
of Y(k e if). Since MEkΌEι = MEk®MEι (k Φ I), Bk U J5? is a basis of
ME1C\JE1 where 2?fc n l?z = 0. Since M ^ φ M ẑ is coloop-free, Bk U 2?z

is linked to A(Ek U 2SΊ) = A(Ek) U Λ(Et). Since i?fc, resp. J5j, is only
linked to A(Ek), resp. 2/(2̂ ), it follows that A(Ek) Π 4(2^) = 0. Since
this is true for all k, I e K with k Φ I, the result follows.

Since the matroid of the graph of Figure 3 does not have the
direct sum property, it follows it is not a transversal matroid.

The direct sum property does not characterize transversal matroids
among all matroids. The cycle matroid of the graph of Figure 2 has
the direct sum property but is not transversal as we have already
seen. In fact the direct sum property holds trivially, for if F g £
with MF coloop-free \F\ ̂  3. Since \E\ = 7 in this case, the direct
sum property is valid.

To conclude we wish to mention one further consequence of the
results of § 3. For this we need another definition which, to keep
things simple we make only for finite character matroids. Let M be
a finite character matroid on E, and let F £ E with B a basis of
MEXF. Let

M®F = { i : i g ί 7 , A u δ e ! } .

Then it is well-known [14, 3] that M®F is independent of the choice
of basis B and that M®F is a finite-character matroid on F, called
the contraction of M to F. The contraction of a transversal matroid
need not be a transversal matroid. An example which contains 2-
element circuits (thus not a combinatorial geometry [4]) is given in
[9]. The cycle matroid M on the set of edges of the graph of Figure
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FIGURE 4

4 is a transversal matroid, as is not difficult to see. If we take F =
E\e, then Mm is isomorphic to the matroid of the graph of Figure
3 and hence is not a transversal matroid. It is therefore of interest
to determine when the contraction of a transversal matroid is also a
transversal matroid. We offer the following theorem.

THEOREM 5.4. Let M be a finite-character transversal matroid on
a set E. Let F ' £ E and suppose MEXF is coloop-free. Then Mm is
a (finite-character) transversal matroid.

Proof. Let the bipartite graph (E, A, Y) induce the matroid M
on E. Since ME\F has no coloops, it follows from Theorem 3.4 that
if B is a basis of MEXF then B is linked only to the subset Δ(E/F)
of Y. Let the bipartite graph (F, Δ\ Z) be defined by Z = Y\Δ(E\F)
and Δf = Δ D {F x Z). Let A g F . Then A e M®F if and only if
A u B e M; A\3 B e M if and only if A U B is linked in (E, Δ, Y);
A U B is linked in (E, Δ, Y) if and only if A is linked in (F, Δ\ Z).
Hence the bipartite graph (F, Δ', Z) induces MΘF on F so that MΘF

is a transversal matroid.
There is no difficulty in obtaining examples where ME\F has coloops

but M&F is a transversal matroid. In fact the matroid of a graph
which is a triangle already furnishes an example.
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