A GENERALIZATION OF THE PRIME RADICAL IN NONASSOCIATIVE RINGS

Hyo Chul Myung

In [5] Tsai defined the Brown-McCoy prime radical for Jordan rings in terms of the quadratic operation and proved basic results for the radical. In this paper we give a definition of the prime radical for arbitrary nonassociative rings in terms of a *-operation defined on the family of ideals and of a function f of the ring into the family of ideals in the ring. The prime radical for Jordan or standard rings is obtained by a particular choice of the *-operation and the function f. We also extend the results for the Jordan case to weakly W admissible rings which include the generalized standard rings and therefore alternative and standard rings as well as Jordan rings.

1. Let K be any nonassociative ring and let $\mathscr{F}(K)$ denote the family of ideals of K.

Definition 1. We define a *-operation as a mapping of $\mathscr{F}(K) \times$ $\mathscr{J}(K)$ into the family of additive subgroups of K such that
(*1) for A, B, C, and D in $\mathscr{J}(K)$ if $A \subseteq C$ and $B \subseteq D$, then $A * B \cong C * D$,
$(* 2) \quad(0) * A=B *(0)=(0)$ for all A, B in $\mathscr{J}(K)$,
(*3) $\overline{A * B}=\bar{A} * \bar{B}$ for any homomorphic images \bar{A} and \bar{B} of A and B in $\mathscr{J}(K)$.

If K is a Jordan ring, let $U_{x} \equiv 2 R_{x}^{2}-R_{x^{2}}$ be the quadratic operation and $A U_{B}$ be the additive subgroup of K generated by $x U_{y}$, $x \in A$ and $y \in B$. Then the U-operation satisfies the conditions above. If the characteristic is not 2 , it is shown in [5] that $A U_{A}=A A^{2}$ and is an ideal of K for A in $\mathscr{J}(K)$.

For any ring K and A, B in $\mathscr{I}(K)$, if we define $A * B$ as the additive subgroup $A B^{2}+B^{2} A+(A B) B+(B A) B$, then $A * B$ also satisfies the conditions in Definition 1. In case K is a standard ring, it is shown in [6] that $A * B$ is an ideal of K for A, B in $\mathscr{J}(K)$. If K is commutative or anticommutative, then $A * B=A B^{2}+(A B) B$. In particular, if K is a Lie ring, $A * B$ is an ideal of K. Since A^{2} is not in general an ideal of K for A in $\mathscr{J}(K)$, but there are considerably broad classes of nonassociative rings in which $A^{3} \equiv A A^{2}+A^{2} A$ is an ideal of K for every ideal A, this example will be particularly interesting.

We recall that a noncommutative Jordan ring K is one satisfying
the flexible law $(x, y, x)=0$ and the Jordan identity $\left(x, y, x^{2}\right)=0$ for all x, y in K, where $(x, y, z)=(x y) z-x(y z)$. Most of the well known nonassociative rings are included in the class of noncommutative Jordan rings. Recently Thedy [4] defined a considerably broad class of algebras that generalizes many of the well known algebras.

Definition 2. A noncommutative Jordan ring K is called weakly W-admissible if it satisfies

$$
[(a, b, c), c]-([a, c], c, b)=0
$$

and

$$
\begin{aligned}
& ([a, b], d, c]+([b, c], d, a)+([c, a], d, b] \\
= & p[(a, b, c), d]+q[S(a, b, c), d]+r[d,[b,[a, c]]]
\end{aligned}
$$

for some integers p, q, r such that either $m(p, q, r) \equiv 3+2 p+6 q-$ $4 r \neq 0$, or $n(p, r) \equiv p+4 r \neq 0$, where $[a, b]=a b-b a$ and $S(a, b, c)=$ $(a, b, c)+(b, c, a)+(c, a, b)$.

Thedy called a noncommutative Jordan algebra over a field W-admissible if it satisfies the identity $[a,(a, a, b)]=0$ and the two identities above for p, q, r in the field such that either $m(p, q, r) \neq 0$ or $n(p, r) \neq$ 0 . He proved that if the characteristic is not 2 , then any generalized standard ring of Schafer [2] is W-admissible with $p=-2$ and $q=r=$ 0 . Therefore, weakly W-admissible rings include generalized standard rings and hence alternative and standard rings as well as Jordan rings. In case the characteristic is not 2, it is also shown in [4, p. 192] that in any weakly W-admissible ring K, A^{3} is an ideal of K for A in $\mathscr{J}(K)$.

Lemma 1.1. Let K be any ring. Then the conditions (*2) and (*3) imply
(i) $(A+C) *(B+C) \subseteq A * B+C$, and
(ii) $A * B \cong A \cap B$
for ideals A, B, C of K.
Proof. Consider the quotient ring $\bar{K}=K / C$, then by $(* 3)(\overline{A+}$ $\overline{C) *(B+C)}=\bar{A} * \bar{B}=\overline{A * B}$, and hence (i). Let $\bar{K}=K / A$, then $\overline{A * B}=$ $\bar{A} * \bar{B}=(\overline{0}) * \bar{B}=(\overline{0})$ by ($* 2$) and so $A * B \subseteq A$. Similarly $A * B \subseteq B$ and $A * B \subseteq A \cap B$.

Definition 3. Let K be any ring. Then f is defined as a function of K into $\mathscr{J}(K)$ such that for every a in K
(f 1) $a \in f(a)$,
(f 2) if $x \in f(a)$, then $f(x) \subseteq f(a)$,
(f 3) $\overline{f(a)}=f(\bar{\alpha})$, where $\bar{\alpha}$ is a homomorphic image of α.
The principal ideal (a) generated by a in K is an example of $f(a)$. Now let S be a subset of K and define $f(a)$ to be the ideal (a, S) generated by a and S. Then f satisfies the conditions above. A similar function to f has been defined in [1] for the associative case and in [3].

Henceforth we assume that f denotes a function of K into $\mathscr{F}(K)$ satisfying (f 1), (f 2), and (f 3). Then clearly $(a) \subseteq f(\alpha)$. For an ideal A of K, we denote the ideal $\sum_{a \in A} f(\alpha)$ by $f(A)$. Then $A \subseteq f(A)$ and $f(A) \cong f(B)$ if $A \subseteq B$, and also $f((\alpha))=f(a)$. But in general $f(A) \neq A$ as shown by the example $f(a)=(a, S)$ for a subset S of K. Let $\mathscr{F}^{\prime}(K)$ denote the family of ideals $f(A)$ for A in $\mathscr{F}(K)$. Then $\mathscr{F}^{\prime}(K) \sqsubseteq$ $\mathscr{I}(K)$ and in particular, if f is such that $f(\alpha)=(\alpha)$ for all α in K, then $f(A)=A$ and $\mathscr{I}^{\prime}(K)=\mathscr{I}(K)$.
2. In this section we give a definition of the prime radical for any ring in terms of the *-operation and the function f.

Lemma 2.1. Let K be any ring where the *-operation and the function f are defined. For an ideal P of K, the following are equivalent:
(i) If $f(A) * f(B) \subseteq P$ for A, B in $\mathscr{I}(K)$, then either $f(A) \subseteq P$ or $f(B) \subseteq P$.
(ii) If we have $f(A) \cap c(P) \neq \varnothing$ and $f(B) \cap c(P) \neq \varnothing$, then $f(A) * f(B) \cap c(P) \neq \varnothing$.
(iii) If a and b are in $c(P)$, then $f(a) * f(b) \cap c(P) \neq \varnothing$.

Proof. We need only to show that (ii) and (iii) are equivalent. Let a and b be in $c(P)$, then $f(a) \cap c(P) \neq \varnothing$ and $f(b) \cap$ $c(P) \neq \varnothing$. Hence (ii) implies (iii). Now let A and B be ideals of K with $f(A) \cap c(P) \neq \varnothing$ and $f(B) \cap c(P) \neq \varnothing$. Let $a \in f(A) \cap c(P)$ and $b \in f(B) \cap c(P)$. Assuming (iii), we get $f(a) * f(b) \cap c(P) \neq \varnothing$ and by $(* 1) f(A) * f(B) \cap(P) \neq \varnothing$, thus (ii) holds.

Definition 4. (i) An ideal P of K is called f^{*}-prime if it satisfies any one of Lemma 2.1. A nonempty subset M of K is called an f^{*} system if, for A, B in $\mathscr{I}(K), f(A) \cap M \neq \varnothing$ and $f(B) \cap M \neq \varnothing$ imply $f(A) * f(B) \cap M \neq \varnothing$.
(ii) An ideal P of K is called f^{*}-semiprime if, for any ideal A of $K, f(A) * f(A) \cong P$ implies $f(A) \cong P$. A nonempty subset M of K is called an $s f^{*}$-system if, for A in $\mathscr{S}(K), f(A) \cap M \neq \varnothing$ implies $f(A) * f(A) \cap M \neq \varnothing$.

An ideal P is f^{*}-prime if and only if $c(P)$ is an f^{*}-system. Similarly, an ideal P is f^{*}-semiprime if and only if $\mathrm{c}(P)$ is an $s f^{*}$ -
system. Let K be a Jordan or standard ring. If we define $A * B$ as $A U_{B}$ or as $A B^{2}+B^{2} A+(A B) B+(B A) B$ and define $f(a)$ as (a) for every a in K, then the defininition of f^{*}-prime and f^{*}-semiprime ideals coincide with those in [5] or in [6].

Definition 5. For A in $\mathscr{J}(K), A^{*}=\left\{x \in K \mid\right.$ any f^{*}-system containing x meets $A\}$ is called the f^{*}-radical of A. Similarly, $A_{*}=$ $\left\{y \in K \mid\right.$ any $s f^{*}$-system containing y meets $\left.A\right\}$ is called the $s f^{*}$-radical of A.

Theorem 2.2. Let A be an ideal of K. Then
(i) A^{*} is the intersection of all the f^{*}-prime ideals P_{i} containing A.
(ii) A_{*} is the intersection of all f^{*}-semiprime ideals containing A.
(iii) A_{*} is an f^{*}-semiprime ideal of K.
(iv) A is f^{*}-semiprime if and only if $A=A_{*}$.

Proof. The proofs are essentially the same as in [5]. But to emphasize use of the $*$-operation and the function f we prove only (i). Let $\bigcap_{i} P_{i}$ be the intersection of all the f^{*}-prime ideals P_{i} of K containing A. If $a \notin P_{i}$ for some i, then $a \in c\left(P_{i}\right)$, being an f^{*}-system, and $c\left(P_{i}\right) \cap A=\varnothing$. Hence $a \notin A^{*}$ and $A^{*} \subseteq \bigcap_{i} P_{i}$. Conversely, if $\alpha \notin A^{*}$, then there exists an f^{*}-system M with $a \in M$ but $A \cap M=\varnothing$. By Zorn's lemma we find a maximal ideal P such that $P \supseteqq A$ but $P \cap M=\varnothing$. Let B, C be ideals of K such that $f(B) \cap c(P) \neq \varnothing$ and $f(C) \cap c(P) \neq \varnothing$. By the maximality of $P,(f(B)+P) \cap M \neq \varnothing$ and $(f(C)+P) \cap M \neq$ \varnothing. Since M is an f^{*}-system, $\varnothing \neq(f(B)+P) *(f(C)+P) \cap M \subseteq$ $(f(B) * f(C)+P) \cap M$ by Lemma 1.1 (i), thus $f(B) * f(C) \cap c(P) \neq \varnothing$. Hence P is f^{*}-prime and $\alpha \notin P$.

Lemma 2.3. Let a be an element of K and S be an $s f^{*}$-system containing a. Then there exists an f^{*}-system M such that $a \in M$ and $M \subseteq S$.

Proof. Let $a_{1}=a$, then $a_{1} \in f\left(a_{1}\right) \cap S$ and so $f\left(a_{1}\right) * f\left(a_{1}\right) \cap S \neq \varnothing$. Hence we obtain a set $M=\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}$ such that $a_{k+1} \in$ $f\left(a_{k}\right) \cap S$ and $M \subseteq S$. By Lemma 1.1 (ii) we note that $a_{k+1} \in f\left(a_{k}\right) * f\left(a_{k}\right) \subseteq$ $f\left(a_{k}\right)$ and so $f\left(a_{k+1}\right) \subseteq f\left(a_{k}\right)$. Let $p=\max (i, j)$, then $a_{p+1} \in f\left(a_{p}\right)^{*} f\left(a_{p}\right) \cap$ $S \subseteq f\left(a_{i}\right) * f\left(a_{j}\right) \cap S$. Hence $f\left(a_{i}\right) * f\left(a_{j}\right) \cap M \neq \varnothing$ and M is an f^{*} system.

Therefore, as in [5], we have
Theorem 2.4. For any ideal A of $K, A^{*}=A_{*}$. A^{*} is called the f^{*}-prime radical of A.

Definition 6. The f^{*}-prime radical, $R^{*}(K)$, of K is the f^{*} prime radical of the ideal (0). A ring K is said to be f^{*}-semisimple if $R^{*}(K)=(0)$.

Lemma 2.5. Let \bar{K} be a homomorphic image of K. If M is an f^{*}-system of K, then so is \bar{M} in \bar{K}.

Proof. Let \bar{A}, \bar{B} be ideals of \bar{K} such that $f(\bar{A}) \cap \bar{M} \neq \varnothing$ and $f(\bar{B}) \cap \bar{M} \neq \varnothing$, where A and B are ideals in K containing the kernel. Recalling (f 3) and $A \subseteq f(A)$, these imply $f(A) \cap M \neq \varnothing$ and $f(B) \cap$ $M \neq \varnothing$. Since M is an f^{*}-system, by ($* 3$) and (f 3) we see that $f(\bar{A}) * f(\bar{B}) \cap \bar{M} \neq \varnothing$.

Therefore, by Lemma 2.3 we easily see that any homomorphic image of an f^{*}-prime ideal containing the kernel is also f^{*}-prime. Hence we obtain

Theorem 2.6. Let K be a ring and $R^{*}(K)$ be the f^{*}-prime radical of K, then $R^{*}\left(K / R^{*}(K)\right)=(0)$, that is, $K / R^{*}(K)$ is f^{*}-semisimple.

Definition 7. A ring K is called an f^{*}-prime ring if (0) is an f^{*}-prime ideal in K.

Clearly, an f^{*}-prime ring is f^{*}-semisimple. Since any homomorphic image of an f^{*}-prime ideal is f^{*}-prime, if P is an f^{*}-prime ideal in K then K / P is an f^{*}-prime ring. Let $\bar{K}=K / P$ be an $f^{*} A$ prime ring and let $f(A) * f(B) \subseteq P$, then $f(\bar{A}) * f(\bar{B}) \subseteq(\overline{0})$ and so $f(A) \subseteq P$ or $f(B) \subseteq$ P, thus P is f^{*}-prime in K. Hence P is an f^{*}-prime ideal of K if and only if K / P is an f^{*}-prime ring. Therefore, as for Jordan rings, we obtain

Theorem 2.7. A ring K is isomorphic to a subdirect sum of f^{*} prime rings if and only if K is f^{*}-semisimple.
3. Throughout this section we assume that the *-operation satisfies the following additional condition:
(*4) $A * A=A^{3}$ and $A * A$ is an ideal of K for A in $\mathscr{F}(K)$.
We recall that if K is a weakly W-admissible or Lie ring then $A * B=A B^{2}+B^{2} A+(A B) B+(B A) B$ satisfies ($* 4$).

Theorem 3.1. Let A be an ideal of a ring K and $r \in A_{*}$. Then a power of r belongs to A. Furthermore if K is power-associative, then the f^{*}-radical $R^{*}(K)$ is a nil ideal in K.

Proof. Let M be the multiplicatively closed system generated
by r in K. Then it follows from (*4) that M is an $s f^{*}$-system containing r. Hence $M \cap A \neq \varnothing$. If K is power-associative and $r \in$ $R^{*}(K)$, then $r^{k} \in(0)$ for some k and so $R^{*}(K)$ is nil.

Therefore, the f^{*}-radical $R^{*}(K)$ is contained in the nil radical $N(K)$ (the maximal nil ideal in K).

Let $\mathscr{I}^{\prime}(K)$ denote the set of ideals $f(A)$ for A in $\mathscr{I}(K)$. Then $\mathscr{J}^{\prime}(K) \subseteq \mathscr{I}(K)$.

Theorem 3.2. A ring K is f^{*}-semisimple if and only if $\mathscr{J}^{\prime}(K)$ contains no nonzero nilpotent ideal.

Proof. It follows from Theorem 2.2 (iv) that K is f^{*}-semisimple if and only if the ideal (0) is f^{*}-semiprime. If $f(A)$ is a nonzero nilpotent ideal for A in $\mathscr{J}(K)$, there exist positive integers $u=3^{t}$ and $v=3^{t-1}$ such that $f(A)^{u}=(0)$ but $f(A)^{v} \neq(0)$. But then since $f(A)^{v} * f(A)^{v} \subseteq f(A)^{3 v}=f(A)^{u}=(0),(0)$ is not f^{*}-semiprime. Conversely, if (0) is not f^{*}-semiprime, then there exists an ideal $f(A) \neq(0)$ such that $f(A) * f(A)=f(A)^{3}=(0)$, thus $f(A)$ is nilpotent.

Corollary 3.3. The f^{*}-radical $R^{*}(K)$ contains all the nilpotent ideals in $\mathscr{J}^{\prime}(K)$.

Proof. Let $f(A)$ be a nilpotent ideal in $\mathscr{J}^{\prime}(K)$ and $\bar{K}=K / R^{*}(K)$, then $\overline{f(A)}=f(\bar{A}) \in \mathscr{J}^{\prime}(\bar{K})$, and $f(\bar{A})$ is nilpotent in \bar{K}. Since \bar{K} is f^{*}-semisimple, by Theorem $3.2 f(\bar{A})=(\overline{0})$, thus $f(A) \subseteq R^{*}(K)$.

Theorem 3.4. If K is a ring and $\mathcal{F}^{\prime}(K)$ contains a maximal nilpotent ideal $S^{\prime}(K)$, then $R^{*}(K)=S^{\prime}(K)$.

Proof. By Corollary 3.3, $S^{\prime}(K) \subseteq R^{*}(K)$. Let $\bar{K}=K / S^{\prime}(K)$, then $\mathscr{F}^{\prime}(\bar{K})$ contains no nonzero nilpotent ideal and by Theorem $3.2 R^{*}(\bar{K})=$ (0). If $r \notin S^{\prime}(K)$, then $\bar{r} \neq \overline{0}$ and so there exists an f^{*}-prime ideal \bar{P} in \bar{K} with $\bar{r} \notin \bar{P}$. From (*3) and (f 3) it follows that the inverse image P of \bar{P} is an f^{*}-prime ideal in K. But since $\bar{r} \notin \bar{P}, r \notin P$ and so $r \notin R^{*}(K)$, thus $R^{*}(K) \subseteq S^{\prime}(K)$.

Now suppose that $f(a)=(a)$ for every element a in K. Then $\mathscr{F}(K)=\mathscr{F}^{\prime}(K)$. Hence by Theorem $3.2 K$ is f^{*}-semisimple if and only if K has no nonzero nilpotent ideal, and $R^{*}(K)$ contains all nilpotent ideals of K. In this case the ideal $S^{\prime}(K)$ is a maximal nilpotent ideal $S(K)$ in K and by Theorem $3.4 R^{*}(K)=S(K)$.

Let K now be a finite dimensional W-admissible or Lie algebra over a field. Let $f(\alpha)=(\alpha)$ for all a in K. If K is W-admissible, then it is shown in [4] that the nil radical $N(K)$ is nilpotent and so the
unique maximal nilpotent ideal $S(K)$. Hence by Theorem 3.4 $R^{*}(K)=$ $N(K)=S(K)$. If K is a Lie algebra, it is well known that K has a maximal nilpotent ideal $S(K)$ and hence $R^{*}(K)=S(K)$.

References

1. K. Murata, Y. Kurata and H. Marubayashi, A generalization of prime ideals in rings, Osaka J. Math., 6 (1969), 291-301.
2. R. D. Schafer, Generalized standard algebras, J. of Algebra, 12 (1969), 386-417.
3. M. F. Smiley, Application of a radical of Brown and McCoy to non-associative rings, Amer. J. Math., 72 (1950), 93-100.
4. A. Thedy, Zum Wedderburnschen Zerlegungssatz, Math. Z., 113 (1970), 173-195.
5. C. Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc., 19 (1968), 1171-1175.
6. L. J. Zettel, Radicals in standard rings, Ph. D. Thesis, Michigan State University, 1970.

Received March 19, 1971 and in revised form July 1, 1971.
University of Northern Iowa

